离心泵启动过程瞬态流动的数值模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心泵启动过程是一类特殊的瞬态过程,利用离心泵的启动可为特殊的应用场合提供瞬时流体动力;同时大功率泵在启动过程中的瞬时特性可能引起设备和管道系统的冲击破坏或过大的负载。目前对离心泵启动过程的内部瞬态流动缺乏系统的研究,如何实现对离心泵启动过程的性能预测、优化和流动控制是一个重要课题。
     本文以处在启动过程中的离心泵为研究对象,针对离心泵在启动过程中表现出的特殊瞬态水力性能,建立离心泵启动过程瞬态流动的数值模拟与诊断方法,建立离心泵性能测试实验系统,分别从数值模拟和实验研究的角度探索引起外部非定常效应的内部流动机理。论文的主要内容包括以下五个方面:
     第一,为验证基于动网格的有限体积法在求解边界移动引起的非定常流动时的有效性和准确性,对圆柱瞬时平动和旋转平动启动引起的二维非定常不可压黏性流动进行了数值模拟,采用弹簧近似模型和网格重构相结合的方法实现该过程的流场变形。模拟结果与已有的实验和数值结果从定性和定量上均吻合较好,证明该方法在求解边界移动引起的非定常流动时的有效性。
     第二,针对单独采用动网格方法模拟叶轮加速启动所引起的网格更新质量下降的问题,提出采用区域动态滑移方法保证叶轮启动过程网格的更新质量,成功的将动网格方法推广应用到离心泵二维和三维模型启动过程的瞬态流动求解。同时,为消除启动过程外部指定非定常进出口边界条件所引起的误差,提出建立离心泵循环管路系统的三维数值模型,通过数值求解的自身耦合性实现了无需指定边界条件即可准确求解启动过程的瞬态流动。
     第三,建立离心泵瞬态性能测试实验台,该实验台由动力蓄能装置、模型泵、管路系统、数据采集和电气控制系统五部分组成。对泵启动过程的外特性,如瞬时流量、扬程、转速和轴扭矩的变化进行测试和采集;采用PIV内流测量方法对稳态和瞬态内流场进行拍摄,得到与外特性相对应的稳态和瞬态的速度矢量场,为探索离心泵启动过程瞬态流动机理提供真实的参考依据。
     第四,建立与该实验台等效的离心泵循环管路系统三维数值模型,在与启动实验同等边界条件下,求解该数值模型内部瞬态流动。将实验所得结果与数值模拟结果进行对比研究,两者同时在瞬态外特性和内特性上吻合较好。
     第五,基于瞬态流动的数值计算结果,采用过流断面和边界涡量流两种涡动力学诊断方法对离心泵启动过程的内部瞬态流动进行诊断。
     研究结果显示,泵启动过程无量纲扬程偏离稳态值的外部原因是启动加速度的变化形式,内部原因是水流惯性和瞬时流场结构的不断演化。启动初期瞬时外特性主要表现为低流量下瞬时转速、扬程和功率的快速上升,瞬时无量纲扬程从无穷大快速下降至低于稳态水平;启动中期流量快速增长,引起瞬时功率的增长率高于瞬时扬程;启动后期启动加速度降为零,转速达到稳定值,流量增长减缓,瞬时扬程和功率经过波动冲击达到稳态水平。启动全过程瞬时流量表现出三次曲线的增长特性。阀门全关启动时的电机功率将表现出明显的瞬时冲击。
     启动过程内部流动演化呈现强烈的瞬态特性,采用基于准稳态假设的思想对应用于启动过程的离心泵进行设计是不适合的。本文的研究内容和结论可为应用于各种瞬态过程的水力机械瞬时性能预测、设计优化与流动控制提供参考依据。
The startup process of a centrifugal pump is a special type of transient process. The centrifugal pump during starting period can be used to supply instantaneous hydraulic power in some special application areas, while instantaneous performances of high-power pumps during starting period may lead to excessive loads or impact failures of facitilies and piping systems. Due to the lack of systematic study on the transient flow in a centrifugal pump during starting period at present, how to achieve methods of performance prediction, design optimization and flow control of the centrifugal pump during starting period is an important issue.
