城市生活垃圾层状燃烧过程试验研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市生活垃圾焚烧在能源发展战略中是一个主要的研究领域。为使垃圾焚烧处理技术真正达到无害化的目的,了解焚烧过程中污染物的产生机理和控制技术是十分必要的。本文研究了城市生活垃圾的焚烧过程,并针对固定床内城市生活垃圾焚烧过程进行了系统的试验研究及数值模拟,为深入认识床层内垃圾的焚烧过程和减少垃圾焚烧过程中污染物的排放奠定了基础,通过本文的研究可以提供更可靠的数据用来设计和优化城市生活垃圾焚烧炉。利用热天平研究城市生活垃圾的焚烧过程,采用FTIR红外光谱仪测得CO2、CO、CH4三种气体在热解过程中的定量析出曲线,并利用积分法计算出热解过程中各气体总的析出质量同时采用Coats-Redfern法,得到了模拟城市生活垃圾焚烧过程中的活化能和指前因子,确定了城市生活垃圾的焚烧表观动力学模型。
     为了深入了解和研究城市生活垃圾焚烧过程的特性,建立了一维固定床热态实验台。城市生活垃圾试样由蔬菜、细沙和纸板组成,它们具有和真实的城市生活垃圾相似的灰分、水分、固定碳含量。固定床燃烧发生在一个垂直的圆柱体燃烧室,它由称重传感器悬挂着。通过改变一次风量、一次风温和物料本身特性对垃圾床层燃烧的影响规律进行了详细的实验研究。实验研究主要针对焚烧过程中固定床内温度、气氛浓度、床层重量及NO生成特性的变化规律来进行的。同时,利用计算流体力学的方法对层燃炉排上城市垃圾焚烧过程及NO生成特性进行了数值研究,采用一维非稳态模型对床层内气固两相介质分别建立控制方程,确定了水分蒸发、挥发分析出及燃烧和焦炭燃烧反应速率,建立了污染物NO生成及还原和二噁英生成反应简化模型,得出了床层中温度分布、床层重量和高度变化、气相中反应物组分和污染物NO浓度分布,得出了水分蒸发速率、挥发分析出速率、垃圾着火锋面位置及其推进速度等特性参数。
     实验结果表明:随着一次风量的增加,床层表面CO平均排放浓度是一直降低的,造成C生成CO转化率降低,而N生成NO的转化率是先升高后降低的;随着一次风温度的升高,CO和NO的平均排放浓度逐渐升高,NO最高浓度峰值没有发生明显的变化;随着水分比例的增加,CO2、NO和CO平均排放浓度逐渐减小;CO2、CO的平均排放浓度随着物料中灰分所占比例的增加而减小,NO的平均排放浓度随着灰分所占比例的增加先增大后降低。随着一次风流量的增加,火焰锋面的传播速度和模拟垃圾的焚烧速率先增加后降低,但是火焰锋面的传播速度降到一定的数值后保持不变;随着一次风温的增加火焰平均传播速度略有增加,而在底部物料燃烧火焰传播速度增加较多,同时模拟垃圾的平均燃烧速率和水分蒸发速率有小幅度提高;随着模拟垃圾物料中水分和灰分含量的增加,火焰传播速度和模拟垃圾的焚烧速率是降低的。
     模拟结果和实验对比表明:模拟床层物料质量和床层高度随时间变化曲线与实验值吻合较好,在燃烧中段,床料质量近似按直线变化,燃烧峰面匀速向下传播,水分蒸发和挥发分析出速率近似为常数;而后期由于剩余焦炭与氧反应速度较慢,燃烧速度减低,质量变化接近水平线。从实验和模拟两方面对床层内温度分布对比分析,整体的分布规律一致,火焰峰面和燃烧最高温度的预报与实验值相吻合,模拟程序准确预报了床层中热量传递和火焰峰面传播过程。在垃圾焚烧的过程中,水分蒸发阶段占据的时间最长,约占整个焚烧实验时间2/3,是影响垃圾焚烧进程的重要因素,当料层温度上升至100℃以上,热解和燃烧区内物料温度梯度明显增大,温升速率迅速提高。床表面气体成分浓度模拟和实验结果对比表明:床层内物料燃烧产生气体总体变化趋势的模拟能够反映床层内物料燃烧过程,且O2和CO2模拟结果与实验值吻合较好。采用De’Soete提出的HCN衰减的总体反应机理可以较为准确的模拟固定床上垃圾焚烧过程中NO的生成,在不同一次风量下的模拟结果与实验结果吻合较好。NO主要来源于燃料型NO,垃圾中氮含量是影响NO生成的主要因素。
     本文的研究表明,通过实验研究能够更好地掌握和了解垃圾焚烧过程,并为改进垃圾焚烧数值模型和为层燃式垃圾焚烧工程应用提供依据;采用数学模型进行模拟计算,可以深入认识垃圾焚烧的过程,充分了解热量的传递过程,气体生成过程,也可以预测到垃圾焚烧的最高温度和垃圾焚烧过程的趋势。
Incineration of municipal solid waste (MSW) is one of the key areas in the global cleaner energy strategy. In order to realize non-hazardous treatment technology of MSW incineration, understanding the generation mechanism and controlling technology are very important during MSW non-hazardous treatment. In this paper, systemic simulation and experimental study on combustion process in a fixed bed are investigated, and the base is established on the study of combustion process in a fixed bed and reducing pollutants emission in MSW incineration. The experiment and simulation results provide direction for design and optimization of the moving grate of MSW.
     The thermal gravimetric experiments are done to analysis thermal decomposition and combustion characteristics of MSW. The components of pyrolysis gas production are tested with a Fourier Transform Infrared spectrometry (FTIR) to get the fixed quantify Curve of pyrolysis gas(CO2、CO、CH4) emission. The quality of pyrolysis gas is calculated by integral method. According to TG data, kinetics parameters E、A for combustion of MSW samples are calculated by Coats-Redfern method to get the apparent kinetics model for combustion of MSW.
