YSZ热障涂层的层状组织调控及其对热导率和寿命的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,热障涂层(Thermal Barrier Coatings,TBCs)在服役环境极端恶劣的燃气涡轮发动机热端部件上获得了越来越多的应用。当前的TBCs陶瓷层材料主要选择6-8wt%氧化钇稳定的氧化锆。TBCs勺组织、结构和性能依赖于其制备方法。喷涂制备的TBCs呈层状结构,结合性能一般,但热导率较低;EB-PVD TBCs则为柱状晶结构,具有优异的结合性能和良好的应变容限,但热导率偏高。如何有效降低EB-PVD TBCs的热导率一直是相关研究的热点。借鉴喷涂TBCs中的层片状组织结构有利于减少向涂层内部的热传导这一特点,尝试实现EB-PVD TBCs的多层化是其中新兴的一个研究方向。本文设计并采用离子束辅助沉积、低转速、以及沉积温度的高低交错等方法成功制备了多层陶瓷层和微叠层分层陶瓷层两种层状结构TBCs,对陶瓷层引入层状结构后的组织形貌及其对热导率和寿命等的影响进行了研究。
     在对离子源的工作特性进行研究的基础上,采用束流密度约为0-0.094mA/cm2的脉冲Ti离子辅助可获得微叠层分层陶瓷层TBCs;其他方法可获得横跨截面的多层陶瓷层TBCs,形成大量扁平带状的孔隙。微叠层结构TBCs伴随着大量的分层界面和相邻分层间的密度调制变化,同时柱状晶晶粒得到细化。离子辅助效应导致的微叠层分层和晶粒细化特征随着离子轰击水平的提升而进一步明显,但基体温度在原子迁移扩散和表面形貌控制上仍是更为重要的因素。离子辅助对成分影响较小,实际引入的Ti含量极低,且不会引起TBCs的致密化。
     两种层状结构TBCs仍呈现不可转变的四方相(t’)结构特征。离子辅助带来的额外能量可诱发占优取向从(100)逐渐变化到(111),]BCs内部织构变为{100}型和{111}型织构共存。引入离子与蒸气粒子以及蒸气粒子之间的碰撞导致了晶格重构和溅射,而占优取向的变化机制源于离子束导致的晶粒净生长速率和生长方向的调整以及表面粗糙度引起的生长不稳定性的共同作用。
     相对于常规TBCs,两种层状结构TBCs在相应温度下的热扩散系数和热导率都有所降低,其中离子辅助微叠层分层结构导致的热导率降低效果更为明显,室温热导率最高可降低约35%,其机制在于引入的分层界面垂直于热传导方向,带来大量界面热阻,同时,细化的晶粒和由此而来的更多的晶界以及相邻分层间的密度调制共同作用进一步降低了声子传热。
     两种层状结构形成的分层界面均有助于降低粘结层的氧化速率。依据这两种分层结构本身的差异及其位置的不同,低转速分层试样粘结层的抗氧化性能更好,但涂层寿命较差;而离子辅助试样粘结层的抗氧化性能稍优于常规TBCs(?),但涂层寿命较优,其机制在于两种分层界面在阻挡传热、增强抗氧化性能的同时,是否降低了YSZ柱晶的应变容限。总体而言,离子束辅助EB-PVD可作为TBCs的新型制备方法。
During the past decades, TBCs had got more than ever employed in the hot section of gas turbine engines for protection against extreme service conditions. The current state-of-art material for TBCs was6-8wt%YSZ and it was well-established the microstructure and properties of TBCs could vary enormously depending on their manufacturing method. TBCs prepared by plasma spray took on a layered structure with general adhesion but very low thermal conductivity. TBCs produced by EB-PVD presented columnar microstructure with superior adhesion and excellent strain tolerance which qualified its application on high-stress hot section such as the turbine blades, however, the thermal conductivity is high. How to effectively reduce the thermal conductivity of the EB-PVD TBCs has been focus within related research. Recently, considering the lamilar structure within sprayed TBCs can favour reduction of the heat transfer into the coatings for reference, layering of the EB-PVD TBCs is an emerging direction. In the present strudy, the two kinds of layered TBCs were designed within the top coat and successfully prepared using ion beam assisted deposition, low substrate rotation speed as well as the high-low deposition temperature staggered, etc. Then, microstructure and performance was investigated after the introduction of layered structure.
     On the basis of research of assisted ion source, the microlaminar TBCs was fabricated by pulse ion beam bombardment with current density in the range0-0.094mA/cm2; while the other methods can develop the multilayered TBCs with the interfaces across the coating and resulted in a flat ribbon pores. The microlaminar TBCs were accompanied with greatdeal of interfaces and the density modulation variation between adjacent micro-laminates. The microlaminates and grain refinement can be more distinguished with increasing level of ion assistance, however, the substrate temperature is still dominant factor in the control of the atomic mobility and surface morphology. Ion assistance had little influence on the composition of layered TBCs, the introduced Ti content was very little and ignorable. In addition, there was no densification was presented.
     The two kinds of layered TBCs were still showing the dominant non-transformation tetragonal (t') structural features. The dominant crystallographic orientation can be induced gradually from (100) to (111) by ion assistance, and then there was coexistence of{111} and {100} type texture. The mechanism resultd from the combined action between the adjustment of net growth and direction of columnar grains with orientations with respect to the ion beam and the growth instability induced by surface roughness.
