溶液堆的蒙特卡罗方法物理计算模型及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
使用易裂变燃料可溶盐的水溶液作为燃料的溶液堆,具备许多区别于固态燃料反应堆的特征。使用溶液堆进行医用同位素生产具有更高的安全性、经济性和提取便利性,然而堆内辐照裂解气体的存在可能限制堆芯功率密度水平,是溶液堆由研究阶段向商业运行阶段转化的主要障碍。
     气泡行为的模拟是溶液堆计算的重要环节,堆芯尺寸小且不具备重复性构造的复杂几何特征要求物理计算方法具备强大的几何处理能力。本文在计算流体力学(CFD)方法中使用多尺寸组分模型,考虑气泡在堆内的结合与破裂效应,对溶液堆进行两相流模拟,研究气泡在堆内的行为特征,建立了考虑气泡运动因素的溶液堆气泡模型。基于一步法计算思想,使用多群蒙特卡罗方法作为输运计算模块,建立了包含共振处理、燃耗计算、搜索临界棒位、热工水力模型、气泡模型的溶液堆稳态计算模型。在建立瞬态计算模型时,引入改进准静态近似方法以获得较高的计算效率和精度,为了使蒙特卡罗方法能够应用于该方法之中,研究并实现了在蒙特卡罗程序中使用反复裂变几率的统计结果替代共轭通量,作为权重函数计算中子动力学参数的方法;并在多群蒙特卡罗程序MCMG中对源中子抽样机制进行修改,实现了固定源问题的求解功能;最后引入瞬态温度模型和气泡模型,构建了完整的溶液堆瞬态计算模型。
     基于上述计算模型研制了溶液堆稳态计算程序FMCAHR和瞬态模拟程序TCCAHR,进行数值验证的结果表明:气泡模型计算结果与计算流体力学方法的两相流模拟结果相符,FMCAHR和TCCAHR程序的计算结果与基准结果和溶液堆试验测量结果相符,一步法计算模型的流程简单、近似较少。使用程序对溶液堆物理特性进行研究的结果表明:气泡是影响溶液堆瞬态行为、决定溶液堆固有安全性的主导因素,在传热能力足够的前提下,溶液堆能够达到2kW/L的功率密度水平。
     通过本文研究,建立了考虑运动因素的溶液堆气泡模型;形成了基于蒙特卡罗方法的一步法溶液堆物理计算模型,为溶液堆计算分析提供了新的手段;对溶液堆物理特性进行了研究,证实了气泡是影响溶液堆瞬态行为的关键因素。
AHRs (Aqueous Homogeneous Reactors), which use fissile nuclides’ dissolublesalt’s water solution as fuel, have many different characteristics compared with solidfuel reactors. Producing medical isotopes by AHRs has better safety, economy andextracting convenience than by traditional methods in solid fuel reactors. However,radiolytic gas bubbles’ exist may limit AHRs’ power density, which becomes the mainobstacle in transitioning this technology from research to a commercial industrialenvironment.
     Simulation of gas bubbles’ behavior is especially important for AHRs’ calculation,the small size and un-repeatable complex geometry requires a stronger geometrytreatment ability of AHRs’ calculation model. Computational Fluid Dynamics method(CFD), along with Multiple Size Group model, and the consideration of bubbles’breakup and coalescence, is used to simulate the two-phase behavior of AHRs. Guidedby gas bubbles’ dynamic behavior studied from the results, gas bubbles’ model of AHRs,which considers bubbles’ movement, is established. Based on the one-step computingtheory, using Monte Carlo method as the transport calculation module, the staticcalculation model of AHRs is established, which contains resonance treatment, burn-upcalculation, critical rod height searching, thermal-hydraulic model and gas bubbles’model. In order to achieve high efficiency and accuracy, improved quasi-staticapproximation method is applied in the transient calculation model. Aiming atintroducing Monte Carlo method into this approximation, a new method of usingiterated fission probability to replace the adjoint flux, and then using it as the weightfunction to compute neutron kinetics parameters, is investigated and carried out inMonte Carlo codes. Also, the sampling mechanism of source neutrons is modified foradding the function of solving fixed-source problems in Multi-group Monte Carlo codeMCMG. Together with the introduction of transient temperature and gas bubbles’ model,the integrated transient calculation model of AHRs is established.