     In order to reveal the features of the combustion process in the porous bed of waste incinerator, a fixed-bed experimental reactor is employed to reveal the combustion characteristics in simulated municipal solid waste (MSW) beds. Simulated municipal solid waste consists of vegetable, sand, and paper card, with the similar ash, moisture, fixed carbon contents as actual municipal solid waste in China. The reactor shown is a vertical cylindrical combustion chamber suspended from a weighing scale. The effects of primary air, primary air temperature and material characteristics on the burning process of simulated MSW are investigated. Temperature distributions, ignition front velocity, bed weight, characteristics of NO release are measured during the combustion process. At the same time, the combustion process of MSW and characteristics of NO release on the moving grate are studied and simulated by CFD codes. In this paper, one dimensional unsteady batch mathmetics model is also established to simulate combustion process in bed. The mass, momentum, energy conservation equations of two phases in the waste bed are proposed, and the models of moisture evaporation, volatile matter devolatilizaton, char combustion, NOx production and reduction and dioxin formation are simplified and established. Velocity, temperature and gas species distribution in the bed are obtained together with rates of moisture evaporation, volatiles devolatilization and carbon burnout and ignition front position.
     It is found that the average concentration of CO and the conversion ratio of C to CO are inversely proportional to primary air flow rate; the conversion ratio of N to NO rises as the primary air flow increases and reaches a peak point at the critical air flow rate, after that the conversion ratio of N to NO declines as the air flow further increases; with the increase of primary air temperature, the average concentration of CO and NO, but the highest concentration of NO changes hardly; the average emission concentration of CO and CO2 is inversely proportional to the moisture and the ash level in the fuel; the conversion ratio of N in MSW to NO and average emission concentration NO decrease with the increase of moisture content; with the increase of ash content, the average emission concentration of NO increases firstly, then decreases. At a certain moisture level, the average flame propagation speed and the burning rate increase as the airflow rate increases until a peak point is reached, beyond which further increase in the air flow results in a fall in the average flame propagation speed, but when the flame propagation speed decreases to a certain extent, it keeps constant; when primary air temperature is lower than 100°C, the average flame front increases only a little, but the flame front increases faster near the grate; the total mass loss rate and moisture evaporation rate increase only a little with the increase of primary air temperature; with the increase of moisture and ash content, the flame propagation speed and the burning rate decrease.