     Compared with the conventional TBCs, the thermal diffusivity and thermal conductivity of the two kinds of layered TBCs was both reduced at the same temperature, in which the microlaminar TBCs by ion assistance show a more significant reduction up to35%. The mechanism was attributed to a large interfacial thermal resistance after the introduction of interfaces which was perpendicular to the heat conduction gradient. In addition, refined grains and more boundaries and density modulation between adjacent micro-layer contributed together.
     The oxidation rate of the bond coat was both reduced by the two kinds of layered structure. The low rotation specimens exhibited better performance of oxidation resistance, but worse coating life; the ion-assisted specimens shown slightly lower weight gain rate than that of the conventional TBCs, but better coatings duration lifetime. The mechanism lies in the difference of layered structure itself, the location of such two kinds of interface and whether these interfaces reduced the excellent strain tolerance of YSZ column when they restrain the heat transfer and improve the oxidation resistance within the coatings. Overall, ion beam assisted EB-PVD can be a novel method for the preparation of TBCs.
引文
[1]Konter M, Thumann M. Materials and manufacturing of advanced industrial gas turbine components[J]. Journal of Materials Processing Technology. 2001;117:386-390P.
    [2]Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications[J]. Science.2002;296:280-284P.
    [3]Miller RA. Thermal Barrier Coatings for Aircraft Engines:History and Directions[J]. Journal of Thermal Spray Technology.1997;6:35-42P.
    [4]Beele W, Marijnissen G, Lieshout AV. The evolution of thermal barrier coatings-status and upcoming solutions for today's key issues[J]. Surface and Coatings Technology.1999;121:61-67P.
    [5]Gurrappa I, Sambasiva Rao A. Thermal barrier coatings for enhanced efficiency of gas turbine engines[J]. Surface and Coatings Technology.2006;201:3016-3029P.
    [6]Peters M, Fritscher K, Staniek G, Kaysser WA, Schulz U. Design and Properties of Thermal Barrier Coatings for advanced turbine engines[J]. Materialwissenschaft und Werkstofftechnik.1997;28:357-362P.
    [7]刘大响.世界航空动力技术的现状及发展动向[J].北京航空航天大学学报.2002;28:490-496P.
    [8]牟仁德.热障涂层隔热性能研究[D].北京:北京航空材料研究院;2007.
    [9]Schulz U, Leyens C, Fritscher K, Peters M, Saruhan-brings B. Some recent trends in research and technology of advanced thermal barrier coatings ☆ Aktuelle Forschungs- und Entwicklungstrends bei Warmedammschichten fur die Gasturbine[J]. Aerospace Science and Technology.2003;7:73-80P.
    [10]Schulz U, Saruhan B, Fritscher K, Leyens C. Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications[J]. International Journal of Applied Ceramic Technology.2004;1:302-315P.
    [11]Nicholls JR. A dvances in Coating Design for High-Performance Gas Turbines[J]. MRS Bulletin.2003;28:659-670P.
    [12]Meier SM, Gupta DK. The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications[J]. Journal of Engineering for Gas Turbines and Power. 1994;116:250-257P.
    [13]Levi CG. Emerging materials and processes for thermal barrier systems[J]. Current Opinion in Solid State and Materials Science.2004;8:77-91P.
    [14]Clarke DR. Materials selection guidelines for low thermal conductivity thermal barrier coatings[J]. Surface and Coatings Technology.2003;163-164:67-74P.
    [15]Brandon JR, Taylor R. Phase stability of zirconia-based thermal barrier coatings part I. Zirconia-yttria alloys[J]. Surface and Coatings Technology.1991;46:75-90P.
    [16]唐辉,林振汉,王欣,张强.氧化锆材料的掺杂机理探讨[J].稀有金属快报.2007;26:69-73P.
    [17]徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系研究[J].航空学报.2000;21:7-12P.
    [18]Schulz U. Phase Transformation in EB-PVD Yttria Partially Stabilized Zirconia Thermal Barrier Coatings during Annealing[J]. Journal of the American Ceramic Society.2000;83:904-910P.
    [19]V Lughi DC. Transformation of Electron-Beam Physical Vapor-Deposited 8 wt% Yttria-Stabilized Zirconia Thermal Barrier Coatings[J]. Journal of the American Ceramic Society.2005;88:2552-2558P.
    [20]Peters M, Leyens C, Schulz U, Kaysser WA. EB-PVD Thermal Barrier Coatings for Aeroengines and Gas Turbines[J]. Advanced Engineering Materials. 2001;3:193-204P.
    [21]Bose S. Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt & Whitney[J]. Journal of Thermal Spray Technology.1997;6:99-104P.
    [22]Zhang Y-J, Sun X-F, Guan H-R, Hu Z-Q.1050℃ isothermal oxidation behavior of detonation gun sprayed NiCrAlY coating[J]. Surface and Coatings Technology. 2002;161:302-305P.
    [23]Wright PK, Evans AG. Mechanisms governing the performance of thermal barrier coatings[J]. Materials Science.1999;4:255-265P.
    [24]Schlichting KW, Padture NP, Jordan EH, Gell M. Failure modes in plasma-sprayed thermal barrier coatings[J]. Metallography.2003;342:120-130P.
    [25]Smialek JL, Jayne DT, Schaeffer JC, Murphy WH. Effects of hydrogen annealing, sulfur segregation and diffusion on the cyclic oxidation resistance of superalloys:a review[J]. Thin Solid Films.1994;253:285-292P.