     According to the calculation model, FMCAHR (Fuel Management Code ofAqueous Homogeneous Reactors) and TCCAHR (Transient Calculation Code ofAqueous Homogeneous Reactors) is developed, verification results show that, theresults of gas bubbles’ model match well with the simulation results of CFD method, calculation results of FMCAHR and TCCAHR keep good consistency with benchmarksand AHRs’ experimental measurement results, the one-step calculation model is simpleand has little approximation. Physics characteristics of AHRs are analyzed usingFMCAHR and TCCAHR, the results show that, gas bubbles are the main issue thatinfluences the transient behavior and brings out the inherent safety of AHRs. As long asthe heat transfer ability is ensured, the power density of AHRs could reach2kW/L.
     This thesis establishes AHR’s gas bubbles’ model that takes into account ofbubbles’ movement, constructs a one-step calculation model based on Monte Carlomethod, and provides a new implement for the calculation and analysis of AHRs.Preliminary characteristics of AHRs are investigated; the big effect of gas bubbles toAHRs’ transient behavior is validated.
引文
[1] E. G. Bohlmann, H.F. McDuffie, P. R. Kasten, et al. Homogeneous Reactors and TheirDevelopment.//Aqueous Homogeneous Reactors. Oak Ridge National Laboratory,1958:13-15.
    [2] Nuclear Fuel Cycle and Materials Section. Homogeneous Aqueous Solution NuclearReactors for the Production of Mo-99and other Short Lived Radioisotopes [C]. VIENNA:International Atomic Energy Agency.2008:1-4.
    [3] G. L. Troyer, R. E. Schenter. Medical isotope development and supply opportunities in the21st century. Journal of Radioanalytical and Nuclear Chemistry,2009,282:243-246.
    [4] Cheng W L. Study on the Separation of Molybdenum-99and Recycling of Uranium to WaterBoiler Reactor [J]. Applied Radiation and Isotopes,1989,40(4):315-324.
    [5] LDP King. Design and Description of Water Boiler Reactors//Proc. Inter. Conf. PeacefulUses At. Energy. Geneva,1955,2:372-391.
    [6] F. Barbry. French CEA Experience on Homogeneous Aqueous Solution NuclearReactors//Nuclear Fuel Cycle and Materials Section. Homogeneous Aqueous SolutionNuclear Reactors for the Production of Mo-99and other Short Lived Radioisotopes.VIENNA: International Atomic Energy Agency.2008:37-38.
    [7] E. G. Bohlmann, H.F. McDuffie, P. R. Kasten, et al. Properties of Aqueous FuelSolutions.//Aqueous Homogeneous Reactors. Oak Ridge National Laboratory,1958:101-106.
    [8] V. A. Pavshook. Effective Method of99Mo and89Sr Production Using Liquid FuelReactor//Nuclear Fuel Cycle and Materials Section. Homogeneous Aqueous Solution NuclearReactors for the Production of Mo-99and other Short Lived Radioisotopes. VIENNA:International Atomic Energy Agency.2008:65-72.
    [9] Yoshinori MIYOSHI, Toshihiro YAMAMOTO, Kotaro TONOIKE, et al. CriticalExperiments on STACY Homogeneous Core Containing10%Enriched Uranyl NitrateSolution//Proc. ICNC2003. Japan,2003:166-171.
    [10]中国原子能科学研究院,MIPR零功率物理试验工作总结报告.成都:中国核动力研究设计院,2008。
    [11] M E Remley, J W Flora, D L Hetrick, et al. Experimental Studies on the Kinetic Behavior ofWater Boiler Type Reactors//Proc. Second UN Int. Conf. on the peaceful Uses of AtomicEnergy. Geneva,1958,11:1079(447-456).