     Taking the centrifugal pump during starting period as the research object of this dissertation, in view of the special transient hydraulic performance casued by the pump's startup process, the methods of numerical simulations and diagnostics on the unsteady flow in the centrifugal pump during startup process were established. A centrifugal pump performance test rig was developed. Numerical simulations and experimental studies were combined to explore the internal transient fluid flow mechanism which is the direct reason for the external transient effects. The major contents of the current dissertation consist of the following five aspects:
     First, in order to validate the effectiveness and accuracy of the dynamic mesh based finite volume method in solving the unsteady flow caused by the moving boundary, numerical simulations on the two-dimensional unsteady incompressible viscous flow caused by a circular impulsively started into translation and rotary translation were performed. Spring analogy combined with remeshing method was employed to realize the deformation of the computational domain. Numerical results are compared well with the experimental and numerical results in literature both qualitatively and quantitatively. The dynamic mesh based finite volume method is proved to be feasible in solving the unsteady flow caused by the boundary motion.
     Second, according to the problem that using dynamic mesh method alone to deal with the changing of fluid domain due to the accelerated impeller may lead to the deterioration of the updating mesh quality, the dynamic slip region (DSR) method was put forward to guarantee the updating mesh quality. The DSR method was successively applied to solve the two-dimensional and three-dimensional transient flows in the centrifugal pump during starting period. Furthermore, to eliminate the errors introduced by externally prescribed unsteady inlet and outlet boundary conditions during starting period, the three-dimensional cycling pipe system along with the whole pump model was set up, and then the transient flow was solved exactly via numerical self-coupling computation process without specifying any boundary conditions.
     Third, a centrifugal pump performance test rig was originally designed and built up. The rig was composed of power storage device, pump, piping system, data acquisition and electric control system. Instantaneous explicit characteristics such as flow rate, head, rotational speed and shaft torque of the pump during starting period were tested and collected experimentally. Particle image velocimetry (PIV) technique was employed to record the two-dimensional instantaneous flow field. Evolutions of the velocity vector field corresponding with the explicit performance under same condition were given. The experimental results can served as the realistic references in exploring the transient flow mechanism during starting period.
     Fourth, three-dimensional numerical model of cycling pipe and pump system equivalent with the real test rig was established. The transient flow in the numerical system model was solved under the experimental rotational speed history. Comparisons of the explicit and internal results between numerical simulation and experiment were satisfactory.
     Fifth, based on the numerical calculation results of the transient flow, unsteady vortex dynamics diagnostics on the pump were performed by analyzing the total pressure flux distribution in the flow cross section and the axial component of boundary vortex flux on the blade surface.
     Research results indicate that, during starting period, the explicit factor of unsteady non-dimensional head deviation from the steady-state level is the form of start acceleration, while the fluid inertial and evolution of flow structure are the internal factor. Transient characteristics in the early stage of the starting period show rapid rises of rotational speed, head and power with low flow rate, non-dimensional head suddenly falls below the steady-state level from infinity; in the mid-stage flow rate rises rapidly, lead to the increase rate of power exceeds that of head; in the later stage, start acceleration abruptly decreases to zero, rotational speed turns to stable, the increase of flow rate slowdowns, head and power come to the steady-state level after fluctuation and impact. During the whole process of the starting period, the flow rate-time curve shows like cubic trait. The motor power shows clear instantaneous impact when the valve was completely closed.
     The evolutions of the internal flow field present strong transient effects. That applying the quasi-steady assumption to the design of a centrifugal pump used in the startup process is not appropriate. The content and conclusions of the current dissertation can provide references for the performance prediction, design optimization and fluid control of the hydraulic machinery used in a variety of transient process.
引文
[1]E.B.Wylie and V.L.Streeter.Fluid transients[M].New York:McGraw-Hill,1978.
    [2]C.P.Kittredge and N.J.Princeton.Hydraulic transients in centrifugal pump systems[J].Transactions of the ASME,1956,78:1307-1322.
    [3]郑铭,陈池,袁寿其.水锤数值计算的全特性曲线法[J].农业机械学报,2000,31(5):41-44.
    [4]苏锋杰,刘志勇.沿江取水泵站启动水锤分析[J].机电设备,2002,1:26-30.