    [26]Haynes JA, Pint BA, More KL, Zhang Y, Wright IG. Influence of Sulfur, Platinum, and Hafnium on the Oxidation Behavior of CVD NiAl Bond Coatings[J]. Oxidation of Metals.2002;58P.
    [27]Gurrappa I. Identification of hot corrosion resistant MCrAIY based bond coatings for gas turbine engine applications[J]. Surface and Coatings Technology. 2001;139:272-283P.
    [28]Sergo V, Clarke DR. Observation of Subcritical Spall Propagation of a Thermal Barrier Coating[J]. Journal of the American Ceramic Society.1998;81:3237-3242P.
    [29]Yonushonis TM. Overview of Thermal Barrier Coatings in Diesel Engines[J]. Journal of Thermal Spray Technology.1997;6:50-56P.
    [30]Evans AG, Mumm DR, Hutchinson JW. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science.2001;46:505-553P.
    [31]Yu Z, Zhao H, Wadley HNG. The Vapor Deposition and Oxidation of Platinum-and Yttria-Stabilized Zirconia Multilayers[J]. Journal of the American Ceramic Society. 2011;94:2671-2679P.
    [32]Movchan BA, Yakovchuk KY. Graded thermal barrier coatings, deposited by EB-PVD[J]. Surface and Coatings Technology.2004;188-189:85-92P.
    [33]Movchan BA, Marinski GS. Gradient protective coatings of different application produced by EB-PVD[J]. Surface and Coatings Technology.1998;100-101:309-315P.
    [34]Funke C, Sto D. Directions of the development of thermal barrier coatings in energy applications[J]. Journal of Materials Processing Technology.1999;93:195-202P.
    [35]Nicholls J R WRG, Steenbakker R, Feist J Self Diagnostic EB-PVD Thermal Barrier Coatings[J]. Advances in Science and Technology.2010;72:65-74P.
    [36]Eldridge JI, Singh J, Wolfe DE. Erosion-Indicating Thermal Barrier Coatings Using Luminescent Sublayers[J]. Journal of the American Ceramic Society. 2006;89:3252-3254P.
    [37]Chen X, Mutasim Z, Price J, Feist JP, Heyes AL, Seefeldt S. Industrial Sensor TBCs: Studies on Temperature Detection and Durability [J]. International Journal of Applied Ceramic Teclhology.2005;2:414-421P.
    [38]Gentleman MM, Clarke DR. Concepts for luminescence sensing of thermal barrier coatings[J]. Surface & Coatings Technology.2004;188-189:93-100P.
    [39]Clarke DR, Gentleman MM. Luminescence sensing of temperatures in thermal barrier coatings[J]. Surface and Coatings Technology.2007;202:681-687P.
    [40]Preauchat B. Properties of PECVD-deposited thermal barrier coatings[J]. Surface and Coatings Technology.2001;142-144:835-842P.
    [41]Schulz U, Fritscher K, Ebach-Stahl A. Cyclic behavior of EB-PVD thermal barrier coating systems with modified bond coats [J]. Surface and Coatings Technology. 2008;203:449-455P.
    [42]Padture NP, Schlichting KW, Bhatia T, Ozturk A, Cetegen B, Jordan EH, et al. Towards durable thermal barrier coatings with novel microstructures deposited by solution-precursor plasma spray[J]. Acta Materialia.2001;49:2251-2257P.
    [43]Jadhav A, Padture NP, Wu F, Jordan EH, Gell M. Thick ceramic thermal barrier coatings with high durability deposited using solution-precursor plasma spray[J]. Materials Science and Engineering:A.2005;405:313-320P.
    [44]Jadhav a, Padture N, Jordan E, Gell M, Miranzo P, Fullerjr E. Low-thermal-conductivity plasma-sprayed thermal barrier coatings with engineered microstructures[J]. Acta Materialia.2006;54:3343-3349P.
    [45]Hass DD, Slifka aJ, Wadley HNG. Low thermal conductivity vapor deposited zirconia microstructures[J]. Acta Materialia.2001;49:973-983P.
    [46]徐惠彬,宫声凯.乌克兰巴顿焊接研究所的电子束物理气相沉积技术[J].航空制造工程.1997;6:6-9P.
    [47]Terry SG, Litty JR, Levi CG. Evolution of porosity and texture in thermal bairier coatings grown by EB-PVD. Elevated temperature coatings:Science and technology Ⅲ; Proceedings of the Symposium on High Temperature Coatings Ⅲ, TMS Annual Meeting. San Diego, CA, United States1999. p.13-25.
    [48]Schulz U, Terry S, Levi C. Microstructure and texture of EB-PVD TBCs grown under different rotation modes[J]. Materials Science and Engineering A. 2003;360:319-329P.
    [49]Muller HR, Ensinger W. Ion beam modification of powders in the rotating wing drum[J]. Materials and Manufacturing Processes.1994;9:651-663P.
    [50]Kulkami AA, Goland A, Herman H, Allen AJ, Ilavsky J, Long GG, et al. Microstructure-Property Correlations in Industrial Thermal Barrier Coatings[J]. Journal of the American Ceramic Society.2004;87:1294-1300P.
    [51]Movchan BA, Lemkey FD. Some approaches to producing microporous materials and coatings by EB PVD[J]. Surface and Coatings Technology.2003;165:90-100P.
    [52]Unal O, Mitchell TE, Heuer AH. Microstructures of Y2O3-Stabilized ZrO2 Electron Beam-Physical Vapor Deposition Coatings[J]. Journal of the American Ceramic Society.1993;77:984-992P.
