抑爆柴油的配制及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑爆柴油是指具有很高耐火性能,能够在各种杀伤武器的作用下保持高度稳定性,作为燃料使用时与普通柴油的燃烧性能基本接近,而在油箱被炮弹击中时不会引起着火而发生二次爆炸的一种柴油。目前抑爆柴油的制备主要是通过制备柴油微乳液的方法来实现。本研究中将柴油、乳化剂、助乳化剂和水混合,制备出澄清透明的柴油微乳液。并分别研究了体系内除柴油外的所有物质——乳化剂、助乳化剂和水对体系的影响。具体内容如下:
     1、分别用阴离子型乳化剂和非离子型乳化剂制备了微乳液。研究并对比了两种乳化剂对微乳体系的增溶水量和理化性质的影响。结果表明,阴离子型乳化剂中亲油基团和反离子会对体系增溶水量和某些理化性质产生影响。与柴油分子相似的亲油基团油酸基团和体积小的反离子单乙醇胺离子对水的增溶效果好。而非离子型乳化剂中,随着其亲水基团聚氧乙烯单元数量增加,容易吸附亲油的醇并出现最大增溶水量。阴离子型乳化剂体系增溶水量和醇吸附量均大于非离子型体系;而非离子乳化剂型体系则需要有为更亲水的助表面活性剂。
     2、用碳链长度从1到8的正构醇作为助乳化剂制备了柴油微乳液,并从体系最大增溶水量和理化性质两方面讨论了助乳化剂对体系的影响。结果表明,只有当助乳化剂醇的碳链具有适当长度时才能形成微乳液。随着其的增加,油酸单乙醇胺体系、Span-80/ATX-100体系和Span-80/ATX-114体系的增溶水量均呈现先增加再减小的趋势,而环烷酸体系的增溶水量减少。不同醇参与形成的体系理化性质不同。正构醇癸醇比带双键和苯环的松油醇吸附醇量小,增溶水量多。结构规整的醇做助乳化剂更高效。随着助乳化剂醇用量增多,体系凝点和粘度变化不大,闪点下降,稳定性提高。
     3、配制了不同含水量的微乳化柴油,并表征了其常规理化性能和抑爆性能。结果表明,水量的变化对体系闪点和凝点的影响不大。随着含水量的增加,体系粒径和粘度增大。当含水量超过15%时,油料爆炸时间延迟。
Explosion proof diesel is studied due to its ability to reduce the possibility of explosion. It has high fire resistance and stability. As a fuel, the combustion performance of explosion proof diesel close to ordinary diesel. If the tank with explosion proof diesel hit by artillery shells, it couldn't explode for second and greatly reduce casualties. The main issue of explosion proof diesel is the microemulsion technology. Microemulsified diesel fuel generally include diesel surfactants, cosurfactant and water. In this study, the effect of surfactant, cosurfactant and water on microemulsified diesel was discussed. Details are as follows.
     1. Anionic surfactant and non-ionic surfactant were used in this experiment to form microemulsified diesel. It was found that the lipopholic group and counterion had different influence to the formation of microeulsion. oleic acid monoethanolamine, compared another lipophilic group, has more efficient. The more polyoxyethylene group, the stronger hydrophilic. It was easy to absorbe lipophilic alcohol and has the maximum water content. Anionic surfactant systems had more water and alcohol content in microemulsions. Non-ionic surfactants tended to absorb hydrophilic cosurfactant
     2. Alcohol with carbon chain length between one to eight were used to investigate the effect of cosurfactant on microemulsion systems. And the maximum water content of microemulsified diesel and their physical and chemical properties were discussed. The results showed that alcohol with appropriate carbon chain length can form microemulsion. With the increase of cosurfactant carbon chain length, the water content of oleic acid monoethanolamine system, Span-80/ATX-100 system and Span-80/ATX-114 system increased first and then decreased. The longer cosurfactant carbon chain length, the less water content in naphthenic acid system. Microemulsified diesel with different alcohols has different physical and chemical properties. N-decanol compared to terpineol, has less alcohol content, more water content. With the alcohol content increased, pour point and viscosity remained unchanged. Flash point declined and stability increased.
     3. Microemulsified diesel with different water content was prepared and their physical and chemical properties and explosion proof properties were characterized. The results showed that there is little effect of water content on flash point and pour point in microemulsified diesel. Particle size and viscosity increased with the water content increasing. When the water content more than 15%, the explosion time of microemulsified diesel delayed.
