基于管网计算理论的通用锅炉水动力计算系统的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,锅炉水动力计算主要采用经典的图解法。该方法在求解存在多回路嵌套关联复杂结构锅炉水动力系统的水动力特性时往往难以直接求解,而不得不进行简化处理,致使计算精度难以保证。本文突破性的提出了一种“基于管网计算理论的通用锅炉水动力计算方法”,该方法将锅炉水动力系统理解为“空间立体型受热管网系统”,通过抽象“节点”和“阻力区段”,建立了以“有向流程图”描述的锅炉水动力计算模型。基于研究提出的计算模型和算法,开发了“通用锅炉水动力计算系统”。
     论文的主要内容如下:
     ◆基于对锅炉水动力系统与管网计算理论中有向管网图结构相似性的分析,创新性的提出了将任意结构形式的锅炉水动力系统看作是由若干个阻力部件相互衔接构成的“空间立体型受热管网系统”。通过抽象“节点”和“阻力区段”,创建了由“有向流程图”描述的锅炉水动力计算模型。其中,锅筒、集箱、分汇以及逻辑划分点等被抽象为“节点”,而两个相连节点间的连接通路被抽象为“阻力区段”。在阻力区段上可能包含有表现为沿程摩擦阻力的直管路,以及表现为局部阻力的弯头、截面突变、节流圈等。此外,提出将计算模型中节点与区段间的连接点抽象为“流体节点”,以描述水动力系统中流动工质的属性。
     ◆依据管网计算理论与锅炉水动力计算基本原则,提出了一种适用于求解由有向流程图描述的任意结构形式锅炉水动力系统水动力特性的通用算法。该算法以节点流量连续性方程与回路的能量平衡方程为约束条件,在考虑锅炉水动力系统存在受热、相变、以及重位压差作用等特殊性情况下,以有向流程图中各基本回路为研究对象,分“粗略校正流量”和“精细校正流量”两个阶段,并提出分别采用不同的流量调节策略进行管网平差计算,获得满足工程精度要求的计算结果。由此求解锅炉的水动力特性。与图解法相比,该算法具有优良的通用性,且可显著提高锅炉水动力计算的精度和效率。
     ◆以研究提出的水动力计算模型及其通用算法为基础,研发了一套“通用锅炉水动力计算系统”。该系统采用面向对象技术,按照与有向流程图模型自然映射来定义类的原则,建立了通用锅炉水动力计算系统的统一软件描述模型。该模型通过定义抽象类屏蔽了部件类型的多样性,而在逻辑关系维护和算法实现上均采用抽象类的统一接口来组织,保证了系统具有优良的通用性和可扩充性。同时,采用了图形化模型输入技术,在可视化窗口中动态搭建系统模型,提高了软件系统的易用性。
     目前,通用锅炉水动力计算系统已在国内多家A级锅炉设计制造企业中得到应用,并为相关企业研究解决了锅炉水动力性能设计中的若干关键技术问题,实现了各种复杂结构锅炉产品水动力性能的设计计算。实践表明,该系统不但可以提供准确、可靠的锅炉水动力特性计算结果,而且具有通用性、易用性和可扩展性的显著特点,能够大大提高锅炉企业产品水动力性能设计计算的速度和效率。
The boiler hydrodynamic calculation had been mainly adopting graphic method for a long time. The graphic method was difficult to directly solve the hydrodynamic characteristics of a complex boiler hydraulic system which containing multiple associated loops and had to simplify the calculation. So it could not guarantee the accuracy of the results. The thesis proposed "a general hydrodynamic computational method of boilers based on the theory of pipe network calculation". In the method, the boiler hydraulic system was interpreted as "a three- dimensional heated pipeline system". Through abstracting "the nodes" and "the resistance sections", a boiler hydrodynamic computing model was created. Based on the proposed computing model and the proposed algorithm, the thesis developed "a general hydrodynamic computing system of boilers".