    [12] C C Cappiello, K B Butterfield, R G Sanchez, et al. Solution High-Energy Burst Assembly(SHEBA) Results from Subprompt Critical Experiments with Uranyl Fluoride Fuel.1997,LA-UR-97-2391.
    [13] F. Barbry. Criticality Accident Studies and Research Performed in the Valduc CriticalityLaboatory//Nuclear Fuel Cycle and Materials Section. Homogeneous Aqueous SolutionNuclear Reactors for the Production of Mo-99and other Short Lived Radioisotopes.VIENNA: International Atomic Energy Agency.2008:39-48.
    [14] Ken Nakajima. Nuclear Characteristics Evaluation for a Supercritical Experiment FacilityUsing Low-Enriched Uranium Solution Fuel, TRACY//Proc. PHYSOR2002. Korea.2002:7E-04.
    [15] Yu. D. Baranaev. Medical Complex for Radioisotope Production//Nuclear Fuel Cycle andMaterials Section. Homogeneous Aqueous Solution Nuclear Reactors for the Production ofMo-99and other Short Lived Radioisotopes. VIENNA: International Atomic Energy Agency.2008:49-64.
    [16]曹良志,王昆鹏,吴宏春.溶液堆堆芯动力学计算软件研制与安全分析研究-项目总结报告.成都:中国核动力研究设计院,2008.
    [17] Li Deng, Zhongsheng Xie, Jianming Zhang. MCMG: A3-D Multigroup P3Monte CarloCode and Its Benchmarks. Journal of NUCLEAR SCIENCE and TECHONOLOGY,2000,37(7):608-614.
    [18] Yuichi YAMANE, Ken NAKAJIMA, Toshihiro YAMAMOTO, et al. Development ofCriticality Accident Analysis Code AGNES//Proc. ICNC2003. Japan,2003:157-162.
    [19] Yoshinori Miyoshi, Ludovic Reverdy, Hideo Konishi, et al. Inter-code Comparison Exercisefor Criticality Excursion Analysis Benchmark Phase I: Pulse Mode Experiments with UranylNitrate Solution in the TRACY and SILENE Facilities. Nuclear Energy Agency,2009.http://www.oecd-nea.org/science/reports/2009/6285_CriticalityComparison.pdf.
    [20]李云召,曹良志,吴宏春.溶液堆堆芯燃料管理程序FMSR理论手册.成都:中国核动力研究设计院,2008.
    [21]徐晓燕,曹良志,吴宏春.溶液堆三维输运时空动力学计算程序DNTR-T程序手册.成都:中国核动力研究设计院,2008.
    [22] G. Ilas, F. Rahnema. A Monte Carlo based nodal diffusion model for criticality analysis ofspent fuel storage lattices. Annals of Nuclear Energy,2003,30:1089-1108.
    [23] S. C. Van der Marck, J. C. Kuijper, J. Oppe. Homogenized Group Cross Section by MonteCarlo//PHYSOR2006. Canada:2006.
    [24] E. L. Redmond II. Multigroup cross section generation via Monte Carlo methods [D].Massachusetts Institute of Technology, Dept. of Nuclear Engineering,1997.
    [25] F. Rahnema, G. Ilas, N. H. Hudson, et al. On the few-group cross-section generationmethodology for PBR analysis. Annals of Nuclear Energy,2006,33:1058-1070.
    [26] J. Lepp nen. A New assembly-level Monte Carlo neutron transport code for reactor physicscalculations//M&C2005. France:2005.
    [27]于颖锐.通用几何燃料组件参数计算程序研制[硕士学位论文].成都:中国核动力研究设计院,2004.
    [28] J. Lepp nen. Development of a New Monte Carlo reactor physics code. VTT Publications2007,640:1-228.
    [29] ANSYS, Inc., ANSYS CFX [CP], Release10.0: Installation and Overview.