引文
[1]薛艳,王树雷,曹文杰.柴油阻燃技术研究进展[J].阻燃材料与技术,2008,2:12-15
    [2]李科,蒋剑春,李翔宇.乳化柴油的研究进展[J].生物质化学工程,2010,44(1):44-50
    [3]王桂香,韩恩山,许寒.微乳状液的理论研究进展[J].化学工程师,2007,12:30-32
    [4]Yang, et al. Microemulsion containing oil field chemicals useful for oil and gas field applications [P]. US,7851414.2010-12-14
    [5]Brock, et al. Microemulsion containing alkanolammonium salts of fatty alcohol sulfates and/or alkylpolyalkyleneglycoethersulfates[P]. US,7357922.2008-4-15
    [6]吕霞,姚绍冈,杨立峰.一种微乳液组合物及其制备方法[P].中国专利,101889963A.2010-11-24
    [7]罗勇,杨维成等.一种车用甲醇汽油微乳液及其制备方法[P].中国专利,101914396A.2010-12-15
    [8]Hicks, et al. Microemulsion (nanotechnology) fuel additive composition[P]. US,7887604B. 2011-2-15
    [9]G. R. Kanna, R. Anand, Experimental investigation on diesel engine with diestrol-water micro emulsions[J], energy,2011,36:1680-1687
    [10]Javier Silvestre de los Reyes, Catherine Charcosset, Preparation of water-in-oil and ethanol-in-oil emulsions by membrane emulsification[J], fuel,2010,89:3482-3488
    [11]L.Fradette,B.Brocart,P.A.Tanguy.Comparison of Mixing Technologies for the Production of Concentrated Emulsions[J].Chemical Engineering Research and Design,2007,85(A11): 1553-1560
    [12]孙平,胡建月,陈镇.增压中冷柴油机燃用微乳化柴油的性能和排放研究[J].小型内燃机与摩托车,2010,39(1):7-11
    [13]陈昊,祁东辉和边耀璋.柴油机燃用生物柴油-乙醇-水微乳化燃料性能研究[J].内燃机工程,2010,31(1):21-26
    [14]李科,李翔宇,蒋剑春等.新型乳化剂制备及其微乳柴油的研究[J].生物质化学工程,2010,44(2):19-22
    [15]曹建喜,罗立文,董松祥等.微乳柴油的研制及性能[J].中国石油大学学报(自然科学版),2010,34(4):152-166
    [16]何广平,林利添,孙峰等.水-柴油微乳体系拟三元相图的绘制与燃烧性能测定[J].绍兴文理学院学报,2010,30(8):33-37
    [17]崔宇峰,胡建月,张锐等.乙醇-柴油微乳液及其对柴油及排放影响的研究[J].拖拉机与农用运输车,2010,37(3):39-41
    [18]蔡红兰.分散液滴的尺寸对含水和非水微乳体系临界行为的影响[D].甘肃:兰州大学,2007
    [19]贺睿华.Triton X-100反相微乳液体系的结构性能表征及应用[D].陕西:陕西科技大学,2009
    [20]江小舟.微乳化方法研究环已酮氨肟化反应历程[D].天津:天津大学,2008
    [21]李干佐,郭荣等.微乳液理论及其应用[M].北京:石油工业出版社,1995
    [22]赵国玺,朱埗瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003
    [23]谢安建,沈玉华.微乳状液及其研究[J].阜阳师范学院学报(自然科学版),1997,2:38-41
    [24]郭艳姿.二甲苯同分异构体二元系固-液相平衡研究[D].上海:同济大学化学系,2006
    [25]白玮,沈青.结构化乳液的理论、制备与应用Ⅱ-结构化微乳液[J].高分子通报,2009(12):55-67
    [26]高静,李晓,张卫英.双连续相微乳液聚合特征与应用[J].合成橡胶工业.2003,26(5):319-323
    [27]翟江.微乳液简介[J].潍坊教育学院学报.2006,19(3):44-45
    [28]郝京诚,汪汉卿,鲁润华等.微乳液相行为和微观结构的研究[J].中国科学(B辑),1997,27(2):131-139
    [29]蒙志谋.车用柴油机随车乳化系统的设计与试验研究[D].广西:广西大学,2006
    [30]张大林.乳化油在内燃机上的应用及其燃烧机理的研究[D].辽宁:大连理工大学,2002
    [31]王风贺.改性聚丙烯酰胺反相微乳液聚合及其性能研究[D].江苏:南京理工大学,2006
    [32]侯振建,付子林,陈俊生等.蜂胶纳米化技术研究[J].食品科学,2008,29(5):199-200
    [33]张明.氰根桥联的磁性纳米复合材料[D].天津:南开大学,2008
    [34]孙中丰.微乳状液及其应用[J].广东化工,2010,37(4):24-26
    [35]陈中元.微乳化柴油配方及制备工艺研究[D].北京:北京化工大学,2010
    [36]楼狄明,边威,谭不强.共轨柴油机燃用乳化柴油试验研究[J].车用发动机,2010,(3):74-78
    [37]欧阳海峰.微乳生物柴油的制备及其性能研究[D].江西:南昌大学,2007
    [38]李兴福,康敬万,傅正生.微乳汽油的形成原理和配制技术[J].西北师范大学学报,1999,35(4):1-8
    [39]许干,王如庭,董国群.柴油乳化的研究及其进展[J].化工时刊,2007,21(10):45-49
    [40]王鑫,马志豪.黄连木籽油热解产物气相色谱-质谱分析及物性测定[J].可再生能源.2010(1):72-75
    [41]王忠俊,陈军.中高速船用柴油机燃用重油的应用[J].船海工程.2010(2):74-77
    [42]佘锦锦.超声及表面活性剂对柴油微乳化的影响[D].江苏:南京工业大学,2005
    [43]黄超,曹勇兵,陈建华.闪点计算浅探[J].消防科学与技术.2000,5(2):10-13
    [44]谢凤,姚俊兵,郑发正.美军在着火安全燃料方面的研究与应用[J].石油商技.2003,21(2):52-54
    [45]宋丙红,莫建华,李海宏等.一种替代180号航空汽油清洗工件的高闪点深度精制石油溶剂[J].清洗世界.2010,26(5):24-28