    [53]Chan KS, Cheruvu NS. Field Validation of a TBC Life-Prediction Model for Land-Based Gas Turbines[J]. ASME Conference Proceedings.2010:2010:921-928P.
    [54]Reinhold E, Botzler P, Deus C. EB-PVD process management for highly productive zirconia thermal barrier coating of turbine blades[J]. Surface and Coatings Technology. 1999;120-121:77-83P.
    [55]Reinhold E, Deus C, Wenzel B, Wolkers L. EB-preheating of turbine blades-the completion of EB-technology for thermal barrier coatingl[J]. Surface and Coatings Technology.1999;111:10-15P.
    [56]Youchison DL, Gallis Ma, Nygren RE, McDonald JM, Lutz TJ. Effects of ion beam assisted deposition, beam sharing and pivoting in EB-PVD processing of graded thermal barrier coatings[J]. Surface and Coatings Technology. 2004;177-178:158-164P.
    [57]傅永庆,朱晓东.离子束辅助沉积技术及其进展[J].材料科学与工程.1996;14:22-32P.
    [58]Movchan BA DA. Structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxides, and zirconium dioxide in vacuum[J]. Fiz Metal Metalloved.1969;28:653-660P.
    [59]Thornton JA. High rate thick film growth[J]. Annual Review of Materials Science. 1977;7:239-260P.
    [60]Xu GC, Fujita K, Torigoe T, Hibino Y. The microstructures of yttria-stabilized zirconia deposited with ion-plating apparatus[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms. 2003;206:362-365P.
    [61]Singh J, Wolfe DE. Tailored microstructure of zirconia and hafnia-based thermal barrier coatings with low thermal conductivity and high hemispherical reflectance by EB-PVD[J]. Journal of material science.2004;9:1975-1985P.
    [62]Roos E MK, Lyutovich A, Gusko A, Udoh A. (Cr-Al) bi-layer coatings obtained by ion assisted EB PVD on C/C-SiC composites and Ni-based[J]. Surface and Coatings Technology.2002;151-152:429-433P.
    [63]Sonnenberg N, Liu YP. Preparation of biaxially aligned cubic zirconia films on pyrex glass substrates using ion-beam assisted deposition[J]. Journal of Applied Physics. 1993;74:1027-1034P.
    [64]Roos E, Maile K, Lyutovich A, Gusko A, Udoh A. (Cr-Al) bi-layer coatings obtained by ion assisted EB PVD on CyC-SiC composites and Ni-based alloys[J]. Surface and Coatings Technology.2002;152:429-433P.
    [65]Wiesmann J, Freyhardt HC. Large-area deposition of biaxially textured YSZ buffer layers using an IBAD-process[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms. 1996;120:290-292P.
    [66]史国栋,陈贵清,梁军.热障涂层热导率的研究进展[J].材料导报.2006;20:44-47P.
    [67]Leclercq B, Mevrel R, Liedtke V, Hohenauer W. Thermal conductivity of zirconia-based ceramics for thermal barrier coating[J]. Materialwissenschaft und Werkstofftechnik.2003;34:406-409P.
    [68]Klemens PG, Gell M. Thermal conductivity of thermal barrier coatings[J]. Materials Science and Engineering:A.1998;245:143-149P.
    [69]Schlichting KW, Padture NP, Klemens PG. Thermal conductivity of dense and porous yttria-stabilized zirconia[J]. Journal of Materials Science.2001;36:3003-3010P.
    [70]Bartsch M, Schulz U, Dorvaux J-M, Lavigne O, Fuller ER, Langer SA. Simulating Thermal Response of Eb-Pvd Thermal Barrier Coating Microstructures.27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites:A:Ceramic Engineering and Science Proceedings:John Wiley & Sons, Inc.; 2008.549-554P.
    [71]牟仁德,陆峰,何利民,贺世美,黄光宏.热障涂层技术在航空发动机上的应用与发展[J].热喷涂技术.2009;1P.
    [72]Winter MR, Clarke DR. Thermal conductivity of yttria-stabilized zirconia-hafnia solid solutions[J]. Acta Materialia.2006;54:5051-5059P.
    [73]Zhu D, Miller RA. Advanced Low Conductivity Thermal Barrier Coatings Performance and Future Directions (Invited paper).35th International Conference On Metallurgical Coatings And Thin Films (ICMCTF 2008). San Diego, USA2008. p.1-39.
    [74]Zhu D, Miller RA. Development of Advanced Low Conductivity Thermal Barrier Coatings[J]. International Journal of Applied Ceramic Technology.2004;1:86-94P.
    [75]Liu B, Wang JY, Zhou YC, Liao T, Li FZ. Theoretical elastic stiffness, structure stability and thermal conductivity of La2Zr2O7 pyrochlore[J]. Acta Materialia. 2007;55:2949-2957P.
    [76]Vassen R, Cao X, Tietz F, Basu D, Stover D. Zirconates as New Materials for Thermal Barrier Coatings[J]. Journal of the American Ceramic Society. 2000;83:2023-2028P.
    [77]Cao XQ, Vassen R, Tietz F, Stoever D. New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides[J]. Journal of the European Ceramic Society.2006;26:247-251P.
    [78]Zhou H, Yi D, Yu Z, Xiao L. Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings[J]. Journal of Alloys and Compounds.2007;438:217-221P.
    [79]Padture NP, Klemens PG. Low Thermal Conductivity in Garnets[J]. Journal of the American Ceramic Society.1997;80:1018-1020P.
