中温固体氧化物燃料电池硅酸镧电解质合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(Solid oxide fuel cell,SOFC)属于第三代燃料电池能源系统,其高能量转换效率、洁净无污染、安全方便、全固态结构和对多种燃料气体的广泛适应性等,使其应用于各个领域。高温固体氧化物燃料电池作为燃料重整和转换以及电化学反应过程等在内的无机膜反应器,把化学能直接转化为电能的效率主要决定于SOFC的核心部件-固体电解质。采用传统的ZrO_2基电解质,必须在高温下操作才能得到较高的电能转换效率,连接密封材料必须使用铂等稀贵金属,导致过高应用成本。因此,近年来研究和开发适用于中温SOFC(Intermediatetemperature solid oxide fuel cell,IT-SOFC)的新型电解质材料已成为SOFC领域的研究热点之一,其中具有低活化能和高氧离子电导率的磷灰石型硅酸镧系氧化物受到了人们的广泛关注。选择La_(10)(SiO_4)_6O_3作为应用研究的原因在于高的氧离子导电性能,低的激活能和在中温范围内(500-800℃)的良好的化学稳定性。1995年,Nakayama等人首次报道了氧磷灰石结构电解质陶瓷;2001年,Tao研究小组通过溶胶-凝胶方法在降低了200℃反应温度的条件下,成功的合成了硅酸镧粉体。随后掺杂体系的报道呈上升趋势,也得到了许多实验和理论方面的研究结果,但在有关氧离子导电机制与掺杂的物理本质的认识上还存在着很大的分歧与异议。
     本论文致力于采用固相反应法合成电解质陶瓷粉体,并用等离子喷涂手段制各氧磷灰石结构硅酸镧陶瓷薄膜涂层,作为新型中温固体氧化物燃料电池电解质。利用X射线衍射技术(XRD)、差热分析(DTA)、热失重分析(TGA)、扫描电子显微镜(SEM)配备的能量弥散X射线探测器(EDX)以及电化学阻抗谱(EIS)等技术详细研究前驱体的热反应过程、合成粉体的结晶相转变过程、形貌以及电化学催化性能和电导率,通过分析比较不同工作参数获得的不同系列样品的实验结果,以期掌握影响中温反应动力学与稳定性的因素,在关键材料和复杂反应机理的研究上取得突破,为我国中温同体氧化物燃料电池技术的发展提供科学依据。
     我们详细的了解和深入地调研了SOFC电解质材料及其制备工艺的研究现状(第1章)。基于对大量SOFC文献的调查研究及分析,结合我们的实际情况,形成对IT-SOFC电解质的开发研究。
     我们有的放矢的选择原材料和制备工艺,并且采用适宜的测试手段,对粉体合成和工艺制备过程进行有效的跟踪监测(第2章)。
     我们建议使用固相反应法合成La_(10)(SiO_4)_6O_3陶瓷粉体(第3章)。这条路线合成的优点是使结晶的复合氧化物在高温的烧结过程中有充足的反应过程和时间。事实上,固相反应法不太繁琐的操作过程和不太昂贵的试剂,使得这条路线对工业应用非常有吸引力。
     我们将使用等离子喷涂手段制备陶瓷薄膜涂层(第4章)。选择这一技术是基于易于实施和规模化工业化生产的优势,同时,采用等离子喷涂制备电解质可显著降低SOFCs制造成本。
     最后,这些电解质涂层的重点在于其电化学特性,通过其阻抗谱的测试,以评估其导电性,活化能及在工作温度下的稳定性(第5章)。为其在今后的工业化生产中,提供充足的基础数据支持。
In the field of electrical power generation, the development of solid oxide fuel cells (SOFCs) is limited because of their high operating temperatures. Two solutions are generally considered to decrease the temperature: reducing the thickness of the conventional yttria-stabilised zirconia (YSZ) electrolyte and / or using the new materials. The second option seems the most exploitable because novel apatite-type silicates are attracting considerable interest as a new family of oxide-ion conductors with potential use in intermediate temperature between 500 and 800℃. Among the many silicate ceramics that could be used for this application, lanthanum silicates are very promising candidates at the moment.
     The objective of this thesis is the synthesis and characterization of apatite-type lanthanum silicate (ATLS) as a novel electrolyte dedicated to SOFC at intermediate temperature (IT-SOFC).