     The simulation results are compared with experimental data, which shows that the incineration process of waste in the fixed bed is reasonably simulated. During the middle of combustion period, bed-mass decreases linear, the front of flame propagates down at a steady velocity. Rate of moisture evaporation and devolatilation are steady at a constant. The simulation results of weight loss, flame front, solid maximum temperature in bed are accordant with experimental data well, which shows that waste burning rate is approximately constant in the middle of incineration process, and moisture evaporation occupies the dominant time fraction of overall incineration experiment. The residual char reacts with O2 slowly so that the crest of bed mass is level approximately. The simulation results are compared with experimental data, which shows that bed temperature versus time at different height from the grate in the fixed bed is reasonably simulated. The simulation can predict the trend about combustion, heat transfer in bed and the propagation of flame front. With heat transferring, fuel goes through the drying, pyrolysis, char combustion and burnout. The combustion process of municipal solid waste is simulated accurately by the model. Due to the high water content of fuel, moisture evaporation consumes a great deal of heat and evaporation takes up the mostly combustion time (about 2/3 of the whole combustion process) so that it has an important effect on the time of the combustion, and evaporation of moisture mainly occurs in the bed temperature below 100℃. The gradient of temperature is steep in the pyrolysis zone and a small thickness of pyrolysis front is found. The results of simulations and experiments are compared and analyzed, which shows that simulation and experiment can reflect the process of waste incineration in bed. At the same time, the simulating results of O2 and CO2 are accordant with experiment results. In the process of NO formation, only fuel NO is considered and modeled by overall reaction mechanism in which HCN is used as intermediate product, which is suggested by De’Soete. With different primary air, the simulating results of NO are accordant with experiment results. Fuel NO is main source of NO in MSW combustion,and the N content is the key to NO formation.
     Through this experimental investigation, the combustion process of simulated MSW in bed can be better understood and the experiment results can be used to amend the mathematics model and be consulted by the application in project. The results from modeling can show the combustion process, and make us deeply know how the heat transfers in the fuel, gas yields from fuel. At the same time, the simulation can predict the maximum temperature of waste incineration and the trend about combustion.
