聚变—裂变混合堆和压水堆联合循环系统物理特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据根据我国核电的中长期发展规划,2020年我国核电的总装机容量达到70GW左右。核电的大规模发展,也面临核燃料供应以及核安全问题。聚变-裂变混合堆由于利用的是(DT)聚变产生的14MeV的高能中子,因此它在增殖核燃料、嬗变核废料方面具有独特优势。同时考虑聚变-裂变混合堆的优势以及我国核电大发展过程中面临的核燃料供应和核废料处理问题,提出了聚变-裂变混合堆压水堆联合循环系统的概念。本论文的主要内容为:
     (1)开发和完善了BISONC数据库制作软件程序并制作了175群BISONC输运库和燃耗库,并做了初步的验证。开发了聚变裂变混合堆压水堆联合循环系统的中子学分析软件NFFP(Neutronics calculation for fusion-fission hybrid and PWR combined fuel cycle system)。在此软件基础上对该系统的进行了较详细的物理特性分析。
     (2)根据多目标优化理论和实现方法,对聚变-裂变混合堆包层设计中的功率展平问题进行了理论分析,利用该理论实现了一种直接利用乏燃料进行发电的聚变裂变混合堆包层以及MA嬗变钍基包层概念设计。计算结果表明,功率展平后的包层的功率不均匀系数更小,安全性更好;且包层中燃料区的能量输出要比不展平情况下的能量输出高出约21.7%,因此考虑展平后的包层设计经济性更好,降低了工程技术难度。
     (3)通过对比分析国内外MOX燃料组件的形式,并根据聚变裂变混合堆增殖燃料的特点,通过对比分析,创新性的提出了适用于聚变裂变混合堆的混合堆增殖燃料组件形式,并对压水堆装载30%HB-MOX燃料的堆芯物理特性进行了研究。对影响反应堆安全的几个重要参数,如燃料和慢化剂温度系数、硼微分价值、缓发中子份额以及停堆裕量等进行了研究,结果表明:慢化剂温度系数和燃料温度系数在整个寿期内都是负的,有利于反应堆的安全。硼微分价值在整个寿期都是负值,但全铀堆芯要比30%HB-MOX燃料堆芯更负,主要原因是能谱更软。装载30%HB-MOX燃料的堆芯寿期末的缓发中子份额为0.508,反应堆停堆裕量和温度系数都满足现行压水堆设计准则。
     (4)基于成熟的铀钚循环技术,对压水堆装载MOX燃料对我国天然铀资源和燃料制造能力的影响,核电站产生的乏燃料量,分离钚产生量以及使用等问题进行了分析。在假设2040年聚变-裂变混合堆进入我国核燃料循环体系的情况下,分析了对天然铀资源需求的影响以及分离Pu累积累的大小。对Pu的循环使用以及分离Pu的累积量随时间的变化也进行了较详细的分析。根据分析结果给出了建议。
     本文首次对聚变-裂变混合堆压水堆联合循环系统的物理特性进行了详细的研究,该研究对我国核能的可持续发展具有重要意义。
According to China's nuclear power long-term development plan, in2020China's total installed nuclear power capacity will be about70GW. With large-scale development of nuclear power, China also faces the problem of nuclear fuel supply and nuclear safety. Fusion-fission hybrid reactor is due to the use of14MeV high-energy neutrons which come from (DT) fusion, so it has unique advantage in producing nuclear fuel and transmutation of nuclear waste. Taking into account the advantages of fusion-fission hybrid reactor and problems of nuclear fuel supply and nuclear waste disposal, fusion-fission hybrid reactor and pressurized water reactor combined fuel cycle system concept was proposed. The main content of this thises is in the following:
     Development and production of improved BISONC database software program and produced a175group database BISONC transport and fuel consumption database library, and do a preliminary validation. The development of fusion-fission hybrid reactor neutron PWR combined cycle system analysis software NFFP (Neutronics calculation software for fusion-fission hybrid and PWR combined fuel cycle system). This software is based on the system for a more detailed physical characterization.
     (1) The program for production BISONC transport lib and burnup lib was developed, and three critical benchmark was calculated using the lib. Neutronics calculation software for fusion-fission hybrid and PWR combined fuel cycle system (NFFP)was developed.Based on this software package, the physical characterization of the system was detailed.