     In a first step, this work is to synthesize La_(10)(SiO_4)_6O_3 powders via a solid-state reaction. Particular emphasis is placed on optimizing executive protocols. The control of synthesis parameters (nature reagents, co-grinding, sintering temperatures and residence times, etc.) can get the apatite phase in a sintering temperature between 1350℃and 1650℃. The calcined powders were used to prepare density coatings greater than 90%.
     La_(10)(SiO_4))_6O_3 coatings were thermally deposited by conventional atmospheric plasma spraying (APS). The influence of projection parameters on the microstructure of coatings has been studied. The effects of porosity on the electrical properties were also discussed.
     Improving the ionic conductivity is based on controlling the properties of developed coatings. For example, several sets of samples to be controlled stoichiometry have been synthesized and characterized. This study has enabled us to establish a correlation between the microstructure and conduction properties of the ceramics.
引文
[1] Ishii T. Structural phase transition and ionic conductivity in 0.88ZrO2—(0.12 -x)Sc2O3—xAl2O3. Solid State Ionics 1995; 78: 333.
    [2] Badwal SPS. Stability of solid oxide fuel cell components. Solid State Ionics 2001; 143: 39.
    [3] Badwal SPS, Foger K. Solid oxide electrolyte fuel cell review. Ceramics International 1996; 22: 257.
    [4] Cassir M, Gourba E. Reduction in the operating temperature of solid oxide fuel cells -Potential use in transport applications. Annales De Chimie-Science Des Materiaux 2001; 26: 49.
    [5] Ivers-Tiffee E, Weber A, Herbstritt D. Materials and technologies for SOFC-components. Journal of the European Ceramic Society 2001; 21:1805.
    [6] Ishii T, Iwata T, Tajima Y, Yamaji A. Structural phase transition and ion conductivity in 0.88ZrO2-0.12Sc2O3. Solid State Ionics 1992; 57:153.
    [7] Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y. Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ionics 1995; 79: 137.
    [8] Nomura K, Mizutani Y, Kawai M, Nakamura Y, Yamamoto O. Aging and Raman scattering study of scandia and yttria doped zirconia. Solid State Ionics 2000; 132: 235.
    [9] Haile SM. Fuel cell materials and components. Acta Materialia 2003; 51: 5981.
    [10] Badwal SPS. Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics 1992; 52: 23.
    [11] Weppner W. Tetragonal zirconia polycrystals - a high performance solid oxygen ion conductor. Solid State Ionics 1992; 52:15.
    [12] Badwal SPS, Ciacchi FT, Drennan J. Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments. Solid State Ionics 1999; 121: 253.
    [13] Eguchi K, Setoguchi T, Inoue T, Arai H. Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 1992; 52:165.
    [14] Inaba H, Tagawa H. Ceria-based solid electrolytes. Solid State Ionics 1996; 83:1.
    [15] Li JG, Ikegami T, Mori T. Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and grain growth behaviors. Acta Materialia 2004; 52: 2221.
    [16] Mogensen M, Sammes NM, Tompsett GA. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 2000; 129: 63.
    [17] Peng RR, Xia CR, Fu QX, Meng GY, Peng DK. Sintering and electrical properties of (CeO2)(0.8)(SM2O3)(0.1) powders prepared by glycine-nitrate process. Materials Letters 2002; 56:1043.
    [18] Singhal SC. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics 2002; 152-153: 405.
    [19] Steele BCH. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 degrees C. Solid State Ionics 2000; 129: 95.
    [20] Steele BCH. Materials for IT-SOFC stacks 35 years R&D: the inevitability of gradualness? Solid State Ionics 2000; 134: 3.
    [21] Yahiro H, Eguchi K, Arai H. Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics 1989; 36: 71.
    [22] Abraham F, Debreuille-Gresse MF, Mairesse G, Nowogrocki G. Phase transitions and ionic conductivity in Bi4V2O11 an oxide with a layered structure. Solid State Ionics 1988; 28-30: 529.
    [23] Mairesse G, Roussel P, Vannier RN, Anne M, Nowogrocki G. Crystal structure determination of alpha-, beta- and gamma-Bi4V2O11 polymorphs. Part II: crystal structure of alpha-Bi4V2O11. Solid State Sciences 2003; 5: 861.
    [24] Mairesse G, Roussel P, Vannier RN, Anne M, Pirovano C, Nowogrocki G. Crystal structure determination of alpha, beta and gamma-Bi4V2O11 polymorphs. Part I: gamma and beta-Bi4V2O11. Solid State Sciences 2003; 5: 851.