    [5]H.E.Emara-Shabaik,Y.A.Khulief and I.Hussaini.Simulation of transient flow in pipelines for computer-based operations monitoring[J].International Journal for Numerical Methods in Fluids,2004,44:257-275.
    [6]刘梅清,邱锦春,周龙才,杨文容.泵管渠池复杂抽水系统的过渡过程计算[J].武汉大学学报(工学版),2003,36(4):6-9.
    [7]刘梅清,刘光临,冯卫民,冯贤华,吴遵雄.大型泵站水力过渡过程计算及蓄能式液压启闭阀门的研究[J].农业机械学报,2000,31(3):55-58.
    [8]阎庆绂,马素霞,李欣.输水系统中泵组瞬变工况及其影响[J].农业机械学报,2001,17(3):49-52.
    [9]常近时.水力机械过渡过程[M].北京:机械工业出版社,1991.
    [10]王乐勤,吴大转,胡征宇,郑水英.基于键合图法的叶片泵启动特性仿真[J].工程热物理学报,2004,25(3):417-420.
    [11]吴大转,王乐勤,胡征宇.离心泵快速启动过程瞬态水力特性的数值模拟[J].浙江大学学报(工学版),2005,39(9):1427-1430,1454.
    [12]丁峰,彭永臻,杜红,于德爽,陈韬.泵系统瞬变过程中断流形态与断流空腔的波动分析[J].哈尔滨建筑大学学报,2001,34(4):40-44.
    [13]傅天清,刘云芳,阎庆绂.带负荷启动工况下泵系统的瞬变特性研究[J].太原理工大学学报,2003,34(4):443-446.
    [14]姜任秋.热传导、质扩散与动量传递中的瞬态冲击效应[M].北京:科学出版社,1997.
    [15]H.Tsukamoto and H.Ohashi.Transient characteristics of a centrifugal pump during starting period [J].ASME Journal of Fluid Engineering,1982,104(1):6-13.
    [16]H.Tsukamoto,S.Matsunaga and H.Yoneda.Transient characteristics of a centrifugal pump during stopping period[J].ASME Journal of Fluids Engineering,1986,108(4):392-399.
    [17]P.J.Lefebvre and W.P.Barker.Centrifugal pump performance during transient operation[J]. ASME Journal of Fluid Engineering,1995,117(2):123-128.
    [18]K.Farhadi,A.Bousbia-salah and F.D'Auria.A model for the analysis of pump start-up transients in Tehran Research Reactor[J].Progress in Nuclear Energy,2007,49:499-510.
    [19]P.Thanapandi and R.Prasad.Centrifugal pump transient characteristics and analysis using the method of characteristics[J].International Journal of Mechanical Sciences,1995,37(1):77-89.
    [20]丁福光,刘宏春.离心泵动态建模在泵启动过程中的应用[J].佳木斯大学学报(自然科学版),2004,22(3):307-311.
    [21]王乐勤,吴大转.混流泵管路负载快速变化过程瞬态特性的试验研究[J].通用机械,2003,2:65-68.
    [22]王乐勤,吴大转,郑水英.混流泵瞬态水力性能试验研究[J].流体机械,2003,31(1):1-3,6.
    [23]王乐勤,吴大转,郑水英.混流泵开机过程瞬态水力性能的数值计算[J].流体机械,2004,32(1):10-13.
    [24]王乐勤,吴大转,郑水英,胡征宇.混流泵开机瞬态水力特性的试验与数值计算[J].浙江大学学报(工学版),2004,38(6):751-755.
    [25]吴大转.特种离心式水泵快速启动过程瞬态特性的研究[D].博士学位论文,浙江大学,2004.
    [26]吴大转,王乐勤,胡征宇.离心泵快速启动过程外部特性的试验研究[J].工程热物理学报,2006,27(1):68-70.
    [27]胡征宇,吴大转,王乐勤.离心泵快速启动过程的瞬态水力特性--外特性研究[J].浙江大学学报(工学版),2005,39(5):605-608,622.
    [28]张树生,吴大转.混流泵启动过程汽蚀性能的试验研究[J].流体机械,2005,33(1):1-3,10.
    [29]吴大转,王乐勤.高速混流泵汽蚀特性与汽蚀性能改善方法[J].农业机械学报,2006,37(9):93-96.