引文
1.环境卫生术语标准, CJJ65-1995
    2.王华著.二噁英零排放化城市生活垃圾焚烧技术[M].北京:冶金工业出版社, 2001: 1-3
    3. The World Bank. Waste management in China: issues and recommendations. Working Paper No. 9. Urban Development Working Papers. East Asia Infrastructure Department, May, Washington, DC, 2005
    4.张文杰.城市生活垃圾填埋场中水分运移规律研究.浙江大学博士学位论文, 2007: 1
    5.李瑜琴.我国城市垃圾处理研究.陕西师范大学学报(自然科学版), 2004, 32(2): 112-116
    6. H. Wang, Y. Nie. Municipal solid waste characteristics and management in China. Journal of the air&waste management, 2001, 51(3): 250-263
    7.张坤民,孙荣庆.中国环境污染治理投资现状与发展趋势分析.中国环境科学, 1999, 19(2): 97-101
    8.施阳.北京市垃圾问题的现状及对策.环境科学研究, 1998, 11(3): 40-41
    9.雷泽辉,肖文.珠江广州河段漂浮垃圾分布特点及治理策略.城市环境与城市生态, 1999, 12(2): 50-52
    10.廖利,全宏东,吴学龙,等.深圳盐田垃圾场对周围土壤污染状况分析.城市环境与城市生态, 1999, 12(3): 51-56
    11. C. Chris, Q. J. Charles, W. G. John, et al. The behaviour of selected heavy metals in MSW incineration ESP ash during roasting with chlorination agents. Journal of Hazardous Materials, 1996, 50(1): 1-13
    12.全浩,黄业茹.垃圾焚烧与二恶英.环境科学研究, 1998, 11(3): 8-10
    13.黄昌熊.城市垃圾处理:放错了地方的资源.中国环境科学, 2003, (8): 13-15
    14.王丰春,田新珊.城市垃圾处理方法综述.电力环境保护, 2003, 19(1): 46-48
    15. S. S. Chung, C. S. Poon. Evaluation Waste Management Alternatives by the Multiple Criteria Approach. Resource, Conservation and Recycling, 1998, 24: 33-50
    16.唐鸿寿,王如松.城市垃圾处理和管理.北京:气象出版社, 2002: 1-5
    17. S. Sakai, S. E. Sawell, A. J. Chandler, et al. World Trends in Municipal SolidWaste Management. Waste Management, 1996, 16(5-6): 341-350
    18.简文星.浅谈日本固体废弃物的管理及处置技术.环境科学动态, 2002, 15 (6): 1-5
    19.李晶,华珞,王学江.国内外城市生活垃圾处理的分析与比较.首都师范大学学报(自然科学版), 2004, 25(3): 73-80
    20.杨玉江,赵由才.生活垃圾填埋场垃圾腐殖质组成和变化规律的表征.环境科学学报, 2007, 27(1): 92-95
    21.宋国英,牛静波编译.国外城市固体废弃物的处理技术的进展.国外环境科学技术, 1993, 2: 53-57
    22. R. Fabry, J. C. Goudeau. Thermal conversion of biomass and waste by combustion and pyrolysis/gasification-CECDirectorate -General demonstration programme. GRASSI G. Biomass for Energy and Industry, 1987, 274-282
    23. S. Christopher, C. Avenell, S. D. Ignacio, et al. Solid Waste Pyrolysis in a Pilot Scale Batch Pyrolyser. Fuel, 1996, 37(5): 1167-1174
    24. A. M. Li, X. D. Li, S. Q. Li, et al. Experimental studies on municipal solid waste in a laboratory-scale rotary kiln. Energy, 1999, 24(3): 209-218
    25.李延吉,李爱民,李润东,等.有机固体废弃物在固定床内热解的实验研究.可再生能源, 2004, (3): 25-28
    26.宋玉银.城市固体废弃物的治理技术.环境科学技术, 1991, 4(2): 41-45
    27.蒋建国,王伟,李国鼎,等.重金属螯合剂处理焚烧飞灰的稳定化技术研究.环境科学, 1999, 20(3): 13-17
    28. S. V. Vassilev, C. Braekman-Danheux, P. Lauren. Characterization of refuse-derived char from municipal solid waste: 1. Phase-mineral and chemical composition. Fuel Processing Technology, 1999, 59(2-3): 95-134
    29.高亮,周立,吴树桐,等.赴欧洲垃圾焚烧厂考察报告.环境卫生工程, 2001, 9(2): 84-88
    30.生活垃圾焚烧处理工程技术规范. CJJ 90– 2002.