    [25] Pernot E, Anne M, Bacmann M, Strobel P, Fouletier J, Vannier RN, Mairesse G, Abraham F, Nowogrocki G. Structure and conductivity of Cu and Ni-substituted Bi4V2O11 compounds. Solid State Ionics 1994; 70-71: 259.
    [26] Pirovano C, Vannier RN, Capoen E, Nowogrocki G, Boivin JC, Mairesse G, Anne M, Dooryhee E, Strobel P. Characterisation of the electrode-electrolyte BIMEVOX system for oxygen separation Part I. In situ synchrotron study. Solid State Ionics 2003; 159:167.
    [27] Pirovano C, Vannier RN, Nowogrocki G, Boivin JC, Mairesse G. Characterisation of the electrode-electrolyte BIMEVOX system for oxygen separation: Part II. Thermal studies under controlled atmosphere. Solid State Ionics 2003; 159:181.
    [28] Huang KQ, Goodenough JB. A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer. Journal of Alloys and Compounds 2000; 303: 454.
    [29] Hayashi H, Inaba H, Matsuyama M, Lan NG, Dokiya M, Tagawa H. Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics 1999; 122: 1.
    [30] Ishihara T, Akbay T, Furutani H, Takita Y. Improved oxide ion conductivity of Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite type oxide. Solid State Ionics 1998; 113-115: 585.
    [31] Ishihara T, Matsuda H, Takita Y. Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide. Solid State Ionics 1995; 79: 147.
    [32] Kuroda K, Hashimoto I, Adachi K, Akikusa J, Tamou Y, Komada N, Ishihara T, Takita Y. Characterization of solid oxide fuel cell using doped lanthanum gallate. Solid State Ionics 2000; 132:199.
    [33] Lerch M, Boysen H, Hansen T. High-temperature neutron scattering investigation of pure and doped lanthanum gallate. Journal of Physics and Chemistry of Solids 2001; 62: 445.
    [34] Slater PR, Irvine JTS, Ishihara T, Takita Y. The structure of the oxide ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 by powder neutron diffraction. Solid State Ionics 1998; 107: 319.
    [35] Higuchi M, Masubuchi Y, Nakayama S, Kikkawa S, Kodaira K. Single crystal growth and oxide ion conductivity of apatite-type rare-earth silicates. Solid State Ionics 2004; 174: 73.
    [36] Nakayama S, Sakamoto M. Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy). Journal of the European Ceramic Society 1998; 18:1413.
    [37] Sansom JEH, Najib A, Slater PR. Oxide ion conductivity in mixed Si/Ge-based apatite-type systems. Solid State Ionics 2004; 175: 353.
    [38] Sansom JEH, Slater PR. Oxide ion conductivity in the mixed Si/Ge apatite-type phases Lag(9.33)Si(6-x)Ge(x)O(26). Solid State Ionics 2004; 167: 23.
    [39] Laghzizil A, Elherch N, Bouhaouss A, Lorente G, Coradin T, Livage J. Electrical behavior of hydroxyapatites M10(PO4)6(OH)2 (M = Ca, Pb, Ba). Materials Research Bulletin 2001; 36:953.
    [40] Yamashita K, Umegaki T. Proton conduction in sodium-substitued calcium hydroxyapatite ceramics. Inorganic materials 1995; 256:166.
    [41] Laghzizil A, Barboux P, Bouhaouss A. Cationic conductivity and structural studies in the Pb8K2-xNax(PO4)6 system. Solid State Ionics 2000; 128:177.
    [42] McFarlane J, Barth S, Swaffer M, Sansom JEH, Slater PR. Synthesis and conductivities of the apatite-type systems La9.33Si6MyO26 (M=Co, Fe, Mn) and La8Mn2Si6O26. Ionics 2002; 8:149.
    [43] Bouhaouss A, Laghzizil A, Bensaoud A, Ferhat M, Lorent G, Livage J. Mechanism of ionic conduction in oxy and hydroxyapatite structures. International Journal of Inorganic Materials 2001; 3:743.
    [44] Nakayama S, Sakamoto M. Ionic conductivities of apatite-type La-X(GeO4)(6)O1.5X-12 (X=8-9.33) polycrystals. Journal of Materials Science Letters 2001; 20:1627.
    [45] Kay MY, Young RA. Crystal structure of hydroxyapatite. Nature 1964; 204: 1050.