    [30]A.Goto and M.Zangeneh.Hydrodynamic design of pump diffuser using inverse design method and CFD[J].ASME Journal of Fluids Engineering,2002,124(2):319-328.
    [31]A.Goto,M.Nohmi,T.Sakurai and Y.Sogawa.Hydrodynamic design system for pumps based on 3-D CAD,CFD,and inverse design method[J].ASME Journal of Fluids Engineering,2002,124(2):329-335.
    [32]J.C.Wu,K.Shimmei,K.Tani,K.Niikura and J.Sato.CFD-based design optimization for hydro turbines[J].ASME Journal of Fluids Engineering,2007,129(2):159-168.
    [33]马雷.边界层理论在低比转速离心泵叶片设计中的应用[D].硕士学位论文,兰州理工大学, 2005.
    [34]R.K.Byskov,C.B.Jacobsen and N.Pedersen.Flow in a centrifugal pump impeller at design and off-design conditions--part Ⅰ:Particle Image Velocimetry(PIV) and Laser Doppler Velocimetry (LDV) measurements[J].Journal of Fluids Engineering,2003,125(1):61-72.
    [35]R.K.Byskov,C.B.Jacobsen and N.Pedersen.Flow in a centrifugal pump impeller at design and off-design conditions--part Ⅱ:large eddy simulations[J].Journal of Fluids Engineering,2003,125(1):73-83.
    [36]B.P.M V.Esch.Simulation of three-dimensional unsteady flow in hydraulic pumps[D].PhD Thesis,University of Twente,Enschede.1997.
    [37]H.Wang and H.Tsukamoto.Experimental and numerical study of unsteady flow in a diffuser pump at off-design conditions[J].Journal of Fluids Engineering,2003,125(5):767-778.
    [38]李海锋,穆忠波,吴玉林.半开式离心泵叶轮内三维紊流的数值模拟[J].水泵技术,2001,1:9-15
    [39]李海锋,吴玉林,赵志妹.利用三维紊流数值模拟进行离心叶轮设计比较[J].流体机械,2001,29(9):18-21.
    [40]杨策,蒋滋康,叶小明.时间推进法求解叶轮机械内不可压流动[J].推进技术,1999,20(6):66-69.
    [41]谈明高,刘厚林,吴贤芳.基于FLUENT的离心泵水力性能预测技术[J].排灌机械,2008,26(3):22-25.
    [42]包海涛.基于Fluent液压阀流场的动态仿真及可视化研究[J].机械制造与机床,2008,2:53-55.
    [43]马艺,金有海,王振波.FLUENT软件在液-液旋流器中的应用[J].过滤与分离,2008,18(2):42-48.
    [44]栾春华,王晓静.基于FLUENT的混流式风机整机流场数值模拟[J].机械设计与制造,2008,2:178-179.
    [45]陈景秋,胡韩飞,张永祥.Star-cd对汽车外流场的三维数值模拟[J].重庆大学学报(自然科学版),2005,28(4):99-101,109.
    [46]谭凤娟,徐小华,聂来聪.燃气燃烧器的CFX仿真[J].现代制造技术与装备,2008,183(2):66-67.
    [47]梁海顺,杨昆,王贯超,高超,陈赞.基于NUMECA技术的喷气织机主喷嘴内部流场数值模 拟[J].纺织器材,2008,35(3):152-156.
    [48]S.Kocabiyik.An accelerated flow around a sphere[J].Applied Mathematics Letters,1996,9(3):41-46.
    [49]R.Bouard and M.Coutanceau.The early stage of development of the wake behind an impulsively started cylinder for 40<Re<10~4[J].Journal of Fluid Mechanics,1980,101(3):583-607.
    [50]M.Coutanceau and C.Menard.Influence of rotation on the near-wake development behind an impulsively started circular cylinder[J].Journal of Fluid Mechanics,1985,158:399-446.
    [51]H.M.Badr and S.C.R.Dennis.Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder[J].Journal of Fluid Mechanics,1985,158:447-488.
    [52]Y.V.S.S.Sanyasiraju and V.Manjula.Flow past an impulsively started circular cylinder using a higher-order semicompact scheme[J].Physical review E,2005,72(1):016709.