    31.姜凡,潘忠刚,江淑琴,等.城市固体废弃物的燃烧特性实验研究.热能动力工程, 2001, 16(91): 16-17
    32.李晓东,陆胜勇.中国部分城市生活垃圾热值的分析.中国环境科学, 2001, 21(2): 156-160
    33.杜军,王怀彬,金霄.国内外垃圾焚烧炉技术概述.工业锅炉, 2003, (5): 15-20
    34.范红途,徐通明.几种典型的垃圾焚烧炉的适应性分析.能源研究与利用, 2000, (3): 35~38
    35.张益,赵由才.生活垃圾焚烧技术.北京:化学工业出版社, 2000
    36.黄爱军,田洪海.城市生活垃圾焚烧处理初探.环境科学研究, 2000, 13(3): 27-30
    37.顾恬,曹汉鼎,胡兴胜.城市生活垃圾焚烧炉结构对燃烧的影响及结构选型的研究.动力工程, 2003, 23(1): 2185-2195
    38.杨佳珊.我国垃圾焚烧发电现状与焚烧炉的选择.可再生能源, 2004, (115): 59-64
    39.孙燕.几种垃圾焚烧炉及炉排的介绍.环境卫生工程, 2002, 10(2): 77-80
    40.冯立斌,张衍国,吴占松,等.城市生活垃圾焚烧中的气体污染与防治.环境保护, 1999, (2): 16-19
    41.李晓东,黄国权,李爱民,等.异重流化床垃圾焚烧技术的试验研究.动力工程, 1998, 18(6): 21-25
    42.盛宏至,黎军,魏小林,等.燃烧高水分低热值燃料的内循环流化床燃烧技术研究.燃烧科学与技术, 1997, 3(3): 309-315
    43.宋春财,胡浩权,朱盛维.生物质秸秆热重分析及几种动力学模型结果比较.燃料化学学报, 2003, 31(4): 311-315
    44.廖洪强,姚强.城市生活垃圾着火特性研究.燃烧科学与技术, 2002, 8(2): 274-282
    45.金保升,仲兆平,周山明.城市固体废物(MSW)热解特性及其动力学研究.工程热物理学报, 1999, 20(4): 510-514
    46.李新禹,张于峰,牛宝联,等.城市固体垃圾热解设备与特性研究.华中科技大学学报(自然科学版), 2007, 35(12): 99-102
    47.温俊明,金余其,池涌,等.复杂组分燃料的热重分析方法.动力工程, 2004, 24(6): 897-900
    48.闫涛,左禹,张衍国,等.生活垃圾焚烧特性实验研究.燃烧科学与技术, 2002, 8(6): 543-547
    49. H. Zhou, A. D. Jensen, P. Glarborg, et al. Numerical modeling of straw combustion in a fixed bed. Fuel, 2005, 84(4), 389-403
    50.姜凡,潘忠刚,江淑琴,等.城市固体废弃物的燃烧特性实验研究.热能动力工程, 2001, 16(2): 16-18
    51.姜凡,潘忠刚,矫维红,等.混合垃圾焚烧特性的实验研究.动力工程, 2003,23(3): 2439-2443
    52.姜凡.城市生活垃圾焚烧特性的实验研究.北京:中国科学院工程热物理研究所, 2000
    53. A. Erguedenler, A. E. Ghaly. A comparative study on the thermal decomposition of four cereal straws in an oxidizing atmosphere. Bioresource Technology, 1994, 50(3): 201-208
    54. A. Sharma, T. R. Rao. Kinetics of pyrolysis of rice husk. Bioresource Technology, 1999, 67(1): 53-59
    55.文丽华,王树荣,施海云,等.木材热解特性和动力学研究.消防科学与技术. 2004, 23(1): 2-5
    56.文丽华,王树荣,骆仲泱,等.生物质的多组分热裂解动力学模型.浙江大学学报, 2004, (2): 247-253
    57.马晓茜,卢苇,张笑冰,等.垃圾焚烧炉热力模型研究.化学工程, 2000, 28(4): 36-40
    58.张风坡.城市垃圾清洁焚烧过程数值模拟研究.哈尔滨工程大学工学硕士学士论文, 2005, 2: 11-14
    59. H. Frey, B. Peters, H. Hunsinger, et al. Characterization of municipal solid waste combustion in a grate furnace. Waste Management, 2003, 23(8): 689-701
    60. Y. B. Yang, Y. R. Goh, R. Zakaria, et al. Mathematical modeling of MSW incineration on a traveling bed. Waste Management, 2002, 22(4): 369-380
    61. D. Shin, S. Choi. The combustion of simulated waste particles in a fixed bed. Combustion and Flame, 2000, 121(1-2): 167-180
    62. Y. B. Yang, V. N. Sharifi, J. Swithenbank. Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds. Fuel, 2004, 83(11-12): 1553-1562
    63. Y. B. Yang, H. Yamauchi, V. Nasserzadeh, et al. Effects of fuel devolatilisation on the combustion of wood chips andincineration of simulated municipal solid wastes in a packed bed. Fuel, 2003, 82(18): 2205-2221
    64. C. Ryu, D. Shin, S. Choi. Effect of fuel layer mixing in the waste bed combustion. Advances in Environmental Research, 2001, 5(3): 259-267