    [80]Maekawa T, Kurosaki K, Yamanaka S. Thermophysical properties of BaY2O4:A new candidate material for thermal barrier coatings[J]. Materials Letters. 2007;61:2303-2306P.
    [81]Klemens PG. Theory of Thermal Conduction in Thin Ceramic Films[J]. International Journal of Thermophysics.2001;22:265-275P.
    [82]MJ M. Thermal barrier coating systems and materials:U S,6117560 [P].2000.
    [83]R S. Thermal barrier coating having high phase stability:U S,6258467 [P].2001.
    [84]Tamarin YA KE, Zherzdev SV. Thermophysical properties of ceramic layers in TBC-EB[J]. Materials Science Forum.1997;254:949-956P.
    [85]Zhu D, Chen YL, Miller RA. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings.27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites:A:Ceramic Engineering and Science Proceedings:John Wiley & Sons, Inc.; 2008.525-534P.
    [86]Zhou C, Wang N, Wang Z, Gong S, Xu H. Thermal cycling life and thermal diffusivity of a plasma-sprayed nanostructured thermal barrier coating[J]. Scripta Materialia.2004;51:945-948P.
    [87]Nicholls JR, Lawson KJ, Johnstone A, Rickerby DS. Methods to reduce the thermal conductivity of EB-PVD TBCs[J]. Surface and Coatings Technology. 2002;152:383-391P.
    [88]Nicholls J.R, Lawson K.J, Rickerby D.S, P M. Advanced Processing of TBC's for Reduced Thermal Conductivity. AGARD SMP Metting Aalborg. Denmark1997.
    [89]Rickerby D. A coated article:European,0628090 B1 [P].1996.
    [90]Cabeza M. Influence of layering on the thermal conductivity of electron beam physical vapour deposited thermal barrier coatings[D]:Cranfield University; 2007.
    [91]Schulz U, Fritscher K, Leyens C. Two-source jumping beam evaporation for advanced EB-PVD TBC systems[J]. Surface and Coatings Technology.2000;133-134:40-48P.
    [92]Schulz U, Schmu M. Microstructure of ZrO2 thermal barrier coatings applied by EB-PVD[J]. Materials Science and Engineering A.2000;276:1-8P.
    [93]Jang BK, Matsubara H. Influence of rotation speed on microstructure and thermal conductivity of nano-porous zirconia layers fabricated by EB-PVD[J]. Scripta Materialia.2005;52:553-558P.
    [94]牟仁德,贺世美,何利民,许振华.微叠层结构EB-PVD热障涂层[J].航空材料学报.2009;29:55-60P.
    [95]Gu S, Lu TJ, Hass DD, Wadley HNG. Thermal conductivity of zirconia coatings with zig-zag pore microstructures[J]. Acta Materialia.2001;49:2539-2547P.
    [96]顾诵芬,庄逢辰,程耿东,葛昌纯.建议将航空工业作为国家重点发展的战略高技术产业[J].中国科学院院刊.2005;20:17-18P.
    [97]黄维,黄春峰,王永明,陈建民.先进航空发动机关键制造技术研究[J].Defense Manufacturing Technology.2009;3:41-48P.
    [98]徐惠斌,宫声凯,刘福顺.EB-PVD热障涂层技术在航空发动机上的应用[J].航空学报.1997;增刊:18-20P.
    [99]Brown IG, Anders A, Anders S, Dickinson MR, MacGill RA, Oks EM. Recent advances in vacuum arc ion sources[J]. Surface and Coatings Technology. 1996;84:550-556P.
    [100]Brown IG. Vacuum arc ion sources[J]. Review of Scientific Instruments. 1994;65:3061-3081P.
    [101]Oks E, Brown IG. Vacuum Arc Ion Sources. The Physics and Technology of Ion Sources. Second Edition ed:Wiley-VCH Verlag GmbH & Co. KGaA; 2005. 257-284P.
    [102]姬成周,张通和,沈京华,杨建华.使用金属蒸汽真空弧离子源的金属离子注入[J].北京师范大学学报(自然科学版).1991;27:163-168P.
    [103]唐德礼,童洪辉,蒲世豪,谢峰,赵杰,耿少飞.强流金属离子源:中国,200910131412[P].2009.
    [104]赵希宏,黄朝晖,谭永宁,张强,余乾,徐惠彬.新型Ni3Al基定向高温合金IC10[J].航空材料学报.2008;26:20-24P.
    [105]Seserko P, Hotz J, Lemke J, Smith PR, Mede M. EB PVD Ceramic Thermal Barrier Coatings in Production. ALD Vacuum Technologies AG; 2002.
    [106]雷新更EB-PVD制备热障涂层的组织与性能[D].北京:北京航空制造工程研究所;2005.
    [107]毛卫民,杨平,陈冷.材料织构分析原理与检测技术.北京:冶金工业出版社;2008.
    [108]陈亮维,史庆南,周世平,陈南光,谢明.X射线衍射取向分布函数分析[J].物理测试.2008;26:38-42P.
    [109]Kim D-J. Evaluation of the Degradation of Plasma Sprayed Thermal Barrier Coatings Using Nano-Indentation[J]. J Nanosci Nanotechnol.2009;9:7271-7277P.
    [110]Briscoe BJ, Fiori L, Pelillo E. Nano-indentation of polymeric surfaces[J]. Journal of Physics D:Applied Physics.1998;31:2395P.