     (2) To deal with the problem large power density variation in the radial deviation in the blanket, power flattening theory was proposed. A generating electricity blanket concept using the PWR spent fuel directly was researched based on the power flattening theory, which was based on ITER parameter level achieve.The results show that the peak-to-average power factor becomes less than no power flattening, and the output power of the fuel zone raises more than21.7%. So, Powe flattening for blanket design becomes more economy, and lower engineering and technical demand comparing with no power flattening blanket design.
     (3) How to use the fusion-fission hybrid breeding fuel in the PWR is also a key technical problem in the system. The feasibility of using the fusion-fission hybrid breeding fuel in PWR were discussed. Preliminary study was focusing on the physics of using fusion-fission hybrid breeding fuel in the main reactor type Ⅱ plus in China. Key parameters including reactor fuel temperature coefficient, moderator temperature coefficient, boron differential value of the reactor power and other parameters were analyzed in detail. The mixed thorium-based reactor fuel assemblies studies had been performed, and results shown that the features of fusion-fission breeding thorium-based similar to uranium fuel assemblies. Moreover, the component of MA in the fusion-fission hybrid breeding thorium-based fuel were significantly reduced, thereby reducing the likelihood of nuclear proliferation.
     (4)Based on the mature uranium-plutonium cycle technology, PWR loading MOX fuel was studied. natural uranium resources, our manufacturing capacity, the amount of spent fuel generated by nuclear power plants, the amount of separated plutonium and the use of other issues have been analyzed. The assumption that Fusion-Fission Hybrid Reactor fuel cycle system into our fuel cycle in2040, the analysis of the impact on demand of natural uranium and Pu separation of the cumulative amount of size. The cumulated amount of Pu and mathod of using the Pu were discussed.
     Physical characteristics of the fusion-fission hybrid reactor PWR combined cycle system was performed, and the research results is important for the sustainable development of China nuclear energy.
引文
[1]叶奇蓁,中国核电发展战略研究,电网与清洁能源[J],2010,26(1):3-8
    [2]顾忠茂,我国先进核燃料循环技术发展战略的一些思考,核化学与放射化学[J],Vol.28 No.1,1-10,2006
    [3]李守枬,我国核能发展中各种堆型的优化组合,核科学与工程[J],1990,10(4):314-329
    [4]Farrokh Najmabadia,The Aries Team, Overview of the ARIES-RS reversed-shear tokamak power plant study, Fusion Engineering and Design[J],1997,38(1-2):3-25
    [5]M.S Tillacka, X.R Wanga, J Pulsifer, et al., Fusion power core engineering for the ARIES-ST power plant, Fusion Engineering and Design[J],2003,65(2):215-261
    [6]L.A El-Guebaly,The ARIES Team, Overview of ARIES-RS neutronics and radiation shielding:key issues and main conclusions, Fusion Engineering and Design[J],1997,38(1-2):139-158
    [7]Sumer Sahin, Mustafa Ubeyli, Modified APEX reactor as a fusion breeder, Energy Conversion and Management[J],2004,45(9-10):1497-1512
    [8]Mehtap Gunaya, Basar rerb, Yurdunaz Celikc, Three-dimensional neutronic calculations for a fusion breeder APEX reactor using some libraries, Annals of Nuclear Energy[J],2011,38(12):2757-2761
    [9]Gamze Gene, Hydrogen production potential of APEXfusion transmuter fueled minor actinide fluoride, International Journal of Hydrogen Energy[J],2010,35(19): 10190-10201
    [10]W.E. Han,Consequence calculations for PPCS bounding accidents,Fusion Engineering and Design[J],200575-79:1205-1209
    [11]R. Pampin, P.J. Karditsas, M.J. Loughlin, N.P. Taylor, PPCS thermal analysis of bounding accident scenarios using improved computational modelling, Fusion Engineering and Design[J],2006,81(18):2127-2142
    [13]David Maisonnier, lau Cook, Sardain Pierre, Boccaccini Lorenzo, Di Pace Luigi, Giancarli Luciano, Norajitra Prachai, Pizzuto Aldo, PPCS Team,DEMO and fusion power plant conceptual studies in Europe,Fusion Engineering and Design[J], 2006,81(8-14):1123-1130
    [14]S. Mori, S. Yamazaki, J. Adachi, T. Kobayashi, S. Nishio, M. Kikuchi, M. Seki, Y. Seki, Blanket and divertor design for the Steady State Tokamak Reactor (SSTR),Fusion Engineering and Design[J],1991,18:249-258
    [15]M. Kikuchi, Y. Seki, A. Oikawa, et al. Conceptual design of the steady state tokamak reactor (SSTR), Fusion Engineering and Design[J],1991,18:195-202
    [16]J. Perez, D. Hoyer, Co-expression of somatostatin SSTR-3 and SSTR-4 receptor messenger RNAs in the rat brain,Neuroscience,1995,64(1):241-253
    [17]Y. Wu, S. Zheng, X. Zhu, W. Wang, H. Wang, S. Liu, et al.,Conceptual design of the fusion-driven subcritical systemFDS-I, Fusion Eng. Des[J].2006(81):1305-1311.