    65. J. J. Saastanainen, R. Taipale, M. Horttanainen, et al. Propagation of the ignition front in beds of wood particles. Combustion and Flame, 2000, 123(1-2): 214-226
    66. Y. R. Goh, R. G. Siddall, V. Nasserzadeh, et al. Mathematical modeling of thewaste incinerator burning bed. J Inst Energy, 1998, 71: 110-118
    67. Y. R .Goh, C. N. Lim, K.H. Chan, et al. Mixing, modelling and measurements of incinerator bed combustion. The Second International Symposium on Incineration and Flue Gas Treatment Technology, 1999: 4-6
    68. R. Zakaria, Y. R. Goh, Y. B. Yang, et al. Reduction of NOx emission from the burning bed in a municipal solid waste incinerator. The Fifth European Conference on Industrial Furnaces and Boilers, Espinho-Porto-Portugal, 2000: 11-14
    69. M. R?nnb?ck, M. Axell, L. Gustavsson. Combustion processes in a biomass fuel bed–experimental results. Progree in Thermochemical Conversion, Tyrol, Austria, 2000, 17-22
    70. V. N. Sharifi. Optimization study of incineration in a MSW incinerator with a vertical radiation Shaft. Phd Thesis, 1990
    71. H. Thunman, L-E. Amand, F. Ghirelli, et al. Modelling and verifying experiments on the whole furnace principles and models of solid fuel combustion. Chalmers University of Technology, 2001
    72.吕亮,丁艳军,朱琳,等.城市生活垃圾焚烧炉的建模.清华大学学报(自然科学版), 2006, 46(11): 1884-1887
    73. T. Henrik, B. Leckner. Influence of Size and Density of Fuel on Combustion in a Packed Bed. Proceedings of the Combustion Institute, 2005, 30(2): 2939-2946
    74.何育恒.燃烧油、木屑、木粉绿色新型锅炉的开发设计.工业锅炉, 2001, (3): 20-23
    75. K. Olie, P. Vermeulen, O. Hutzinger. Chlorodibenzo-p-dioxins and chlorodibenzofurans are trance compounds of fly ash and flue gas of some municipal incinerators in the netherlands. Chemosphere, Incinerators in the Netherlands. Chemosphere, 1977, 6(8): 445-459
    76. R. Gort. On the propagation of a reaction front in a packed bed: Thermal conversion of municipal solid waste and biomass. Thesis, Universiteit Twente, the Netherlands, 1995
    77. X. Zhou, J. L. Torero, J. C. Goudeau, et al. On the propagation of a reaction front through a porous fuel in the presence of an opposed forced flow - Application to mixtures characteristic of municipal waste. Combustion Science and Technology, 1995, 111: 123-146
    78. H. Zhou, A. D. Jensen, P. Glarborg, et al. Formation and reduction of nitric oxide in fixed-bed combustion of straw. Fuel, 2006, 85(5-6): 705-716
    79. R. P. Van der Lans, L. T. Pedersen, A. Jensen et al. Modeling and experiments of straw combustion in a grate furnace. Biomass and Bioenergy, 2000, 19(3): 199-208
    80. J. Fjellerup, U. Henriksen, A. D. Jensen, et al. Heat transfer in a fixed bed of straw char. Energy&Fuels, 2003, 17: 1251-1258
