PEMFC铂基催化剂的助催化剂及载体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化剂是质子交换膜燃料电池(PEMFC)最为重要的关键材料之一。目前,Pt/C是应用最为广泛的PEMFC催化剂,但是其仍面临着氧还原活性不高,稳定性较差,及成本过高等问题,限制了PEMFC整体的效率及商业化推广。本文首先确定了催化剂的制备方法并对Pt/C催化剂的制备进行了逐步放大,用以满足实验室对Pt基催化剂用量上的需求;后从引入助催化剂及新型载体两个方面出发,根据Pt与Ti同为d区元素的特点,尝试找到可以提升Pt基催化剂活性及稳定性的Ti系材料。
     首先,确定了催化剂的制备方法并对Pt/C催化剂的制备进行了逐步放大。对比了连续微波法(CM)、脉冲微波法(PM)及乙二醇回流法(EG-Reflux)所制备的Pt/C催化剂的电化学活性面积及Pt颗粒形貌,并比较了以不同C材料为载体的催化剂活性和结构,优选出制备方法(PM、EG-Reflux)及载体;对50%Pt担载量的Pt/C催化剂的制备进行了逐步放大,所得催化剂与商业化的Pt/C相比,电化学活性面积较大且颗粒较小;并且催化剂制备工艺稳定可靠。将自制催化剂制得电极,经过单池性能测试,催化剂可以满足使用要求。
     其次,制备了N及Sn掺杂的TiO_2(NTT)助催化剂,并利用X射线衍射(XRD)、透射电镜(TEM)、及X射线光电子能谱(XPS)等手段,对其晶形、形貌及元素组成进行了分析;以不同比例混入Pt/C催化剂后,对NTT/Pt/C共混催化剂进行了循环伏安动电位扫描和旋转圆盘电极测试,研究了其对Pt/C催化剂电化学活性面积及氧还原半波电位的影响;并在不同增湿条件下,在单电池中对NTT/Pt/C及Pt/C催化剂进行了测试。结果显示,NTT不仅可以促进Pt/C催化剂活性,并且其具有一定的保水能力,在低增湿工况下可以显著提升PEMFC的性能。
     最后,系统地研究了TiC及TiN作为Pt基催化剂载体的可能性。采用XRD、TEM以及比表面积及孔分布表征,对载体的晶形、形貌、比表面积及孔结构进行了分析;并采用动电位扫描法,研究了这两种载体的本征电化学稳定性。后以两种材料为载体,制备了不同Pt担载量的Pt/TiC、Pt/TiN催化剂,采用循环伏安法及旋转圆盘电极法测定了催化剂的电化学活性面积及氧还原活性;利用动电位扫描法及阶段电位氧化法评价了催化剂的电化学稳定性。结果表明,TiN及TiC及Vulcan XC-72碳粉三种材料相比,TiC与Vulcan XC-72碳粉材料电化学稳定性相当,皆优于TiN材料;担负Pt后,Pt/TiN与Pt/C催化剂氧还原活性相当,且优于Pt/TiC催化剂。
The catalyst is one of the most significant key materials for Proton Exchange Membrane Fuel Cells(PEMFCs).Presently,the Pt/C plays as the most widely used catalyst for PEMFCs, however,it also possesses several problems,such as high cost,low activity of oxygen reduction reaction(ORR) and stability,which stock the the efficiency and commercializing of PEMFCs. In this thesis,fisrtly,the methods for preparing catalyst were confirmed and the yield of Pt/C was step wisely scaled up,in order to meet the consumation of Pt-based catalyst at laboratory.Then focusing on the co-catalyst and novel support,some promising materials were studied aiming for improving Pt-based catalyst's activity and stability.
     Firstly,the methods for preparing catalyst were confirmed and the yield of Pt/C was step wisely scaled up.Though comparing the activity and form of Pt/C,the optimum method and support were selected within different preparing methods(constant microwave,pulse microwave and EG refluxing) and carbon materials.The Pt/C with 50%Pt loading was prepared with stepwise yield target.Compared with the commercial Pt/C,the homemade catalyst showed smaller Pt particle size and bigger ECA.The quality of homemade catalyst was stable within repeated preparation.Moreover,it can be found from single cell test that the homemade catalyst is a promising catalyst for PEMFCs.