    [18]Y. Wu, W. Wang, S. Liu, J. Li, H. Wang, H. Chen, et al., Conceptual design study on the fusion power reactor FDS-Ⅱ, China.J. Nucl. Sci. Eng[J].2005,25(1):76-85.
    [19]L. Qiu, Y. Wu, B. Xiao, Q. Xu, Q. Huang, B. Wu, et al., A low aspect ratio Tokamak transmutation system,Nucl. Fusion[J],2000,40 (3):629-633
    [20]Y. Wu, FDS Team, Conceptual design activities of FDS series fusion power plants in China, Fusion Engineering and Design[J],2006,(81):2713-2718
    [21]吴宜灿,工红艳,FDS团队.磁约束聚变堆及ITER实验包层模块设计研究进展[J].原子核物理评论,2006,23(2):89-94
    [22]张一鸣,ITER计划和核聚变研究的未来[J],真空与低温,2006,12(4):231-237
    [23]ITER Director, Summary of the ITER Final Design Report, GA0FDR 401-07-21 R 0.4,2001
    [24]冯开明,ITER实验包层计划综述,核聚变与等离子体物理[J],2006(3):161-169
    [25]吴宜灿,汪卫华,刘松林等ITER中国液态锂铅实验包层模块包层模块设计研究及实验策略.核科学与工程[J],2005,25(4):653-658
    [26]C.H.Pan, Y.C.Wu,K.M.Feng,S.L.Liu, DEMO development based on China FPP program Fusion Engineering and Design[J],2008,(83):877-882
    [27]邱励俭.纵观国际核聚变进展探讨,中国核聚变发展的道路[J],力学进展,1999,V29(4):471-481
    [28]Y.C. Wu, Research on Transmutation of High Level Wastes Using Fusion-Fission Hybrid Reactors[D], Ph.D thesis, Institute of Plasma Physics, Chinese Academy of Sciences (1992).
    [29]L. Qiu, Y. Wu, Q. Xu, Q. Huang, Transmutation of 90Sr Using Fusion-Fission Hybrid Reactors, Proc. of the 14th IAEA Inter. Conf. on Plasma Physics and Controlled Nuclear Fusion Research,IAEA-CN-56/G-2-4, Vol.3, p.391-398, Wuerzburg, Germany, Sept.30-Oct.7,1992.
    [30]L.J.Qiu, B.J.Xiao, Y.P.Chen,etal. A low aspect ratio tokamak transmutation reactor, Fusion Engineering and Design[J],1998, (41):437-442
    [31]Yican Wu, Progress in fusion-driven hybrid system studies in China, Fusion Engineering and Design[J],2002, (63-64):73-80
    [32]R.P. Rose et al.,'Fusion-Driven Actinide Burner Design Study', Research Project 473-l[R], Final Report, EPRI ER-451 (1976).
    [33]Y.C. Wu, L.J. Qiu, Waste Transmutation and Nuclear Energy Generation Using a Tokamak Fusion-Fission Hybrid Reactor, Proc. of the 2nd Japan/China Symp. On Materials for Advanced Energy Systems & Fission and Fusion Eng., Tokyo, Japan, June 4-12,1994.
    [34]Y. Chen, Y. Wu, Conceptual study on high performance blanket in a spherical tokamak fusion-driven transmuter, Fusion Eng. Des.49-50 (2000) 507-512.