    [46] Hayet E, Newesely H. Pentacalcium monohydroxyorthophosphate (hydroxyapatite). Inorganic Syntheses 1963; 7: 63.
    [47] Higuchi M, Kodaira K, Nakayama S. Nonstoichiometry in apatite-type neodymium silicate single crystals. Journal of Crystal Growth 2000; 216: 317.
    [48] Keck PH, Horn HV. Floating zone recrystallization of silicon. The Review of Scientific Instruments 1954; 25: 331.
    [49] Nakayama S, Highchi M. Electrical properties of apatite-type oxide ionic conductors RE9.33(SiO4)(6)O-2 (RE = Pr, Nd and Sm) single crystals. Journal of Materials Science Letters 2001; 20:913.
    [50] Nakayama S, Sakamoto M, Higuchi M, Kodaira K, Sato M, Kakita S, Suzuki T, Itoh K. Oxide ionic conductivity of apatite type Nd-9.33(SiO4)(6)O-2 single crystal. Journal of the European Ceramic Society 1999; 19: 507.
    [51] Teraoka K, Ito A, Onuma K, Tateishi T, Tsutsumi S. Hydrothermal growth of hydroxyapatite single crystals under natural convection. Journal of Materials Research 1999; 14: 2655.
    [52] Celerier S, Laberty-Robert C, Ansart F, Calmet C, Stevens P. Synthesis by sol-gel route of oxyapatite powders for dense ceramics: Applications as electrolytes for solid oxide fuel cells. Journal of the European Ceramic Society 2005; 25: 2665.
    [53] Tao SW, Irvine JTS. Synthesis and ionic conduction of apatite-type materials. Ionics 2000; 6: 389.
    [54] Tao SW, Irvine JTS. Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process. Materials Research Bulletin 2001; 36:1245.
    [55] Nakayama S, Kageyama T, Aono H, Sadaoka Y. Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3(Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). Journal of Materials Chemistry 1995; 5:1801.
    [56] Kolitsch U, Seifert HJ, Aldinger F. The Identity of Monoclinic La2O3 and Monoclinic Pr2O3 with La9.33(SiO4)6O2 and Pr9.33(SiO4)6O2, Respectively. Journal of Solid State Chemistry 1995; 120:38.
    [57] Shaula AL, Kharton W, Marques FMB. Oxygen ionic and electronic transport in apatite-type La10-x(Si,AI)(6)O-26 +/-delta. Journal of Solid State Chemistry 2005; 178: 2050.
    [1]Tzvetkov G,Minkova N.Application of mechanochemical treatment to the synthesis of Aand G-forms of La2Si2O7.Solid State Ionics 1999;116:241.
    [2]Tzvetkov G,Minkova N.Mechanochemical stimulation of the synthesis of lanthanum oxyapatite.Materials Letters 1999;39:354.
    [3]Schutze A,Quinto DT.Pulsed plasma-assisted PVD sputter-deposited alumina thin films.Surface & Coatings Technology 2003;162:174.
    [4]Cremer R,Reichert K,Neuschutz D,Erkens G,Leyendecker Ⅰ.Sputter deposition of crystalline alumina coatings.Surface & Coatings Technology 2003;163:157.
    [5]Hirschauer B,S(o|¨)derholm S,Paul J,Flodstr(o|¨)m AS.Large area synthesis of thin alumina films by laser ablation.Applied Surface Science 1996;99:285.
    [6]Cooper CA,Lin YS.Microstructural and gas separation properties of CVD modified mesoporous[gamma]-alumina membranes.Journal of Membrane Science 2002;195:35.
    [7]Sundararajan G,Rama Krishna L.Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology.Surface and Coatings Technology 2003;167:269.
    [8]Patermarakis G,Moussoutzanis K.Formulation of a criterion predicting the development of uniform regular and non-uniform abnormal porous anodic alumina coatings and revealing the mechanisms of their appearance and progress.Corrosion Science 2001;43:1433.
    [9]Qunbo F,Lu W,Fuchi W.Modeling influence of basic operation parameters on plasma jet.Journal of Materials Processing Technology 2008;198:207.
    [10]Golosnoy IO,Paul S,Clyne TW.Modelling of gas permeation through ceramic coatings produced by thermal spraying. Acta Materialia 2008; 56: 874.
    [11] Hugot F, Patru J, Fauchais P, Bianchi L. Modeling of a substrate thermomechanical behavior during plasma spraying. Journal of Materials Processing Technology 2007; 190: 317.