    [53]Y.M.Chen,Y.R.Ou and A.J.Pearlstein.Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion[J].Journal of Fluid Mechanics,1993,253:449-484.
    [54]J.Soria,T.H.New,T.T.Lim and K.Parker.Multigrid CCDPIV measurements of accelerated flow past an airfoil at an angle of attack of 30°[J].Experimental Thermal and Fluid Science,2003,27(4):667-676.
    [55]吴大转,焦磊,王乐勤.绕翼型加速流动的数值模拟-加速度的影响[J].工程热物理学报,2006,27(3):423-425.
    [56]史忠军,徐敏,陈士橹.动网格生成技术[J].空军工程大学学报,2003,4(1):61-64.
    [57]张玉东,纪楚群.包含动边界的非定常流场动网格数值模拟[J].计算物理,2006,23(2):165-170.
    [58]张军,谭俊杰,耿继辉.HLLC方法在二维非结构动网格上的应用[J].南京理工大学学报,2003,27(6):678-681.
    [59]郭正,刘君,瞿章华.非结构动网格在三维可动边界问题中的应用[J].力学学报,2003,35(2):140-146.
    [60]郭正,瞿章华,刘君.用非结构动网格技术计算确定再入飞行器配平攻角[J].空气动力学学报,2004,22(3):255-258.
    [61]王巍,刘君,郭正.子母弹抛壳过程非定常流动的数值模拟[J].空气动力学学报,2006,24(3):285-288.
    [62]傅德彬,姜毅.用动网格方法模拟导弹发射过程中的燃气射流流场[J].宇航学报,2007,28(2):423-426.
    [63]夏全新,鲁传敬,吴磊.鱼类波状摆动推进的数值模拟[J].水动力学研究与进展,2005,20(增刊):921-928.
    [64]张晓庆,王志东,张振山.二维摆动水翼仿生推进水动力性能研究[J].水动力学研究与进展,2006,21(5):632-639.
    [65]洪亮,周志勇,洪芳文,徐秉汉.动网格技术在桥梁断面振动绕流问题中的应用[J].水动力学研究与进展,2007,22(2):237-241.
    [66]I.Demirdzic and M.Peric.Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries[J].International Journal for Numerical Methods in Fluids,1990,10(7):771-790.
    [67]B.Koobus and C.Farhat.Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes[J].Computer Methods in Applied Mechanics and Engineering,1999,170:103-129.
    [68]李志峰,吴大转,王乐勤.基于动网格方法的圆柱启动瞬态流动数值模拟[J].浙江大学学报(工学版),2008,42(2):264-268.
    [69]L.Q.Wang,Z.F.Li and D.Z.Wu.Transient flow past an impulsively started rotating and translating circular cylinder using dynamic mesh method[J].International Journal of Computational Fluid Dynamics,2007,21(3-4):127-135.
    [70]李志峰,吴大转,王乐勤.圆柱和直浆叶突然启动瞬态流动的数值研究[J].工程热物理学报,2007,28(6):945-947.
    [71]王乐勤,李志峰,戴维平,吴大转.离心泵启动过程内部瞬态流动的二维数值模拟[J].工程热物理学报,2008,29(8):1319-1322.
    [72]吴大转,许斌杰,李志峰,王乐勤.离心泵瞬态操作条件下内部流动的数值模拟和性能预测[J].工程热物理学报,2009,30(5):781-783.
    [73]S.Hanchi,R.Askovic and L.T.Phuoc.Numerical simulation of a flow around an impulsively started radially deforming circular cylinder[J].International Journal for Numerical Methods in Fluids,1999,29:555-573.
    [74]A.K.Slone,K.Pericleous,C.Bailey and M.Cross.Dynamic fluid-structure interaction using finite volume unstructured mesh procedures[J].Computers and Structures,2002,80(5-6):371-390.
    [75]G.D.Smith.Numerical solutions of partial differential equations(finite difference method).3~(rd) ed [M].Oxford:Clarendon Press,1985.
    [76]D.X.Fu and Y.W.Ma.A high order accurate difference scheme for complex flow fields.Journal of Computational Physics,1997,134:1-15.
    [77]Y.V.S.S.Sanyasiraju and V.Manjula.Flow past an impulsively started circular cylinder using a higher-order semicompact scheme[J].Physical Review E,2005,72(1):016709.