    [111]Taylor RE, Wang X, Xu X. Thermophysical properties of thermal barrier coatings[J]. Surface and Coatings Technology.1999;121:89-95P.
    [112]Taylor RE. Thermal conductivity determinations of thermal barrier coatings[J]. Materials Science and Engineering A.1998;245:160-167P.
    [113]An K, Ravichandran KS, Dutton RE, Semiatin SL. Microstructure, Texture, and Thermal Conductivity of Single-Layer and Multilayer Thermal Barrier Coatings of Y2O3-Stabilized ZrO2 and Al2O3 Made by Physical Vapor Deposition[J]. Journal of the American Ceramic Society.1999;82:399-406P.
    [114]Siegel R. Green's function to determine temperature distribution in a semitransparent thermal barrier coating[J]. Journal of thermophysics and heat transfer. 1997;11:315-318P.
    [115]Vaβen R, Jarligo MO, Steinke T, Mack DE, Stover D. Overview on advanced thermal barrier coatings[J]. Surface & Coatings Technology.2010;205:938-942P.
    [116]Schulz U, Saruhan B, Renteria AF. Thermal conductivity issues of EB-PVD thermal barrier coatings[J]. Materialwissenschaft und Werkstofftechnik.2007;38:659-666P.
    [117]牟仁德,何利民,贺世美,陆峰,陶春虎.Zr02陶瓷热障涂层显微结构及隔热性能研究[J].航空材料学报.2007;27:29-32P.
    [118]Altuncu E, Karaall El, Erdogan G, Ustel F, Turk A. The Effect of Samples Geometry and Thermal Cycling Test Type on the Thermal Shock Behaviour of Plasma Sprayed TBCs[J]. Plasma Processes and Polymers.2009;6:S711-S715P.
    [119]Zhang C, Zhou C, Peng H, Gong S, Xu H. Influence of thermal shock on insulation effect of nano-multilayer thermal barrier coatings [J]. Surface and Coatings Technology.2007;201:6340-6344P.
    [120]Li M, Sun X, Hu W, Guan H. Thermal shock behavior of EB-PVD thermal barrier coatings[J]. Surface and Coatings Technology.2007;201:7387-7391P.
    [121]Kokini K, DeJonge J, Rangaraj S, Beardsley B. Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance[J]. Surface and Coatings Technology.2002;154:223-231P.
    [122]Yildirim B, Erdogan F. Edge Crack Problems in Homogenous and Functionally Graded Material Thermal Barrier Coatings Under Uniform Thermal Loading[J]. Journal of Thermal Stresses.2004;27:311-329P.
    [123]Kim D-J, Shin I-H, Koo J-M, Seok C-S, Lee T-W. Failure mechanisms of coin-type plasma-sprayed thermal barrier coatings with thermal fatigue[J]. Surface and Coatings Technology.2010;205, Supplement 1:S451-S458P.
    [124]Caliez M, Feyel F, Kruch S, Chaboche J. Oxidation induced stress fields in an EB-PVD thermal barrier coating[J]. Surface and Coatings Technology. 2002;157:103-110P.
    [125]Wolfe DE, Singh J, Miller RA, Eldridge JI, Zhu DM. Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications[J]. Surface & Coatings Technology. 2005;190:132-149P.
    [126]Purushotham KP, Ward LP, Brack N, Pigram PJ, Evans P. The effect of MEVVA ion implantation of Zr on the corrosion behaviour of PVD TiN coatings[J]. Corrosion Science.2008;50:8-14P.
    [127]唐伟忠.薄膜材料制备原理,技术及应用.北京:冶金工业出版社;1999.
    [128]Schulz U, Fritscher K, Leyens C, Peters M. Influence of Processing on Microstructure and Performance of Electron Beam Physical Vapor Deposition (EB-PVD) Thermal Barrier Coatings[J]. Journal of Engineering for Gas Turbines and Power. 2002;124:229-229P.
    [129]Lu TJ, Levi CG, Wadley HNG, Evans AG. Distributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor Deposition[J]. Journal of the American Ceramic Society.2001;84:2937-2946P.
    [130]Zhao H, Yu F, Bennett TD, Wadley HNG. Morphology and thermal conductivity of yttria-stabilized zirconia coatings[J]. Acta Materialia.2006;54:5195-5207P.
    [131]Guo HB, Murakami H, Kuroda S. Effect of Hollow Spherical Powder Size Distribution on Porosity and Segmentation Cracks in Thermal Barrier Coatings[J]. Journal of the American Ceramic Society.2006;89:3797-3804P.
    [132]Kulkami AA, Herman H, Almer J, Lienert U, Haeffner D, Ilavsky J, et al. Depth-Resolved Porosity Investigation of EB-PVD Thermal Barrier Coatings Using High-Energy X-rays [J]. Journal of the American Ceramic Society.2004;87:268-274P.
    [133]Raghavan S, Wang H, Dinwiddie RB, Porter WD, Mayo MJ. The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia[J]. Acta Metallurgica.1998;39:1119-1125P.
    [134]Leyens C, Schulz U, Pint BA, Wright IG. Influence of electron beam physical vapor deposited thermal barrier coating microstructure on thermal barrier coating system performance under cyclic oxidation conditions[J]. Surface and Coatings Technology. 1999;120-121:68-76P.
    [135]Witz G, Shklover V, Steurer W, Bachegowda S, Bossmann H-P. Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns[J]. Journal of the American Ceramic Society. 2007;90:2935-2940P.