    [12] Fan Q-b, Wang L, Wang F-c, Wang Q-s. Modeling of composite coatings in plasma spraying. Surface and Coatings Technology 2007; 201: 6977.
    [13] Li JF, Liao HL, Ding CX, Coddet C. Optimizing the plasma spray process parameters of yttria stabilized zirconia coatings using a uniform design of experiments. Journal of Materials Processing Technology 2005; 160: 34.
    [14] Masalski J, Gluszek J, Zabrzeski J, Nitsch K, Gluszek P. Improvement in corrosion resistance of the 3161 stainless steel by means of Al2O3 coatings deposited by the sol-gel method. Thin Solid Films 1999; 349:186.
    [15] Chen H, Lee SW, Du H, Ding CX, Choi CH. Influence of feedstock and spraying parameters on the depositing efficiency and microhardness of plasma-sprayed zirconia coatings. Materials Letters 2004; 58:1241.
    [16] Kulkarni A, Sampath S, Goland A, Herman H, Dowd B. Computed microtomography studies to characterize microstructure-property correlations in thermal sprayed alumina deposits. Scripta Materialia 2000; 43:471.
    [17] Young EJ, Mateeva E, Moore JJ, Mishra B, Loch M. Low pressure plasma spray coatings. Thin Solid Films 2000; 377-378: 788.
    [18] Bisson JF, Gauthier B, Moreau C. Effect of plasma fluctuations on in-flight particle parameters. J. Therm. Spray Technol. 2003; 12: 38.
    [19] Tului M, Ruffini E, Arezzo F, Lasisz S, Znamirowski Z, Pawlowski L. Some properties of atmospheric air and inert gas high-pressure plasma sprayed ZrB2 coatings. Surface & Coatings Technology 2002; 151: 483.
    [20] Fauchais P. Understanding plasma spraying. J. Phys. D-Appl. Phys. 2004; 37: R86.
    [21] Fauchais P, Vardelle A. Heat, mass and momentum transfer in coating formation by plasma spraying. Int. J. Therm. Sci. 2000; 39: 852.
    [22] Planche MP, Bolot R, Coddet C. In-flight characteristics of plasma sprayed alumina particles: Measurements, modeling, and comparison. J. Therm. Spray Technol. 2003; 12:101.
    [23] Vardelle M. Etude de la structure des depots d'alumine obtenus par projection plasma en fonction des temperatures et des vitesses des particules au moment de leur impact sur la cible. These de 3e cycle, Universite de Limoges 1980.
    [1]Abram EJ,Sinclair DC,West AR.A novel enhancement of ionic conductivity in the cation-deficient apatite La-9.33(SiO4)(6)O-2. Journal of Materials Chemistry 2001; 11: 1978.
    [2] Adachi GY, Imanaka N, Tamura S. Ionic conducting lanthanide oxides. Chemical Reviews 2002;102:2405.
    [3] Arikawa H, Nishiguchi H, Ishihara T, Takita Y. Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide. Solid State Ionics 2000; 136: 31.
    [4] Berastegui P, Hull S, Garcia FJG, Grins J. A structural investigation of La-2(GeO4)O and alkaline-Earth-doped La-9.33(GeO4)(6)O-2. Journal of Solid State Chemistry 2002; 168: 294.
    [5] Celerier S, Laberty C, Ansart F, Lenormand P, Stevens P. New chemical route based on sol-gel process for the synthesis of oxyapatite La9.33Si6O26. Ceramics International 2006; 32: 271.
    [6] Celerier S, Laberty-Robert C, Ansart F, Calmet C, Stevens P. Synthesis by sol-gel route of oxyapatite powders for dense ceramics: Applications as electrolytes for solid oxide fuel cells. Journal of the European Ceramic Society 2005; 25: 2665.
    [7] Celerier S, Laberty-Robert C, Long JW, Pettigrew KA, Stroud RM, Rolison DR, Ansart F, Stevens P. Synthesis of La9.33Si6O26 pore-solid nanoarchiltectures via epoxide-driven sol-gel chemistry. Advanced Materials 2006; 18: 615.
    [8] Chefi S, Madani A, Boussetta H, Roux C, Hammou A. Electrical properties of Al-doped oxyapatites at intermediate temperature. Journal of Power Sources 2008; 177: 464.