    [30] Eckhard Krepper, Dirk Lucas, Thomas Frank, et al. The inhomogeneous MUSIG model forthe simulation of polydispersed flows, Nuclear Engineering and Design,2008,238:1690-1702.
    [31]唐锡文.医用同位素生产堆技术开发——MITHA-01程序物理模型.成都:中国核动力研究设计院,2006.
    [32] E Hairer, G Wanner. Solving Ordinary Differential Equations II. Stiff andDifferential-Algebraic Problems. Section edition. Berlin: Springer-Verlag,1996:72-74.
    [33] Judith F Briesmeister. Manual of MCNP--A general Monte Carlo N-particle transport code:CCC700,2000.
    [34] Francisco J Souto. Analysis of the Effects of Radiolytic-Gas Bubbles on the Operation ofSolution Reactors for the Production of Medical Isotopes. Nuclear Science and Engineering,2005,150:322-335.
    [35] F J Souto. A Model to Estimate Volume Change due to Radiolytic Gas Bubbles and ThermalExpansion in Solution Reactors [R/OL].2001[2009-05-08].http://lib-www.lanl.gov/la-pubs/00357114.pdf.
    [36] D Yu Chuvilin, V E Khvostionov, D V Markovskij, et al. Production of89Sr in solutionreactor. Applied Radiation and Isotopes,2007,65:1087-1094.
    [37]杨立新,巴黎明,聂华刚,等.溶液堆台架模拟热工水力数值分析.核动力工程,2008,29(2):5-10.
    [38] G Montante, D Horn, A Paglianti. Gas-liquid flow and bubble size distribution in stirredtanks. Chemical Engineering Science,2008,63:2107-2118.
    [39] Dirk Lucas, Eckhard Krepper, Horst-Michael Prasser. Prediction of radial gas profiles invertical pipe flow on the basis of bubble size distribution. Int. J. Therm. Sci.,2001,40:217-225.
    [40] Hean Luo and Hallvard F. Svendsen. Theoretical Model for Drop and Bubble Breakup inTurbulent Dispersions. AIChE Journal,1996,42(5):1225-1233.
    [41] Michael J. Prince, Harvey W. Blanch. Bubble Coalescence and Break-Up in Air-SpargedBubble Columns. AIChE Journal,1990,36(10):1485-1499.
    [42]刘叶.医用同位素生产溶液堆堆芯热工水力水介质实验研究报告.成都:中国核动力研究设计院,2005.
    [43] MacFarlane RE. NJOY99.0: Code System for Producing Pointwise and Multigroup Neutronand Photon Cross Sections from ENDF/B Data. Los Alamos: Los Alamos NationalLaboratory,1994.
    [44] F.Leszczynski, D.Lopez Aldama, A.Trkov. WIMS-D Library Update, Final report of acoordinated research project. Vienna: International Atomic Energy Agency,2006.
    [45] R. Goldstein, E. R. Cohen. Theory of resonance absorption of neutrons. Nuclear Science andEngineering,1962,13:132-140.
    [46]谢仲生,吴宏春,张少泓.核反应堆物理分析.西安:西安交通大学出版社,2004:165.
    [47] Kotaro TONOIKE, Yoshinori MIYOSHI, Tsukasa KIKUCHI, et al. Kinetic Parametereff/lMeasurement on Low Enriched Uranyl Nitrate Solution with Single Unite Cores(600,280T,800) of STACY. Journal of Nuclear Science and Technology,2002,39(11):1227-1236.
    [48] Computational Benchmark Problems Committee of the MATHMATICS ANDCOMPUTATION DIVISION OF THE AMERICAN NUCLEAR SOCIETY. ARGONNECODE CENTER: BENCHMARK PROBLEM BOOK. Argonne:[S.l],1977:591~597.
    [49] G. Marleau, A. HEBERT, R. ROY. A User Guide for DRAGON3.05.2006[2009-03-15].ftp://ftp.polymtl.ca/pub/nucl/dragon/dragon-3.05/IGE174R6E.pdf.