     Secondly,the N and Sn doped TiO_2(NTT) was prepared and characterized by XPS,TEM and XRD.The NTT/Pt/C catalyst,constituted by different contents of NTT,were tested by the cyclic voltammetry(CV) and the rotating disk electrode(RDE) method for investigating their electrochemically active surface area as well as their half-wave potential of ORR.The NTT/Pt/C catalysts were also tested within single cells with H_2/O_2 and H_2/Air under different humidity.The results indicated that through the addition of NTT,besides the activity of Pt/C could be improved,the performance of PEMFC under low humidity was also highly promoted mainly due to the water retention characteristic of NTT.
     Thirdly,TiC and TiN were systematically investigated to apply as the supports of Pt-based catalyst.The supports were characterized by XRD,TEM,BET to analyze their crystal form, profile,specific surface area and pore structure.The electrochemical stabilities of supports were tested by dynamic potential scanning.The Pt/TiC and Pt/TiN with various Pt loading were synthesized and tested by CV and RDE for investigating their electrochemical area(ECA) and activity of ORR;moreover their electrochemical stabilities were also tested by dynamic potential scanning and stepwise potential oxidation.The results indicated that within three kinds of mterials,the electrochemical stability of Vulcan XC-72 carbon particles could be commensurate with TiC,which excelled the TiN material.After Pt being loaded,the Pt/TiN and Pt/C possessed comparative activities for ORR and performed better than Pt/TiC.
引文
[1]衣宝廉.燃料电池——原理·技术·应用[M].北京:化学工业出版社,2003.
    [2]毛宗强.燃料电池[M].北京:化学工业出版社,2005.
    [3]杨妙梁.世界燃料电池车发展的动向(一)[J].汽车与配件,2004,(51):30-31.
    [4]杨妙梁.世界燃料电池车发展的动向(二)[J].汽车与配件,2005,(1):26-29.
    [5]杨妙梁.世界燃料电池车发展的动向(三)[J].汽车与配件,2005,(5):34-37.
    [6]杨妙梁.世界燃料电池车发展的动向(四)[J].汽车与配件,2005,(6):36-38.
    [7]杨妙梁.世界燃料电池车发展的动向(六)[J].汽车与配件,2005,(14):38-39.
    [8]杨妙梁.世界燃料电池车发展的动向(七)[J].汽车与配件,2006,(3):33-35.
    [9]刘卫锋,唐倩,衣宝廉,等.燃料电池阴极催化剂的研究进展[J].电源技术,2002,26(6):457-461.
    [10]魏子栋,李莉,李兰兰,等.氧电极催化材料的研究现状[J].电源技术,2004,28(2):116-120.
    [11]Borup R,Meyers J,Pivovar B,et al.Scientific aspects of polymer electrolyte fuel cell durability and degradation[J].Chemical Reviews,2007,107(10):3904-3951.
    [12]Yasuda K,Taniguchi A,Akita T,et al.Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling[J].Physical Chemistry Chemical Physics,2006,8(6):746-752.
    [13]邵玉艳,PEMFC铂/碳纳米管催化剂稳定性和电极制备新方法[D]:博士学位论文.哈尔滨:哈尔滨工业大学,2006
    [14]Gasteiger H A,Kocha S S,Sompalli B,et al.Activity benchmarks and requirements for Pt,Pt-alloy,and non-Pt oxygen reduction catalysts for PEMFCs[J].Applied Catalysis B-Environmental,2005,56(1-2):9-35.
    [15]Nishimura T,Morikawa T,Yokoi M,et al.Preparation of novel Pt-based nanoparticles by double potential step electrolysis and their electrocatalytic activity for oxygen reduction reaction[J].Electrochimica Acta,2008,54(2):499-505.
    [16]Toda T,Igarashi H,Uchida H,et al.Enhancement of the electroreduction of oxygen on Pt alloys with Fe,Ni,and Co[J].Journal of the Electrochemical Society,1999,146(10):3750-3756.