    [9] Kolitsch U, Seifert HJ, Aldinger F. The Identity of Monoclinic La2O3 and Monoclinic Pr2O3 with La9.33(SiO4)6O2 and Pr9.33(SiO4)6O2, Respectively. Journal of Solid State Chemistry 1995; 120:38.
    [10] Kovalevsky AV, Marques FMB, Kharton W, Maxim F, Frade JR. Silica-scavenging effect in zirconia electrolytes: assessment of lanthanum silicate formation. Ionics 2006; 12:179.
    [11] Leon-Reina L, Losilla ER, Martinez-Lara M, Bruque S, Llobet A, Sheptyakov DV, Aranda MAG. Interstitial oxygen in oxygen-stoichiometric apatites. Journal of Materials Chemistry 2005; 15:2489.
    [12] Leon-Reina L, Losilla ER, Martinez-Lara M, Martin-Sedeno MC, Bruque S, Nunez P, Sheptyakov DV, Aranda MAG. High oxide ion conductivity in Al-doped germanium oxyapatite. Chemistry of Materials 2005; 17: 596.
    [13] McFarlane J, Barth S, Swaffer M, Sansom JEH, Slater PR. Synthesis and conductivities of the apatite-type systems La9.33Si6MyO26 (M=Co, Fe, Mn) and La8Mn2Si6O26. Ionics 2002; 8: 149.
    [14] Najib A, Sansom JEH, Tolchard JR, Slater PR, Islam MS. Doping strategies to optimise the oxide ion conductivity in apatite-type ionic conductors. Dalton Transactions 2004: 3106.
    [15] Nakayama S, Higuchi Y, Kondo Y, Sakamoto M. Effects of cation- or oxide ion-defect on conductivities of apatite-type La-Ge-0 system ceramics. Solid State Ionics 2004; 170: 219.
    [16] Nakayama S, Kageyama T, Aono H, Sadaoka Y. Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3(Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). Journal of Materials Chemistry 1995; 5: 1801.
    [17] Nakayama S, Sakamoto M. Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy). Journal of the European Ceramic Society 1998; 18: 1413.
    [18] Nakayama S, Sakamoto M, Higuchi M, Kodaira K, Sato M, Kakita S, Suzuki T, Itoh K. Oxide ionic conductivity of apatite type Nd-9.33(SiO4)(6)O-2 single crystal. Journal of the European Ceramic Society 1999; 19: 507.
    [19] Okudera H, Masubuchi Y, Kikkawa S, Yoshiasa A. Structure of oxide ion-conducting lanthanum oxyapatite, La-9.33(SiO4)(6)O-2. Solid State Ionics 2005; 176:1473.
    [20] Panteix PJ, Julien I, Bernache-Assollant D, Abelard P. Synthesis and characterisation of oxide ions conductors with the apatite structure for intermediate temperature SOFC. Euro Ceramics Viii, Pts 1-3 2004; 264-268:1177.
    [21] Panteix PJ, Julien I, Bernache-Assollant D, Abelard P. Synthesis and characterization of oxide ions conductors with the apatite structure for intermediate temperature SOFC. Materials Chemistry and Physics 2006; 95: 313.
    [22] Pivak YV, Kharton W, Naumovich EN, Frade JR, Marques FMB. Ionic and electronic transport in La2Ti2SiO9-based materials. Journal of Solid State Chemistry 2007; 180:1259.
    [23] Pivak YV, Kharton W, Yaremchenko AA, Yakovlev SO, Kovalevsky AV, Frade JR, Marques FMB. Phase relationships and transport in Ti-, Ce- and Zr-substituted lanthanum silicate systems. Journal of the European Ceramic Society 2007; 27: 2445.
    [24] Rodriguez-Reyna E, Fuentes AF, Maczka M, Hanuza J, Boulahya K, Amador U. Facile synthesis, characterization and electrical properties of apatite-type lanthanum germanates. Solid State Sciences 2006; 8:168.
    [25] Sansom JEH, Richings D, Slater PR. A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26. Solid State Ionics 2001; 139:205.
    [26] Tao SW, Irvine JTS. Synthesis and ionic conduction of apatite-type materials. Ionics 2000; 6: 389.
    [27] Tao SW, Irvine JTS. Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process. Materials Research Bulletin 2001; 36:1245.
    [28] Wickleder MS. Inorganic lanthanide compounds with complex anions. Chemical Reviews 2002;102:2011.