    [50] A.K.Zhitnik, N.V.Ivanov, V.E.Marshalkin, et al. The TDMCC Monte Carlo Capability forSpatial Kinetics Calculations of Reactor Cores. Trans. Am. Nucl. Soc.,2004,91:248-250.
    [51]沈华韵.中子连续能量时空动力学直接模拟方法研究[博士学位论文].清华大学工程物理系,2008.
    [52] K O Ott. Accuracy of the Quasistatic Treatment of Spatial Reactor Kinetics. NUCLEARSCIENCE AND ENGINEERING,1969,36:402-411.
    [53] Sedat Goluoglu. A Deterministic Method for Transient, Three-Dimensional NeutronTransport [D]. University of Tennessee, Nuclear Engineering Department,1997.
    [54] C Bentley, R DeMeglio, M Dunn, et al. Development of a hybrid stochastic/deterministicMethod for Transient, three-dimensional neutron transport. Trans. Am. Nucl. Soc.,1997,76:221-223.
    [55] Cho, N.Z., Yun, S. Space-Time Reactor Kinetics via Monte Carlo Method. Trans. Am. Nucl.Soc.,2007,97:494-497.
    [56] John C.Wagner, Everett L.Redmond II, Scott P.Palmtag, et al. MCNP: Multigroup/AdjointCapabilities. Los Alamos: Los Alamos National Laboratory,1994.
    [57]谢仲生.核反应堆物理分析(下册).北京:原子能出版社,1996:163.
    [58] H. Hurwitz, Jr. Physical Interpretation of the Adjoint Flux: Iterated Fission Probability//NavalReactors Physics Handbook, VOLUME I, Selected Basic Techniques. US:[S.l.],1964:864-869.
    [59] Forrest Brown, William Martin. Reactor Physics Analysis with Monte Carlo//PHYSOR2010.USA:2010.
    [60] Forrest Brown, Brain Kiedrowski. Advances in Monte Carlo Criticality Methods//M&C2009.NY:2009.
    [61] Robin Klein Meulekamp, Steven C. van der Marck. Calculating the effective delayed neutronfraction with Monte Carlo. Nucl. Sci. Eng,2006,152(2):142-148.
    [62] Yasushi NAUCHI, Takanori KAMEYAMA. Proposal of direct calculation of kineticparameters effand based on continuous energy Monte Carlo method. Journal ofNuclear Science and Technology,2005,42(6):503-514.
    [63]朱继洲,等.核反应堆安全分析.西安:西安交通大学出版社,2000:37-38.
    [64]刘启伟.三维离散纵标中子输运方程稳态及瞬态动力学计算研究[硕士学位论文].西安交通大学核能科学与工程,2006.
    [65] Yasunobu Nagaya, Ken Nakajima. Approximate estimation of effective delayed neutronfraction with correlated sampling method.//International Conference on the Physics ofReactors “Nuclear Power: A Sustainable Resource”. Switzerland:2008.
    [66] Yuichi YAMANE, Ken NAKAJIMA, Kazuhiko OGAWA, et al. Transient CharacteristicsObserved in TRACY Supercritical Experiments//Proc. ICNC2003. Japan,2003:154-159.
    [67] Ken NAKAJIMA, Toshihiro YAMAMOTO, Yoshinori MIYOSHI. ModifiedQuasi-Steaty-State Method to Evaluate the Mean Power Profiles of Nuclear Excursions inFissle Solution. Journal of NUCLEAR SCIENCE and TECHNOLOGY,2002,39(11):1162-1168.
    [68] Hiroko SONO, Hiroshi YANAGISAWA, Ken NAKAJIMA, et al. Analyses of Criticality andReactivity for TRACY Experiments Based on JENDL-3.3Data Library//Proc. ICNC2003.Japan,2003:132-137.
    [69]宋丹戎,聂华刚. MIPR初步设计总说明书.成都:中国核动力研究设计院,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700