    [17]Li H Q,Sun G Q,Li N,et al.Design and preparation of highly active Pt-Pd/C catalyst for the oxygen reduction reaction[J].Journal of Physical Chemistry C,2007,111(15):5605-5617.
    [18]Mukerjee S,Srinivasan S,Soriaga M P,et al.Role of Structural and Electronic-Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction -an in-Situ Xanes and Exafs Investigation[J].Journal of the Electrochemical Society,1995,142(5):1409-1422.
    [19]Colon-Mercado H R,Popov B N.Stability of platinum based alloy cathode catalysts in PEM fuel cells[J].Journal of Power Sources,2006,155(2):253-263.
    [20]Zhang J,Sasaki K,Sutter E,et al.Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J].Science,2007,315(5809):220-222.
    [21]Koh S,Strasser P.Electrocatalysis on bimetallic surfaces:Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying[J].Journal of the American Chemical Society,2007,129(42):12624-+.
    [22]Neyerlin K C,Srivastava R,Yu C F,et al.Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR)[J].Journal of Power Sources,2009,186(2):261-267.
    [23]徐洪峰,张茂峰,甘全全,等.质子交换膜燃料电池MnO_2-Pt/C复合催化剂阴极的富氧作用[J].电化学,2007,13(3):316-319.
    [24]刘振泰,蒋淇忠,周震一,等.炭黑负载MnOx-Pt电催化剂的制备与初步研究[J].高校化学工程学报,2005,19(3):388-391.
    [25]Lim D H,Lee W D,Choi D H,et al.The effect of cerium oxide nanoparticles on a Pt/C electrocatalyst synthesized by a continuous two-step process for low-temperature fuel cell[J].Electrochemistry Communications,2008,10(4):592-596.
    [26]Xu H F,Hou X L.Synergistic effect of CeO2 modified Pt/C electrocatalysts on the performance of PEM fuel cells[J].International Journal of Hydrogen Energy,2007,32(17):4397-4401.
    [27]Sasaki K,Zhang L,Adzic R R.Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction[J].Physical Chemistry Chemical Physics,2008,10(1):159-167.
    [28]Baturina O A,Garsany Y,Zega T J,et al.Oxygen Reduction Reaction on Platinum/Tantalum Oxide Electrocatalyst for PEM Fuel Cells[J].Journal of the Electrochemical Society,2008,155(12):B1314-B1321.
    [29]Shim J,Lee C R,Lee H K,et al.Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell[J].Journal of Power Sources,2001,102(1-2):172-177.
    [30]Takenaka S,Matsumori H,Nakagawa K,et al.Improvement in the durability of pt electrocatalysts by coverage with silica layers[J].Journal of Physical Chemistry C,2007,111(42):15133-15136.
    [31]Levy R B,Boudart M.Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis[J].Science,1973,181(4099):547-549.
    [32]Meng H,Shen P K.Tungsten carbide nanocrystal promoted Pt/C electrocatalysts for oxygen reduction[J].Journal of Physical Chemistry B,2005,109(48):22705-22709.
    [33]Rajalakshmi N,Ryu H,Shaijumon MM,et al.Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material[J].Journal of Power Sources,2005,140(2):250-257.
    [34]Gangeri M,Perathoner S,Centi G.Synthesis and performances of carbon-supported noble metal nanoclusters as electrodes for polymer electrolyte membrane fuel cells[J].Inorganica Chimica Acta,2006,359(15):4828-4832.
    [35]Liu J M,Meng H,Li J I,et al.Preparation of high performance Pt/CNT catalysts stabilized by ethylenediaminetetraacetic acid disodium salt[J].Fuel Cells,2007,7(5):402-407.
    [36]Takenaka S,Matsumori H,Matsune H,et al.High durability of carbon nanotube-supported Pt electrocatalysts covered with silica layers for the cathode in a PEMFC[J].Journal of the Electrochemical Society,2008,155(9):B929-B936.
    [37]Verde Y,Keer A,Miki-Yoshida M,et al.Aqueous deposition of metals on multiwalled carbon nanotubes to be used as electrocatalyst for polymer exchange membrane fuel cells[J].Journal of Fuel Cell Science and Technology,2007,4(2):130-133.