    [29] Yoshioka H. Oxide ionic conductivity of apatite-type lanthanum silicates. Journal of Alloys and Compounds 2006; 408: 649.
    [30] Tzvetkov G, Minkova N. Application of mechanochemical treatment to the synthesis of A-and G-forms of La2Si2O7. Solid State Ionics 1999; 116: 241.
    [31] Tzvetkov G, Minkova N. Mechanochemical stimulation of the synthesis of lanthanum oxyapatite. Materials Letters 1999; 39: 354.
    [32] Rosynek MP, Magnuson DT. Preparation and characterization of catalytic lanthanum oxide. Journal of Catalysis 1977; 46: 402.
    [1]Beauvais S,Guipont V,Borit F,Jeandin M,Espanol M,Khor KA,Robisson A,Saenger R.Process-microstructure-property relationships in controlled atmosphere plasma spraying of ceramics.Surface and Coatings Technology 2004;183:204.
    [2]Bouhaouss A,Laghzizil A,Bensaoud A,Ferhat M,Lorent G,Livage J.Mechanism of ionic conduction in oxy and hydroxyapatite structures.International Journal of Inorganic Materials 2001;3:743.
    [3]Cedelle J,Vardelle M,Fauchais P.Influence of stainless steel substrate preheating on surface topography and on millimeter-and micrometer-sized splat formation.Surface and Coatings Technology 2006;201:1373.
    [4]Chen H,Lee SW,Du H,Ding CX,Choi CH.Influence of feedstock and spraying parameters on the depositing efficiency and microhardness of plasma-sprayed zirconia coatings.Materials Letters 2004;58:1241.
    [5]Fang JC,Xu W J,Zhao ZY,Zeng HP.In-flight behaviors of ZrO2 particle in plasma spraying.Surface and Coatings Technology 2007;201:5671.
    [6]Fauchais P.Understanding plasma spraying.J.Phys.D-Appl.Phys.2004;37:R86.
    [7]Fauchais P,Vardelle A.Heat,mass and momentum transfer in coating formation by plasma spraying.Int.J.Therm.Sci.2000;39:852.
    [8]Li JF,Liao H,Normand B,Cordier C,Maurin G,Foct J,Coddet C.Uniform design method for optimization of process parameters of plasma sprayed TiN coatings.Surface and Coatings Technology 2003;176:1.
    [9]Morks MF,Kobayashi A.Influence of spray parameters on the microstructure and mechanical properties of gas-tunnel plasma sprayed hydroxyapatite coatings.Materials Science and Engineering:B 2007;139:209.
    [10]Planche MP,Bolot R,Coddet C.In-flight characteristics of plasma sprayed alumina particles:Measurements,modeling,and comparison.J.Therm.Spray Technol.2003;12:101.
    [11]Sarikaya O.Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process. Surface and Coatings Technology 2005; 190:388.
    [12] Shanmugavelayutham G, Selvarajan V, Thiyagarajan TK, Padmanabhan PVA, Sreekumar KP, Satpute RU. In-flight particle behaviour and its effect on co-spraying of alumina-titania. Current Applied Physics 2006; 6: 41.
    [13] Tekmen C, Yamazaki M, Tsunekawa Y, Okumiya M. In-situ plasma spraying: Alumina formation and in-flight particle diagnostic. Surface and Coatings Technology 2008; 202: 4163.
    [14] Venkataraman R, Das G, Singh SR, Pathak LC, Ghosh RN, Venkataraman B, Krishnamurthy R. Study on influence of porosity, pore size, spatial and topological distribution of pores on microhardness of as plasma sprayed ceramic coatings. Materials Science and Engineering: A 2007; 445-446: 269.
    [15] Qunbo F, Lu W, Fuchi W. Modeling influence of basic operation parameters on plasma jet. Journal of Materials Processing Technology 2008; 198: 207.
    [16] Golosnoy IO, Paul S, Clyne TW. Modelling of gas permeation through ceramic coatings produced by thermal spraying. Acta Materialia 2008; 56: 874.
    [17] Hugot F, Patru J, Fauchais P, Bianchi L. Modeling of a substrate thermomechanical behavior during plasma spraying. Journal of Materials Processing Technology 2007; 190: 317.
    [18] Fan Q-b, Wang L, Wang F-c, Wang Q-s. Modeling of composite coatings in plasma spraying. Surface and Coatings Technology 2007; 201: 6977.