    [136]Lee EY, Sohn Y-h, Jha SK, Holmes JW, Sisson RD. Phase Transformations of Plasma-Sprayed Zirconia-Ceria Thermal Barrier Coatings[J]. Journal of the American Ceramic Society.2002;85:2065-2071P.
    [137]Scardi P, Leoni M, Cernuschi F, Figari A. Microstructure and Heat Transfer Phenomena in Ceramic Thermal Barrier Coatings[J]. Journal of the American Ceramic Society.2001;84:827-835P.
    [138]Heydt P, Luo C, Clarke DR. Crystallographic Texture and Thermal Conductivity of Zirconia Thermal Barrier Coatings Deposited on Different Substrates[J]. Journal of the American Ceramic Society.2001;84:1539-1544P.
    [139]Bernier JS, Levan G, Maniruzzaman M, Sisson Jr RD, Bose S. Crystallographic texture of EB-PVD TBCs deposited on stationary flat surfaces in a multiple ingot coating chamber as a function of chamber position[J]. Surface and Coatings Technology.2003;163-164:95-99P.
    [140]Wada K, Yamaguchi N, Matsubara H. Crystallographic texture evolution in ZrO2-Y2O3 layers produced by electron beam physical vapor deposition[J]. Surface and Coatings Technology.2004;184:55-62P.
    [141]Wada K, Yoshiya M, Yamaguchi N, Matsubara H. Texture and microstructure of ZrO2-4mol% Y2O3 layers obliquely deposited by EB-PVD[J]. Surface and Coatings Technology.2006;200:2725-2730P.
    [142]Roe RJ, Krigbaum WR. Description of crystallite orientation in polycrystalline materials having fiber texture[J]. The Journal of Chemical Physics.1964;40:2608P.
    [143]Bunge HJ, Haessner F. Three-Dimensional Orientation Distribution Function of Crystals in Cold-Rolled Copper[J]. Journal of Applied Physics.1968;39:5503P.
    [144]梁志德.现代织构分析的进展[J].金属学报.1997;2P.
    [145]Smith DL. Thin-film deposition:principles and practice:McGraw-Hill Professional; 1995.
    [146]Paritosh, Srolovitz DJ, Battaile CC, Li X, JE B. Simulation of faceted film growth in two-dimensions:microstructure, morphology and texture[J]. Acta Materialia. 1999;47:2269-2281P.
    [147]Singh J, Wolfe DE. Architecture of thermal barrier coatings produced by electron beam-physical vapor deposition (EB-PVD)[J]. Journal of Materials Science. 2002;37:3261-3267P.
    [148]Ma CH, Huang JH, Chen H. A study of preferred orientation of vanadium nitride and zirconium nitride coatings on silicon prepared by ion beam assisted deposition[J]. Surface and Coatings Technology.2000;133-134:289-294P.
    [149]Pelleg J, Zevin LZ, Lungo S, Croitoru N. Reactive-sputter-deposited TiN films on glass substrates[J]. Thin Solid Films.1991; 197:117-128P.
    [150]Kiuchi M, Chayahara A, Horino Y, Fujii K, Satou M, Ensinger W. Control of preferentially oriented crystal growth of titanium nitride effects of nitrogen adsorption and ion-beam irradiation in dynamic mixing process [J]. Applied Surface Science. 1992;60-61:760-764P.
    [151]Ensinger W. On the mechanism of crystal growth orientation of ion beam assisted deposited thin films[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.1995; 106:142-146P.
    [152]W E. Growth of thin films with preferential crystallographic orientation by ion bombardment during deposition[J]. Surface and Coatings Technology. 1994;65:90-105P.
    [153]Soyez G, Eastman JA, Thompson LJ, Bai GR, Baldo PM, McCormick AW, et al. Grain-size-dependent thermal conductivity of nanocrystalline yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition[J]. Applied Physics Letters. 2000;77:1155P.
    [154]Kelly MJ, Wolfe DE, Singh J, Eldridge J, Zhu DM, Miller R. Thermal Barrier Coatings Design with Increased Reflectivity and Lower Thermal Conductivity for High-Temperature Turbine Applications[J]. International Journal of Applied Ceramic Technology.2006;3:81-93P.
    [155]Lepri S, Livi R, Politi A. Thermal conduction in classical low-dimensional lattices[J]. Physics Reports.2003;377:1-80P.
    [156]Incropera FP, Bergman TL, Lavine AS, DeWitt DP. Fundamentals of heat and mass transfer:Wiley; 2011.
    [157]Nan C-W, Birringer R, Clarke DR, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance[J]. Journal of Applied Physics.1997;81:6692-6699P.
    [158]Yang H-S, Bai GR, Thompson LJ, Eastman JA. Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia[J]. Acta Materialia.2002;50:2309-2317P.
    [159]Lumpkin ME, Saslow WM, Visscher WM. One-dimensional Kapitza conductance: Comparison of the phonon mismatch theory with computer experiments[J]. Physical Review B.1978;17:4295-4302P.
    [160]Furmanskit P. Wall effects in heat conduction through a heterogeneous material[J]. International Journal of Heat and Mass Transfer.1994;37:1945-1955P.
    [161]Furmanski P, Floryan JM. A method of control of transfer processes[J]. International Journal of Heat and Mass Transfer.2001;44:215-233P.
    [162]Costescu RM, Cahill DG, Fabreguette FH, Sechrist ZA, George SM. Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates[J]. Science.2004;303:989-990P.
    [163]Earley L. The relationship between microstructure and thermal conductivity of thermal barrier coatings deposited by thermal evaporation[D]. Manchester:UMST Manchester; 1992.