    81. S. K. K?r. Numerical modelling of a straw-fired grate boiler. Fuel, 2004, 83(9): 1183-1190
    82. B. Peters, C. Bruch. A flexible and stable numerical method for simulating the thermal decomposition of wood particles. Chemosphere, 2001, 42: 481-490
    83. B. peters. Measurements and application of a discrete particle model(DPM) to simulate combustion of a packed bed of individual fuel particles. Combustion and Flame. 2002, 131: 132-146
    84. M. Beckmann, R. Scholz. Simplified mathematical model of combustion in stoker systems, Proceeding of the 3rd European Conference on Industrial Furnaces and Boilers, Lisbon, 1995: 61-70
    85. S. C. Hill, L. D. Smoot. Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science, 2000, 26(4): 417-458
    86.梁红英,黄国强,姜斌.燃烧过程氮氧化物系统中反应和传递模型研究进展.环境保护科学, 2006, 32(3): 1-3
    87.周力行. NOX生成湍流反应率数值模拟的进展.力学进展, 2000, 30(1): 77-82
    88. J. X. Zhao, Y. B. Lei, F. L. Zhou. Three-dimensional gas turbine combustor performance modeling. Transactions of Nanjing University of Aeronautics and Astronautics, 2002, 19(1): 65-70
    89.张颉. Numerical Study of combustion and NO emission characteristic in swirling fired pulverized coal boilers.哈尔滨工业大学工学硕士学位论文, 2003, 7: 7-12
    90. L. X. Zhou, Y. Li. Simulation of swirling gas-particle flows using a DSM-PDF turbulence models. Powder Technology, 2000, 113: 70-79
    91.汪正范著.色谱定性与定量.化学工业出版社, 2000
    92.金余其,严建华.中国城市生活垃圾焚烧的特性.环境科学, 2002, 23(3):107-110
    93.李晓东,陆胜勇.中国部分城市生活垃圾热值的分析.中国环境科学, 2001, 21(2): 156-160
    94.李东,顾恒岳.重庆市主城区城市生活垃圾现状调查及分析.重庆环境科学, 2001, 23(1): 68-70
    95. W. Zhao, Z. Li, D. Wang, et al. Combustion characteristics of different parts of corn straw and NO formation in a fixed bed. Bioresource Technology, 2008, 99(15): 7238-7246
    96. J. E. L. Rogers, A. F. Sarofim, J. B. Howard, et al. Combustion characteristics of simulated and shredded refuse. In: Fifteenth Symposium (International) on Combustion, Combustion Institute, Pittsburg, 1975: 1137-1148
    97. L. Liang, R. Sun, J. Fei, et al. Experimental Study on Effects of Moisture Content on Combustion Characteristics of Simulated Municipal Solid Wastes in a Fixed Bed. Bioresource Technology, 2008, 99(15): 7238-7246
    98. G. G. De Soete. Overall reaction rates of NO and N2 formation from fuel nitrogen. In: Fifteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh PA, 1975: 1093-1102
    99.李余增.热分析.清华大学出版社, 1987
    100.陈镜泓,李传儒.热分析及其应用.科学出版社, 1985
    101.谢克昌,刘生玉.热解/红外光谱联用技术.分析化学, 2003, (4): 501-504
    102.王淑勤,肖乐勤.热重分析曲线影响因素的研究与探索.河北化工, 2005, 4: 78-79
    103.朱群益.煤粉热解的热天平通用模型研究.哈尔滨工业大学工学博士论文, 1996: 12-19
    104.K. Raveendran, A. Ganesh, C. Kartic. Pyrolysis Characteristics of Biomass And Biomass Components. Fuel, 1996, 75(8): 987-998
    105.宋春财,胡浩权.秸秆及其主要组分的催化热解及动力学研究.煤炭转化, 2003, (3): 91-97
    106.杨昌炎,丁一刚,刘生鹏.麦秸快速热解的试验研究.化学与生物工程, 2005, (8): 17-19
    107.王树荣.半纤维素模化物热裂解动力学研究.燃烧科学与技术, 2006, (2): 13-17