    [78]刘西云,赵润祥.流体力学中的有限元法与边界元法[M].上海:上海交通大学出版社,1993.
    [79]李志峰,吴大转,王乐勤.溶液罐封头偏置接管应力有限元分析[J].化工机械,2006,33(3):163-166.
    [80]M.F.Hsieh,D.G.Moffat and J.Mistry.Nozzles in the knuckle region of a torispherical head limit load interaction under combined pressure and piping loads[J].International Journal of Pressure Vessels and Piping,2000,77:807-815.
    [81]S.V.Patankar.Numerical heat transfer and fluid flow[M].New York:McGraw-Hill,1980(中文译本:张政译 蒋章焰校.传热与流体流动的数值计算[M].北京:科学出版社,1989).
    [82]B.P.Leonard.A stable and accurate convective modelling procedure based on quadratic upstream interpolation[J].Computer Methods in Applied Mechanics and Engineering,1979,19:59-98.
    [83]D.M.Manole and J.L.Lage.Nonuniform grid accuracy test applied to the natural convection flow within a porous medium cavity[J].Numerical Heat Transfer.Part B,1993,23:351-368.
    [84]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
    [85]C.M.Rhie and W.L.Chow.A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation[J].AIAA Journal,1983,21:1525-1552.
    [86]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [87]G.L.Brown and A.Roshko.On density effects and large structure in turbulent mixing layers[J].Journal of Fluid Mechanics,1974,64:775-816.
    [88]罗坤.气固两相自由剪切流动的直接数值模拟和实验研究[D].博士学位论文,浙江大学,2005.
    [89]J.Kim,P.Moin and R.D.Moser.Turbulence statistics in fully-developed channel flow at low Reynolds number[J].Journal of Fluid Mechanics.1987,177:133-166.
    [90]H.Le,P.Moin and J.Kim.Direct numerical simulation of turbulent flow over a backward-facing step[J].Journal of Fluid Mechanics,1997,330:349-374.
    [91]邓岗,许春晓.弯槽湍流的直接数值模拟[J].水动力学研究与进展A辑,2002,17(3):311-317.
    [92]C.J.Chen and S.Y.Jaw.Fundamentals of turbulence modeling[M].Washington DC:Taylor &Francis,1998.
    [93]周凌九,胡德义,王正伟.可实现性k-ε模型在水轮机流场计算中的应用[J].水动力学研究与进展A辑,2003,18(1):68-72.
    [94]郭尚群,赵坚行.RNG k-ε模型数值模拟油雾燃烧流场[J].航空动力学报,2005,20(5):807-812.
    [95]M.Lesieur,O.Metais and P.Comte.Large-Eddy Simulations of Turbulence[M].Cambridge:Cambridge University Press,2005.
    [96]J.Smagorinsky.General circulation experiments with the primitive equations,I.The basic experiment[J].Monthly Weather Review,1963,91:99-165.
    [97]苏铭德.大涡模拟的代数模型及其应用[J].中国科学A辑,1989,7:715-723.
    [98]M.Germano,U.Piomelli,P.Moin and W.H.Cabot.A dynamic subgrid-scale eddy viscosity model [J].Physics of Fluids A,1991,3:1760-1765.
    [99]D.K.Lilly.A proposed modif canon of the Germano subgrid-scale closure method[J].Physics of Fluids A,1991,4:633-635.
    [100]S.Conway,D.Caraeni and L.Fuchs.Large eddy simulation of the flow through the blades of a swirl generator[J].International Journal of Heat and Mass Transfer,2000,21:664-673.
    [101]樊洪明,何钟怡,李先庭.洁净室流场大涡模拟[J].空气动力学学报,2001,19(3):302-309.
    [102]王兵,张会强,王希麟,郭印诚,林文漪.不同亚格子模式在后台阶湍流流动大涡模拟中的应用[J].工程热物理学报,2003,24(1):157-160.
    [103]N.V.Nikitin,F.Nicoud,B.Wasistho,K.D.Squires and P.R.Spalart.An approach to wall modeling in large-eddy simulations[J].Physics of Fluids,2000,12:1629-1632.