    [35]陈义学等, 次临界聚变嬗变堆高性能双冷包层中子学概念设计研究,核科学与工程[J],1999,Vol.19(3).
    [36]朱晓翔,吴宜灿,长寿命裂变产物在聚变驱动次临界堆包层中擅变的中子学优化分析,核科学与工程[J],2004,Vol 24(2):178-183
    [37]李静惊,吴宜灿,基于遗传算法的聚变驱动次临界堆擅变包层长寿命婀系元素初装料中子学优化,核科学与工程[J],2004,Vol 24(2),170-177
    [38]郑善良,吴宜灿等,聚变驱动次临界双冷嬗变包层中子学设计分析,核科学与工程[J],2004,Vol 24(2):164-170
    [39]ASIPP and SWIP,中国实验混合堆详细概念设计[R]. Detailed conceptual design of China fusion experimental breeder (FEB), April,1996.
    [40]刘海波,吴宜灿,郑善良等,聚变驱动次临界堆双冷嬗变包层多群中子截面数据库共振自屏效应计算与分析,核科学与工程,2004,24(3):282-288
    [41]ZHENG Shan-liang, WU Yi-can, Neutronics Optimization of LiPb-He Dual-Cooled Fuel Breeding Blanket for the Fusion-Driven sub-critical System, Plasma Science & Technology, Vol.4, No.4 (2002):1421-1428
    [42]S. Zheng, Y. Wu,Neutronics safety analysis in severe transients of the dual-cooled waste transmutation blanket for the FDS-I, Fusion Engineering and Design[J],2006,81(8-14):1425-1429
    [43]Zou Jun; He Zhaozhong;Zeng Qin,Development and testing of multigroup library with correction of self-shielding effects in fusion-fission hybrid reactor, FUSION ENGINEERING AND DESIGN[J],2010,85(7-9) 1587-1590
    [44]Jiang Jieqiong; Wang Minghuang; Chen Zhong,Neutronics analysis of water-cooled energy production blanket for a fusion-fission hybrid reactor, FUSION ENGINEERING AND DESIGN[J],2010,85(10-12):2115-2119
    [45]Wang Minghuang; Jiang Jieqiong; Liu Jinchao,Neutronics performance evaluation of fast-fission fuel breeding blankets for a fusion-fission hybrid reactor,2009,85(10-12):2120-2124
    [46]邓梅根,冯开明.球形托卡马克堆嬗变中子学计算的比较研究[J],核聚变与等离子体物理[J],2003,23(1):7-12.
    [47]冯开明,张国书.球形托卡马克聚变嬗变堆中子学设计,核聚变与等离子体物理[J],2003,21(1):13-20
    [48]冯开明,胡刚.托卡马克实验混合堆FEB嬗变MA可行性研究,核科学与工程[J],2003,18(3):327-334.
    [49]冯开明,张国书,邓根梅.擅变少额婀系核废物MA的聚变堆中子学设计[R],CNIC-01678,SWIP-0160.
    [50]H. Yaplcl, M. Gokcek.Rejuvenation of spent fuel in the force-free helical reactor (FFHR). Annals of Nuclear Energy[J],2005(32) 435-454
    [51]H.Yaplcl, et al,Potential of a fusion-fission hybrid reactor using uranium for various coolants to breed fissile fuel for LWRs. Annals of nuclear energy[J],1999(26),821-832
    [52]H.Yaplcl, M.Gokcek, Rejuvenation of spent fuel in the force-free helical reactor (FFHR), Annals of Nuclear Energy[J],2005 (32) 435-454
    [53]H.Yaplcl et al. Investigation of neutronic potential of a moderated (D-T) fusion driven hybrid reactor fueled with thorium to breed fissile fuel for LWRs. Energy Conversion & Management[J],2000 (41) 435-447.
    [54]S.Sahin et al. Spent mixed oxide fuel rejuvenation in fusion breeders. Fusion Engineering and Design[J],1999 (47) 9-23.