    108.谭洪,王树荣,骆仲泱.生物质三组分热裂解行为的对比研究.燃料化学学报, 2006, (1): 69-73
    109.宿凤明.生物质旋风空气气化的试验研究.哈尔滨工业大学工学博士论文, 2007: 31-33
    110.温俊明.城市生活垃圾热解特性试验研究及预测模型.浙江大学博士学位论文, 2007: 72-75
    111.陈祎,段佳,林鹏,等.氧量对典型生物质燃烧特性的影响.中国电机工程学报, 2008, 28(2): 43-48
    112.严传俊,范玮.燃烧学.西北工业大学出版社, 133
    113.C. H. Li. An Integral Approximation formula for kinetic analysis of nonisothermal TGA data. AIChE Journal. 1985, 31(6): 1036-1038
    114.张晓东,许敏,孙荣峰,等.玉米秸热解动力学研究.燃料化学学报. 2006,(1): 123-125
    115.K. Raveendran, A. Ganesh, C. Kartic. Pyrolysis characteristics of biomass and biomass components. Fuel, 1996, 75(8): 987-998
    116.翁诗甫.傅里叶变换红外光谱仪.化学工业出版社, 2005: 115-120
    117.A. M. Kanury. Thermal decomposition kinetics of wood. Combustion and Flame. 1972, (18): 75-83
    118.赵明,吴文权,卢玫.稻秆的热解动力学研究.农业工程学报, 2002, (1): 107-110
    119.柯以侃,董慧茹.分析化学手册第三分册.化学工业出版社, 1998: 46-51
    120.F. Juan, G. Jose, M. Encinar. Pyrolysis of cherry stones: Energy uses of the different fractions and kinetic study. Journal of Analytical and Applied Pyrolysis, 2003(67): 165-190
    121.S. Li, J. L. Hart, J. Banyasz, et al. Real-time evolved gas analysis by FTIR method: An experimental study of cellulose pyrolysis. Fuel, 2001, 80: 1809-1817
    122.郑赟.基于组分分析的生物质热裂解动力学机理研究.浙江大学硕士学位论文, 2006: 72-75
    123.Y. R. Goh, Y. B. Yang, Zakaria R, et al. Development of incinerator bed model for municipal solid waste incineration. Combust. Sci. and Tech, 2001, 162 (1): 37-58
    124.L. D. Smoot, P. J. Smith. Coal combustion and gasification. New York: Plenum Press, 1985
    125.R. Changkook, B. Y. Yao, K. Adela, et al. Effect of fuel properties on biomass combustion: Part I. experiments-fuel type, equivalence ratio and particle size. Fuel, 2006, 85(7-8): 1039-1046
    126.M. L. Hobbs, P. T. Radulovic. L. D. Smoot. Combustion and gasification of coals in fixed-beds. Prog. Energy Combust. Sci., 1993, 19 (6): 505-586
    127.徐旭常,毛健雄,曾瑞良,等.燃烧理论与燃烧设备.北京:机械工业出版社, 1990
    128.张晓杰,孔宪文,纪宏舜.国内现有垃圾焚烧炉简介.东北电力技术, 2000, (4): 49-52
    129.H. Huang, A. Buekens. On the mechanisms of dioxin formation in combustion processes. Chemosphere, 1995, 31(9): 4099-4117
    130.H. Fiedler, O. Hutzinger, C. Laua, et al. Case study of a highly dioxin contaminated sports field: Environmental risk assessment and human exposure. Journal of Hazardous Materials, 1995, 43: 217-227
    131.V. I. Babushok, W. Tsang. Gas-phase mechanism for dioxin formation, Chemosphere, 2003, 51(10): 1023-1029
    132.M. Kato, K. Urano. Convenient substitute indices to toxic equivalent quantity for controlling and monitoring dioxins in stack gas from waste incineration facilities, Waste Management, 2000, 21(1): 55-62
    133.B. R. Stanmore. Modeling the formation of PCDD/F in solid waste incinerators. Chemosphere, 2002, 47(6): 565-573

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700