    [38]Lee J,Kim J,Hyeon T.Recent progress in the synthesis of porous carbon materials[J].Advanced Materials,2006,18(16):2073-2094.
    [39]Panizza M,Cerisola G.Application of diamond electrodes to electrochemical processes[J].Electrochimica Acta,2005,51(2):191-199.
    [40]Saha M S,Li R Y,Cai M,et al.High electrocatalytic activity of platinum nanoparticles on SnO2 nanowire-based electrodes[J].Electrochemical and Solid State Letters,2007,10(8):B130-B133.
    [41]Chhina H,Campbell S,Kesler O.An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells[J].Journal of Power Sources,2006,161(2):893-900.
    [42]Lee K S,Park I S,Cho Y H,et al.Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells[J].Journal of Catalysis,2008,258(1):143-152.
    [43]Suzuki Y,Ishihara A,Mitsushima S,et al.Sulfated-zirconia as a support of Pt catalyst for polymer electrolyte fuel cells[J].Electrochemical and Solid State Letters,2007,10(7):B105-B107.
    [44]Honji A,Mori T,Hishinuma Y,et al.Platinum Supported on Silicon-Carbide as Fuel-Cell Electrocatalyst[J].Journal of the Electrochemical Society,1988,135(4):917-918.
    [45]张生生,朱红,俞红梅,等.碳化钨用作质子交换膜燃料电池催化剂载体的抗氧化性能[J].催化学报,2007,28(2):109-110.
    [46]Kawasoe Y,Tanaka S,Kuroki T,et al.Preparation and electrochemical activities of Pt-Ti alloy PEFC electrocatalysts[J].Journal of the Electrochemical Society,2007,154(9):B969-B975.
    [47]Song H Q,Qiu X P,Li X X,et al.TiO2 nanotubes promoting Pt/C catalysts for ethanol electro-oxidation in acidic media[J].Journal of Power Sources,2007,170(1):50-54.
    [48]吴省,蒋淇忠,马紫峰,等.TiO_2纳米管掺杂Pt/C催化剂对甲醇电氧化性能影响[J].电源技术,2007,31(9):713-716.
    [49]Tian J,Sun G Q,Cai M,et al.PtTiOx/OC electrocatalysts with improved durability in H-2/O-2 PEMFCs without external humidification[J].Journal of the Electrochemical Society,2008,155(2):B187-B193.
    [50]Ioroi T,Siroma Z,Fujiwara N,et al.Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells[J].Electrochemistry Communications,2005,7(2):183-188.
    [51]Vracar L,Krstajic N,Elezovic N.Electrocatalytic activity of nano-sized Ebonex/Pt for underpotential deposition of hydrogen[J].Recent Developments in Advanced Materials and Processes,2006,518(253-258.
    [52]Krstajic N V,Vracar L M,Radmilovic V R,et al.Advances in interactive supported electrocatalysts for hydrogen and oxygen electrode reactions[J].Surface Science,2007,601(9):1949-1966.
    [53]Park K W,Seol K S.Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells[J].Electrochemistry Communications,2007,9(9):2256-2260.
    [54]Chhina H,Susac D,Campbell S,et al.Transmission Electron Microscope Observation of Pt Deposited on Nb-Doped Titania[J].Electrochemical and Solid State Letters,2009,12(6):B97-B100.
    [55]Rajalakshmi N,Lakshmi N,Dhathathreyan K S.Nano titanium oxide catalyst support for proton exchange membrane fuel cells[J].International Journal of Hydrogen energy,2008,(33):7521-7526.
    [56]von Kraemer S,Wikander J,Lindbergh G,et al.Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell[J].Journal of Power Sources,2008,180(1):185-190.
    [57]Mentus S V.Oxygen reduction on anodically formed titanium dioxide[J].Electrochimica Acta,2004,50(1):27-32.
    [58]Kim J H,Ishihara A,Mitsushima S,et al.Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC[J].Electrochimica Acta,2007,52(7):2492-2497.
    [59]刘卫锋,胡军,衣宝廉,等.Pt/C催化剂的制备与评价[J].电源技术,2005,297(1):431-433.