    [55]S.Sahin,and H.Yaplcl. Rejuvenation of light water reactor spent fuel in fusion blankets, Annals of Nuclear Energy[J],1998,Vol.25(16):1317-1339
    [56]S.Sahin, M.Ubeyli, LWR spent fuel transmutation in a high power density fusion reactor, Annals of Nuclear Energy[J],2004(31) 871-890
    [57]H.Yaplcl et al. Study on spent fuel rejuvenation in PROMETHEUS fusion reactor, Energy Conversion and Management[J],2006(47) 346-364
    [58]S.Sahin, H.Yapici. Rejuvenation of light water reactor spent fuel in fusion blankets. Ann.Nucl.Energy[J],1998,Vol.25(16):1317-1339
    [59]M.Ubeyli. Neutronic analysis of ARIES-RS fusion reactor fueled with thorium.Energy Con-version and Management[J],2006(47):322-330
    [60]S.Sahin et al. Neutronic investigation of a hybrid version of the ARIES-RS fusion reactor. Annals of Nuclear Energy[J],2003(30):245-259
    [61]石生春,基于蒙特卡罗方法的压水堆压力容器快中子注量率的计算[D],华北电力大学,2010。
    [62]朱晓翔,一维离散纵标输运及燃耗计算程序的开发和应用[D],合肥工业大学,2005.
    [63]韩静茹,ITER中国固态实验包层三维Monte Carlo中子学性能分析,华北电力大学,2009.
    [64]谢仲生.核反应堆物理分析(上下册)[M].北京:原子能出版社,1994。
    [65]蒋洁琼,聚变驱动的次临界堆燃耗计算二维效应分析研究[D],合肥工业大学,2006.
    [66]Karthikeyan Ramamoorthy. Development and validation of burnup dependent computational schemes for the analysis of assemblies with advanced lattice codes[D], PHD thesis,2006.11
    [67]W. W. Engle, Jr., ANISN, A One-Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering[R],K-1693, March 1967
    [68]廖清宫、赵玉钧ANISN程序使用手册[R].北京应用物理与计算数学研究, 1988年6月,1-53。
    [69]W. A. Rhoades, F. R. Mynatt. The DOT111 Two-Dimensional Discrete Ordinates Transport Code[R]. ORNL/TM-4280, September 1973.
    [70]A.Rhoades,R.L.Childs,An Updated Version of the DOT4 One-and wo-Dimensional Neutron/Photon Transport Code[R], ORNL-5851, July 1982.
    [71]B. Davison, Neutron Transport Theory[M]. Oxford University Press,1957:174
    [72]K. D. Lathrop.Spatial Differencing of the Transport Equation:Positivity vs. Accuracy. J.Comput. Phys[J].1969,4,475.
    [73]徐钟济编著.蒙特卡罗方法[M].上海:科学技术出版社,1985:1-6
    [74]J.F.Briesmeister (ed.). MCNP-A General Monte Carlo N-Particle Transport Code[R], Version 4C. Los Alamos National Laboratory, Report LA-13709-M, April 20000
    [75]陈义学.托卡马克装置三维辐射场计算方法的发展及其在ⅡU-7U环境影响评价中的应用[D],合肥:中国科学院等离子体物理研究所,2002
    [76]钟兆鹏,施工等MCNP程序在反应堆临界计算中的应用.核动力工程[J],2003(1):8-11
    [77]Ma-xubo, Chen-yixue, Han-jingru, Yang-shouhai, Preliminary neutronics calculations of a dual-cooled thorium-based blanket for hybrid fusion-fission reactor, International workshop on thorium utilization for sustainable development of nuclear energy[C], Beijing, China,4-6 December, 2007
    [78]马续波,陈义学,王继亮等,聚变裂变混合堆钍基燃料增殖包层中子学初步研究,核科学与工程[J],2012。
    [79]马续波,陈义学,王继亮,王悦,韩静茹,陆道纲.功率展平的压水堆乏燃料发电包层中子学初步研究,原子能科学技术[J],2011,45(7):811-817
    [80]马续波,陈义学,王悦,张斌,杨寿海等。聚变-裂变混合堆钍基增殖铡系元素嬗变包层中子学初步分析,原子能科学技术[J],2010,44(1):54-59
    [81]X. B. Ma, Y.X.Chen etal. Neutronics calculation of the power flattering and minor actinides burning in a Thorium-based Fusion-fission Hybrid Reactor Blanket, Have submitted to Fusion Engineering and Design[J].2012
    [82]X.B.Ma, Y.X.Chen, Y.Wang, P.Z.Zhang, B.Cao, D.G.Lu, H.P.Cheng,Neutronic calculations of a thorium-based fusion-fission hybrid reactor blanket.Fusion Engineering and Design[J] 2010,85,2227-2231
    [83]郝嘉琨,聚变堆材料[M],化学工业出版社,2007年6月,32-41
    [84]Haci Mehmet, Sahin, Monte Carlo calculation of radiation damage in first wall of an experimental hybrid reactor, Annals of Nuclear Energy [J],2007,(34):861-870.