    [104]周昊,岑可法,樊建人.分离涡方法模拟浓淡气固射流两相非稳态流动特性研究[J].中国电机工程学报,2005,25(7):1-6.
    [105]F.F.Grinstein,L.G.Margolin and W.J.Rider.Implicit large eddy simulation:computing turbulent fluid dynamics[M].Cambridge University Press,2007.
    [106]G.Patnaik,J.P.Boris,T.R.Young and F.F.Grinstein.Large scale urban contaminant transport simulations with miles[J].ASME Journal of Fluids Engineering,2007,129(12):1524-1532.
    [107]B.Thornber and D.Drikakis.Large-eddy simulation of shock-wave-induced turbulent mixing[J]. A SME Journal of Fluids Engineering,2007,129(12):1504-1513.
    [108]关醒凡.泵的理论与设计[M].北京:机械工业出版社,1987.
    [109]A.Dazin,G.Caignaert and G.Bois.Transient behavior of turbomachineries:applications to radial flow pump startups[J].ASME Journal of Fluids Engineering,2007,129(11):1436-1444.
    [110]J.F.Thompson,Z.U.A.Warsi and C.W.Mastin.Numerical grid generation:foundations and applications[M].Amsterdam:North Holland,1985.
    [111]J.Y.Luo,R.I.Issa,and A.D.Gosman.Prediction of impeller-induced flows in mixing vessels using multiple frames of reference[C].IChemE Symposium Series,1994,136:549-556.
    [112]张振山,张艳伟,杨玉敏,马珥珺.离心泵蜗壳对叶轮内部流动的影响研究[J].水泵技术,2007.2:15-18.
    [113]田国文,张有忱,黎镜中.迷宫螺旋泵内部流动的CFD模拟[J].北京化工大学学报,2007,34(2):218-220.
    [114]张仲敏,黄雄斌.酯化反应搅拌釜内流动特性的数值模拟[J].北京化工大学学报,2005,32(5):29-35.
    [115]张红梅,李志鹏,高正明.连续高速分散混合器流体流动的数值模拟[J].北京化工大学学报,2005,32(6):5-8.
    [116]丁铁新,林运,盛明星.整车罩壳内空气流动的数值模拟研究[J].柴油机设计与制造,2006,14(3):20-24.
    [117]J.D.Denton.The calculation of three-dimensional viscous flow through multistage turbomachines [J].ASME Journal of Turbomachinery,1995,114(1):8-17.
    [118]W.N.Dawes.A simulation of the unsteady interaction of a centrifugal impeller with its vaned diffuser:flow analysis[J].ASME Journal of Turbomachinery,1995,117(2):213-222.
    [119]袁宁,张振家,王松涛,冯国泰.三维粘性流数值计算在多级透平中的应用[J].推进技术,1999,20(5):57-61,71.
    [120]陈海昕,沈孟育.带冷气掺混的涡轮级流场数值模拟[J].航空动力学报,2002,17(4):451-457.
    [121]张士杰,袁新,叶大均.多级轴流压气机全工况特性数值模拟[J].工程热物理学报,2002,23(2):167-170.
    [122]袁宁,王松涛,张振家,王仲奇,冯国泰.涡轮级三维粘性流场的数值模拟[J].航空动力学报,1999,14(2):135-217.
    [123]郭鹏程,罗兴錡,梁武科,郑小波.基于混合平面法的轴流式水轮机内三维湍流数值模拟[J].水动力学研究与进展A辑,2005,20(2):161-166.
    [124]D.Croba and J.Kueny.Numerical calculation of 2D,unsteady flow in centrifugal pumps:impeller and volute interaction[J].International Journal for Numerical Method in Fluids,1996,22(1):467-481.
    [125]Fluent Inc.,FLUENT User's Guide.Fluent Inc.,2003.
    [126]徐朝晖,吴玉林,陈乃祥,刘宇,张梁,吴玉珍.基于滑移网格与RNG湍流模型计算泵内的动静干扰[J].工程热物理学报,2005,26(1):66-68.
    [127]马希金,王宏亮,赵学.轴流式油气混输泵压缩级流场CFD模拟分析[J].农业机械学报,2006,37(2):41-44.
    [128]李金伟,刘树红,周大庆,吴玉林.混流式水轮机飞逸暂态过程的三维非定常湍流计算Ⅰ[J].水力发电学报,2008,27(6):147-152.