    [60]黄成德,韩佐青,李晓峰,等.PEMFC用Pt/C电催化剂的制备[J].电源技术,2000,24(4):243-245.
    [61]Zhou Z H,Wang S L,Zhou W J,et al.Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell[J].Chemical Communications,2003,(3):394-395.
    [62]Chen W X,Lee J Y,Liu Z L.Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications[J].Chemical Communications,2002,(21):2588-2589.
    [63]Song S Q,Wang Y,Shen P K.Pulse-microwave assisted polyol synthesis of highly dispersed high loading Pt/C electrocatalyst for oxygen reduction reaction[J].Journal of Power Sources,2007,170(1):46-49.
    [64]Ticianelli E A,Derouin C R,Srinivasan S.Localization of Platinum in Low Catalyst Loading Electrodes to Attain High-Power Densities in Spe Fuel-Cells[J].Journal of Electroanalytical Chemistry,1988,251(2):275-295.
    [65]Chen X,Mao S S.Titanium dioxide nanomaterials:Synthesis,properties,modifications,and applications[J].Chemical Reviews,2007,107(7):2891-2959.
    [66]Irie H,Watanabe Y,Hashimoto K.Nitrogen-concentration dependence on photocatalytic activity of Ti02-xNx powders[J].Journal of Physical Chemistry B,2003,107(23):5483-5486.
    [67]Sakthivel S,Kisch H.Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide[J].Chemphyschem,2003,4(5):487-490.
    [68]Chattopadhyay J,Kim H R,Moon S B,et al.Performance of tin doped titania hollow spheres as electrocatalysts for hydrogen and oxygen production in water electrolysis[J].International Journal of Hydrogen Energy,2008,33(13):3270-3280.
    [69]Scofield J H.Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487ev[J].Journal of Electron Spectroscopy and Related Phenomena,1976,8(2):129-137.
    [70]Carp O,Huisman C L,Reller A.Photoinduced reactivity of titanium dioxide[J].Progress in Solid State Chemistry,2004,32(1-2):33-177.
    [71]Kambe S,Nakade S,Wada Y,et al.Effects of crystal structure,size,shape and surface structural differences on photo-induced electron transport in TiO2 mesoporous electrodes[J].Journal of Materials Chemistry,2002,12(3):723-728.
    [72]Shao Z G,Xu H F,Li M Q,et al.Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell[J].Solid State Ionics,2006,177(7-8):779-785.
    [73]Vinod Jalan C,Frost D G,Franklin.Fuel Cell electrocatalyst support comprising an ultra-fine chainy-structrured titanium carbide[P].U.S.,4795684,
    [74]Avasarala B,Murray T,Li W Z,et al.Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells[J].Journal of Materials Chemistry,2009,19(13):1803-1805.
    [75]哈拉莱 I C,梅尔佐贵 B,卡彭特,等 M K.燃料电池催化剂的载体[P].中国,CN 101171711A,
    [76]Ma L R,Sui S,Zhai Y C.Preparation and characterization of Ir/TiC catalyst for oxygen evolution[J].Journal of Power Sources,2008,177(2):470-477.
    [77]Bockris J O.Kinetics of Activation Controlled Consecutive Electrochemical Reactions -Anodic Evolution of Oxygen[J].Journal of Chemical Physics,1956,24(4):817-827.
    [78]Colon-Mercado H R,Kim H,Popov B N.Durability study Of Pt3Nil catalysts as cathode in PEM fuel cells[J].Electrochemistry Communications,2004,6(8):795-799.
    [79]Reiser C A,Bregoli L,Patterson T W,et al.A reverse-current decay mechanism for fuel cells[J].Electrochemical and Solid State Letters,2005,8(6):A273-A276.
    [80]Knights S D,Colbow K M,St-Pierre J,et al.Aging mechanisms and lifetime of PEFC and DMFC[J].Journal of Power Sources,2004,127(1-2):127-134.
    [81]Tang H,Qi Z G,Ramani M,et al.PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode[J].Journal of Power Sources,2006,158(2):1306-1312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700