    [85]GAULD I C, BOWMAN S M, HORWEDEL J E. ORIGEN-ARP:Automatic rapid processing for spent fuel depletion, decay, and source term analysis, ORNL/TM-2005/39 [R]. USA:ORNL,2006.
    [86]唐春和主编,高温气冷堆燃料元件[M],北京,化学上业出版社,2007.
    [87]陈义学,先进次临界聚变嬗变系统概念研究及其中子学计算[D],中科院等离子体物理研究所,合肥,1999年5月
    [88]Holly R.Trellue. Safety and neutronics:A comparision of MOX vs UO2 fuel, Progress of Nuclear Energy[J].2006,(48):135-145.
    [89]A.Vasile, Ph.Dufour,H.Golfier,et al.,Advanced fuels for plutonium management in pressurized water reactors,Journal of Nuclear Materials[J],2003, (319):173-179.
    [90]Kevin Hesketh,Advanced fuel designs for existing and future generations of reactors:driving factors from technical and economic points of view, Nuclear Engineering and Design[J],2003, (221):277-292.
    [91]Robert J. Fetterman. AP1000 core design with 50%MOX loading.Annals of Nuclear Energy[J].2009,(36):324-330.
    [92]Hakim Ferroukhi, Martin A. Zimmermann, Study of the PWR REA pulse width for realistic UO2 and MOX core designs using 3D kinetics methods, Annals of Nuclear Energy,[J] 36 (2009) 1170-1183
    [93]Westhouse, AP1000 Design Control Document[R], Revision 14,4.3-20~4.3-21
    [94]石秀安,胡永明,刘志宏等,2007.压水堆平衡堆型钍燃料循环初步研究[J],核科学与工程,27(1),68-76.
    [95]贾海峰,核电规划全方位调整[EB/OL], http://finance.sina.com.cn/ roll/20090422/01136131630.shtml
    [96]李永江:2020年我国在建和运行核电装机达1亿千瓦[EB/OL], http://cppcc. people.com.cn/GB/34956/11189376.html, Nuclear Power in China[EB/OL], http://www.world-nuclear.org/info/inf63. ht ml
    [97]刘学刚,徐景明,朱永(贝睿),我国核电发展与核燃料循环情景研究,科技导报[J],2006,22-25
    [98]刘学刚,徐景明,朱永(贝睿),2020年前我国核燃料循环情景初步研究,核科学与工程[J],2005,(25):124-130.
    [99]PHIL SHARP, CHAIR, JOHN AHEARNE, THOMAS B. COCHRAN, et.al. The Future of Nuclear Power[R], Massachusetts Institute of Technology.2003, ISBN 0-615-12420-8
    [100]顾忠茂,我国先进核燃料循环技术发展战略的一些思考,核化学与放射化学[J],Vol.28 No.1,1-10,2006
    [101]顾忠茂,第二代核电技术仍是2020年前的主力,特别报道[J],2009年,58-58
    [102]顾忠茂1柴之芳,关于我国核燃料后处理/再循环的一些思考,化学进展[J],Vol.23 No.7,Jul.2011,
    [103]顾忠茂,核能与先进核燃料循环技术发展动向,现代电力[J],Vol.23 No.5,89-95,2006
    [104]World Nuclear Association. Mired Oride Fuel[M/OL].http://www. world2nucl ear.org.info/. July,2003.
    [105]冯开明,可控核聚变与ITER计划,现代电力[J],2006,23(5):82-88
    [106]山东核电有限公司[EB/OL], http://www.sdnpc.com/sdnpc/NewsC/5313.jspa
    [107]核能信息实时网,厦门大学能源研究院[EB/OL], http://realtime.xmuenerg y.com/newsdetail.aspx?newsid=101916,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700