    [19] Pateyrron B, Delluc G, Elchinger MF, Fauchais P. Study of the behavior of the heat conductivity and transport properties of a simple reacting system: H2-Ar and H2-Ar-Air dilution effect in spraying process at atmospheric pressure. J. High Temp. Chem. 1992; 1: 325.
    [20] Vardelle M, Vardelle A, Fauchais P. Diagnostics for particulate vaporization and interactions with surfaces. Pure and Appl. Chem. 1992; 64: 637.
    [21] Li JF, Liao HL, Ding CX, Coddet C. Optimizing the plasma spray process parameters of yttria stabilized zirconia coatings using a uniform design of experiments. Journal of Materials Processing Technology 2005; 160: 34.
    [22] Song EP, Ahn J, Lee S, Kim NJ. Effects of critical plasma spray parameter and spray distance on wear resistance of Al2O3-8 wt.%TiO2 coatings plasma-sprayed with nanopowders. Surface and Coatings Technology 2008; 202: 3625.
    [23] Kudinov W, Pekshev PY, Safiullin VA. Forming of the structure of plasma sprayed materials. High Temp. Dust. Laden Jets 1989: 381.
    [24] Smith WC, Jewett TJ, Sampath S, Swank WD, Fincke JR. Plasma processing of functionally graded materials- Part I: Process diagnostics, in Thermal Spray: A United Forum for Scientific and Technological Advances. ASM International, Materials Park, OH, USA 1997: 599.
    [1]Abram EJ,Sinclair DC,West AR.A novel enhancement of ionic conductivity in the cation-deficient apatite La-9.33(SiO4)(6)O-2.Journal of Materials Chemistry 2001;11:1978.
    [2]Arikawa H,Nishiguchi H,Ishihara T,Takita Y.Oxide ion conductivity in Sr-doped La10Ge6027 apatite oxide.Solid State Ionics 2000;136:31.
    [3]Cedelle J,Vardelle M,Fauchais P.Influence of stainless steel substrate preheating on surface topography and on millimeter-and micrometer-sized splat formation.Surface and Coatings Technology 2006;201:1373.
    [4]Chefi S,Madani A,Boussetta H,Roux C,Hammou A.Electrical properties of Al-doped oxyapatites at intermediate temperature.Journal of Power Sources 2008;177:464.
    [5]Fang JC,Xu W J,Zhao ZY,Zeng HP.In-flight behaviors of ZrO2 particle in plasma spraying.Surface and Coatings Technology 2007;201:5671.
    [6]Kim S,Kwon O,Kumar S,Xiong Y,Lee C.Development and microstructure optimization of atmospheric plasma-sprayed NiO/YSZ anode coatings for SOFCs.Surface and Coatings Technology 2008;202:3180.
    [7]Kovalevsky AV,Marques FMB,Kharton W,Maxim F,Frade JR.Silica-scavenging effect in zirconia electrolytes:assessment of lanthanum silicate formation.lonics 2006;12:179.
    [8]Li C-J,Li C-X,Wang M.Effect of spray parameters on the electrical conductivity of plasma-sprayed La1-xSrxMnO3 coating for the cathode of SOFCs.Surface and Coatings Technology 2005;198:278.
    [9]Najib A,Sansom JEH,Tolchard JR,Slater PR,Islam MS.Doping strategies to optimise the oxide ion conductivity in apatite-type ionic conductors.Dalton Transactions 2004:3106.
    [10]Nakayama S,Higuchi Y,Kondo Y,Sakamoto M.Effects of cation-or oxide ion-defect on conductivities of apatite-type La-Ge-O system ceramics.Solid State Ionics 2004;170:219.
    [11]Nakayama S,Kageyama T,Aono H,Sadaoka Y.Ionic conductivity of lanthanoid silicates,Ln10(SiO4)6O3(Ln=La,Nd,Sm,Gd,Dy,Y,Ho,Er and Yb).Journal of Materials Chemistry 1995;5:1801.
    [12]Nakayama S,Sakamoto M.Electrical properties of new type high oxide ionic conductor RE10Si6027(RE=La,Pr,Nd,Sm,Gd,Dy).Journal of the European Ceramic Society 1998;18:1413.
    [13]Qunbo F,Lu W,Fuchi W.Modeling influence of basic operation parameters on plasma jet.Journal of Materials Processing Technology 2008;198:207.
    [14]Yoshioka H.Oxide ionic conductivity of apatite-type lanthanum silicates.Journal of Alloys and Compounds 2006;408:649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700