    [129]R.L(o|¨)hner and J.D.Baum.Three-dimensional store separation using a finite element solver and adaptive remeshing[J].AIAA,1991,91-0602.
    [130]郭正.包含运动边界的多体非定常流场数值模拟方法研究[D].博士学位论文,国防科学技术大学,2002.
    [131]I.Demirdzic and M.Peric.Space conservation law in finite volume calculations of fluid flow[J].International Journal for Numerical Methods in Fluids,1998,8:1037-1050.
    [132]R.L(o|¨)hner,C.Yang,J.D.Baum,H.Luo,D.Pelessone and C.M.Charman.The numerical simulation of strongly unsteady flow with hundreds of moving bodies[J].International Journal of Numerical Methods in Fluids,1999,31(1):113-120.
    [133]S.A.Bayyuk,K.G.Powell and B.V.Leer.Computation of flows with moving boundaries and fluid-structure interactions[J].AIAA,1997,97-1771.
    [134]G.Yang,D.M.Causon,D.M.Ingram and R.Saunders.A Cartesian cut-cell method for axisymmetric separating body flows[J].AIAA,1996,96-1973.
    [135]M.H.Chung.A level set approach for computing solutions to inviscid compressible flow with moving solid boundary using fixed Cartesian grids[J].International Journal of Numerical Methods in Fluids,2001,36:373-389.
    [136]M.C.Hughson.A 3-D unstructured CFD method for maneuvering vehicles[D].PhD thesis,Mississippi State University,1998.
    [137]T.E.Tezduyar,M.Behr and J.Liou.A new strategy for finite element computations involving moving boundaries and interfaces- the deforming-spatial-domain/space-time procedure:Ⅰ.The concept and preliminary numerical tests[J].Computer Methods in Applied Mechanics and Engineering,1992,94:339-351.
    [138]Batina,J.T.,Unsteady Euler airfoil solutions using unstructured dynamic meshes[J].AIAA Journal,1990,28,1381-1388.
    [139]Batina,J.T.,Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic analysis[J].AIAA Journal,1991,29,327-333.
    [140]F.J.Blom.Considerations on the spring analogy[J].International Journal of Numerical Methods in Fluids,2000,32:647-668.
    [141]L.Formaggia,J.Peraire and K.Morgan.Simulation of a store separation using the finite element method[J].Applied Mathematical Modelling,1988,12:175-181.
    [142]J.D.Baum,H.Luo and R.Lohner.Application of unstructured adaptive moving body methodology to the simulation of fuel tank separation from an F-16 C/D fighter[J].AIAA,1997,97-0166.
    [143]N.P.Weatherill.Delaunay triangulation in computational fluid dynamics[J].Computers &Mathematics with Applications,1992,24(5-6):129-150.
    [144]S.H.Lo.A new mesh generation scheme for arbitrary planar domains[J].International Journal for Numerical Methods in Engineering,1985,21:1403-1426.
    [145]D.A.Field.Laplacian smoothing and Delaunay triangulation[J].Communications in Applied Numerical Methods,1988,4(6):709-712.
    [146]P.Koumoutsakos and A.Leonard.High-resolution simulations of the flow around an impulsively started cylinder using vortex methods[J].Journal of Fluid Mechanic,1995,296(1):1-38.
    [147]M.Tutar and A.E.Holdo.Computational modelling of flow around a circular cylinder in sub-critical flow regime with various turbulence models[J].International Journal for Numerical Methods in Fluids,2001,35(7):763-784.
    [148]江帆,陈维平,王一军,区嘉沽.基于动网格的离心泵内部流场数值模拟[J].流体机械,2007,35(7):20-24.
    [149]J.Z.Wu,R.L.Roach,C.F.Lo,et al.Aerodynamic diagnostics and design based on boundary vorticity dynamics[J].AIAA,1999,99-3103.
    [150]樊红刚,陈乃祥,杨琳.可逆转轮三维流动的涡动力学诊断研究[J].水力发电学报,2007,26(3):124-128.
    [151]M.J.Lighthill.Introduction:Boundary layer theory.In Laminar Boundary Layer[M].Oxford:Oxford University Press,1963.
    [152]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700