    [164]Nicholls JR, Lawson KJ, Johnstone A, Rickerby DS. Low thermal conductivity EB-PVD thermal barrier coatings[J]. Materials Science Forum.2001;369:595-606P.
    [165]Ratzer-Scheibe HJ, Schulz U, Krell T. The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings[J]. Surface and Coatings Technology.2006;200:5636-5644P.
    [166]宫声凯,邓亮,毕晓方,徐惠彬.陶瓷热障涂层的隔热效果研究[J].航空学报.2000;21:25-29P.
    [167]Prasanna KMN, Khanna AS, Chandra R, Quadakkers WJ. Effect of & lt;i & gt;θ-alumina formation on the growth kinetics of alumina-forming superalloys[J]. Oxidation of Metals.1996;46:465-480P.
    [168]Gonzalez-Carrasco JL, Perez P, Adeva P, Chao J. Oxidation behaviour of an ODS NiAl-based intermetallic alloy[J]. Intermetallics.1999;7:69-78P.
    [169]Seraffon M, Simms NJ, Sumner J, Nicholls JR. The development of new bond coat compositions for thermal barrier coating systems operating under industrial gas turbine conditions[J]. Surface and Coatings Technology.2011;206:1529-1537P.
    [170]Yanar NM, Kim G, Hamano S, Pettit FS, Meier GH. Micro structural characterization of the failures of thermal barrier coatings on Ni-base superalloys[J]. Materials at High Temperatures.2003;20:495-506P.
    [171]Gell M EJ, Krishnakumar V, McCarron K, Barber B, Sohn Y-H. Bond strength, bond stress and spallation mechanisms of thermal barrier coatings[J]. Surface and Coatings Technology.1999;120-121:53-60P.
    [172]Nicholls JR, Deakin MJ, Rickerby DS. A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings[J]. Wear.1999;233-235:352-361P.
    [173]Evans AHM, Hutchinson JW. Mechanics-based scaling laws for the durability of thermal barrier coatings[J]. Progress in Materials Science.2001;46:249-271P.
    [174]Mumm DR EA, Spitsberg IT. Characterization of a cyclic displacement instability for a thermally grown oxide in a ther mal barrier system[J]. Acta Materialia. 2001;49:2329-2340P.
    [175]Jan V, Dorcakova F, Dusza J, Bartsch M. Indentation creep of free-standing EB-PVD thermal barrier coatings[J]. Journal of the European Ceramic Society. 2008;28:241-246P.
    [176]Wellman RG, Dyer A, Nicholls JR. Nano and Micro indentation studies of bulk zirconia and EB PVD TBCs[J]. Surface and Coatings Technology. 2004;176:253-260P.
    [177]Yan J, Leist T, Bartsch M, Karlsson AM. On cracks and delaminations of thermal barrier coatings due to indentation testing:Experimental investigations[J]. Acta Materialia.2008;56:4080-4090P.
    [178]Thompson JA, Clyne TW. The effect of heat treatment on the stiffness of zirconia top coats in plasma-sprayed TBCs[J]. Acta Materialia.2001;49:1565-1575P.
    [179]Zhu D, Miller RA. Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrdxr Coatings.26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures:B:Ceramic Engineering and Science Proceedings: John Wiley & Sons, Inc.; 2008.457-468P.
    [180]Zhu D, Miller R. Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions[J]. Journal of Thermal Spray Technology.2000;9:175-180P.
    [181]Leyens C SU, Pint BA, Wright IG. Influence of electron beam physical vapor deposited thermal barrier coating microstructure on thermal barrier coating system performance under cyclic oxidation conditions[J]. Surface and Coatings Technology. 1999;120-121:68-76P.
    [182]Johnson CA, Ruud JA, Bruce R, Wortman D. Relationships between residual stress, microstructure and mechanical properties of electron beam-physical vapor deposition thermal barrier coatings[J]. Surface and Coatings Technology.1998;108-109:80-85P.
    [183]Xu T, He MY, Evans AG. A Numerical Assessment of the Propagation and Coalescence of Delamination Cracks in Thermal Barrier Systems[J]. Interface Science. 2003;11:349-358P.
    [184]Nissley D. Thermal barrier coating life modeling in aircraft gas turbine engines[J]. Journal of Thermal Spray Technology.1997;6:91-98P.
    [185]Nemeth NN, Powers LM, Janosik LA, Gyekenyesi JP. Durability Evaluation of Ceramic Components Using CARES/LIFE[J]. Journal of Engineering for Gas Turbines and Power.1996;118:150-158P.
    [186]Busso EP, Lin J, Sakurai S, Nakayama M. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system.:Part Ⅰ:model formulation[J]. Acta Materialia.2001;49:1515-1528P.
    [187]Vaβen R, Cernuschi F, Rizzi G, Scrivani A, Markocsan N, Ostergren L, et al. Recent Activities in the Field of Thermal Barrier Coatings Including Burner Rig Testing in the European Union[J]. Advanced Engineering Materials.2008;10:907-921P.
    [188]Meier SM, Nissley DM, Sheffler KD, Cruse TA. Thermal Barrier Coating Life Prediction Model Development[J]. Journal of Engineering for Gas Turbines and Power.1992;114:258-263P.
    [189]Chan KS, Cheruvu NS, Leverant GR. Coating life prediction for combustion turbine blades[J]. Journal of Engineering for Gas Turbines and Power.1999;121:484-488P.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700