    [46]刘凤波,崔雯辉.浅谈燃油组分对汽车尾气排放的影响[J].辽宁农业职业技术学院学报.2010,12(3):33-35
    [47]李岩,马殿国,张晓东等.生物柴油品质改良方法的分析[J].山东科学.2009,22(4):74-77
    [48]瞿金清,陈焕钦.聚氨酯—聚丙烯酸酯复合乳液的研究[J].中国皮.2004(5):6-9
    [49]金鑫.乳化重油在高速柴油机上的试验研究[D].辽宁:大连理工大学.2008
    [50]朱友益,韩冬,沈平平.表面活性剂结构与性能的关系[M].北京:石油工业出版社.2003
    [51]荆忠胜.表面活性剂概论[M].北京:中国轻工业出版社.1999
    [52]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社.1984
    [53]黄艳娥,徐伟,沈春红.柴油微乳化技术中乳化剂的选择及配方的研究[J].化工中间体,2006,9:20-25
    [54]郭荣,朱文庆,陈宗淇等.醇对非离子型表面活性剂浊点的影响[J].高等学校化学学报,1995,16(7):1104-1108
    [55]梁兵,孙小军.W/O型微乳液最大增容水量的研究[J].辽宁化工,2006,35(6):330-332
    [56]汪志银,朱慧等.醇的链长对Triton X-100微乳液的调控.应用化学,2006,23(10): 1081-1084
    [57]郝京诚,邹志琛,鲁绍芬等.CTAB微乳液结构研究[J].化学物理学报.1996,9(6):547-551
    [58]许干,王如庭,董国群.柴油乳化的研究及其进展[J].化工时刊,2007,21(10):45-49
    [59]罗亚楠,王玉香,李战英等.表面活性剂在柴油-水乳化燃料中的应用[J].吉林化工学院学报,2007,24(3):30-36
    [60]辛雪梅.微乳燃料配方的设计以及微乳液结构研究[D].山东:山东大学,2008
    [61]G.R. Kannan, R. Anand. Experimental investigation on diesel engine with diestrol-water micro emulsions[J]. Energy,2011,36(3):1680-1687
    [62]J.E. Andrade, A. Perez, P.J. Sebastian et al. A review of bio-diesel production processes[J]. Biomass and Bioenergy,2011,35(3):1008-1020
    [63]Cui Ying,Gong Guang-bi,Hu Cai-zhong et al. Preparation and properties of microemulsion diesel oil[J]. Applied Chemical Industry,2010,39(3):393-396
    [64]Lif, Anna. Water-in-diesel emulsion and microemulsion fuels:composition, structure and effect on emissions[D]. US:Chalmers University of Technology,2010
    [65]Lada Bemert, Sandra Engelskirchen, Christof Simon et al. Low emissions with microemulsion-fuels[J]. Fuel Chem.2009,54(1):290-291
    [66]Dong Hui Qi, Hao Chen, Chia Fon Lee et al. Experimental Studies of a Naturally Aspirated, Diesel Engine Fuelled with Ethanol-Biodiesel-Water Microemulsions[J]. Energy Fuels,2010,24(1):652-663
    [67]Anna Lif, Malena Stark, Magnus Nyden et al. Fuel emulsions and microemulsions based on Fischer-Tropsch diesel[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2010, (4):91-98
    [68]A Lif, M Nyden et al. Water-in-diesel microemulsions studied by NMR diffusometry[J]. Journal of Dispersion Science and Technology.2009,30(6):881-891
    [69]Nguyen, Thu Thi Le. Biosurfactants:Characterization, microemulsion formation and potential applications[D]. US:The university of Oklahoma,2009
    [70]D. Tarlet, J. Bellettre, M. Tazerout et al. Prediction of micro-explosion delay of emulsified fuel droplets[J]. International Journal of Thermal Sciences.2009,48(2):449-460
    [71]D.H. Qi, H. Chen, R.D. Matthews et al. Combustion and emission characteristics of ethanol-biodiesel-water micro-emulsions used in a direct injection compression ignition engine[J]. Fuel.2010,89(5):958-964
    [72]Youzhi Liu, Weizhou Jiao, Guisheng Qi. Preparation and properties of methanol-diesel oil emulsified fuel under high-gravity environment[J]. Renewable Energy.2011,36(5):1463-1468
    [73]Fabio G. Lepri, Eduardo S. Chaves, Mariana A. Vieira et al. Determination of Trace Elements in Vegetable Oils and Biodiesel by Atomic Spectrometric Techniques—A Review[J]. Applied Spectroscopy Reviews.2011,46(3):175-206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700