     The main research contents on this subject were explained as follows:
     Based on the structural similarity analysis of the boiler hydraulic system and the directed graph in the pipe network, the thesis revolutionarily proposed that a boiler hydraulic system of arbitrary structure could be interpreted as "a three- dimensional heated pipeline system" which composed of a number of interrelated resistance components. By abstracting "the nodes" and "the resistance sections" to the pipeline system, a general computational model of boiler hydrodynamic calculation was created which described by a directed graph. The drum, headers, tees, logical division points, etc. were abstracted as "the nodes". And the connecting pipes between two nodes were abstracted as "the resistance sections". In any section, it might include the straight pipe which was expressed as the frictional resistance, and might also include the bends, variable cross-sections, throttle valves, etc. which were expressed as the local resistance. In addition, the connecting point between a node and a section was abstracted as "the fluid node" for describing the fluid properties in boiler hydraulic system.
     According to "the theory of pipe network calculation" and "the basic principles of boiler hydrodynamic calculation", the thesis presented a general algorithm for solving the hydrodynamic characteristics of arbitrary structure boiler based on the proposed computational model which described by a directed graph. Under the constraint conditions of the flow continuity equations of nodes and the energy balance equations of loops, simultaneously considering the influence of heat and gravity, the solving procedure of the algorithm was divided into two stages with the basic loops in the directed graph as studying objects which specifically including "rough flow regulation" and "refined flow regulation". Different adjustment strategy was implemented in each stage to gradually reduce the resistance closures of basic loops until the solution accorded with engineering accuracy requirement, then solving the boiler hydrodynamic characteristics. Compared with the graphic method, the proposed algorithm has excellent generality and is easy to be programmed; moreover, both the accuracy and the speed of calculation are greatly improved.
     +With the support of the created computational model and the proposed algorithm, a general hydrodynamic computing system of boilers was studied and developed. By adopting the object-oriented technology, it created the universal software model for representing all kinds of boiler computational models described by directed graphs. In the software model, the diversity of boiler component types could be wrapped by defining the abstract classes, and the maintenance of logical relationships and the realization of main algorithm can be achieved via the object identifiers of abstract class type and the uniformed abstract interfaces. And all of these would improve the adaptability and extendibility of the model significantly. Meantime, the directed graph computational model was build by using graphical modeling tools, which would improve the usability of the software system.
     At present, the general hydrodynamic computing system devoloped in the thesis has been applied in many A-level boiler manufacturing enterprises. A number of key technology problems from the hydrodynamic calculation was studied and solved by using the computing system. In addition, the computing system completed the hydrodynamic characteristics calculation on various complex boilers. All of these indicate that the general hydrodynamic computing system is not only able to provide accurate and reliable results of boiler hydrodynamic calculation, but also having the features with venerability, usability and extensibility. Moreover, the computing accuracy and efficiency of the boiler hydrodynamic performance is greatly improved in boiler enterprises.
引文
[1]2009-1012年锅炉行业竞争格局与投资战略研究咨询报告.中国行业研究网,http://www.chinaim.com.
    [2]“十一五”节能减排成效综述.中国电力网,http://www. chinapower. com.cn/.
    [3]“十二五”时期我国新能源产业发展对策探析.煤炭网,http://coal.com.cn.
    [4]中共中央关于制定国民经济和社会发展第十二个五年规划的建议.中国教育报,2010.10.28.
    [5]王善武.我国工业锅炉节能潜力分析与建议[J].工业锅炉,2005(1):1-16.
    [6]张清林.提高中国燃煤工业锅炉运行效率及节能措施研究[J].洁净煤技术,2005(2):5-10.
    [7]徐火力.推进锅炉节能减排的建议及措施[J].资源与发展,2010(2):20-22.
    [8]李以善,等.我国超临界及超超临界电站锅炉的发展状况与安全检查问题探讨.中国特种设备检测网,http://www.tejian.org/news_33669.html.
    [9]周奎应.超超临界锅炉发展综述[J].中国特种设备安全,2010(5):10-18.
    [10]我国大型循环流化床锅炉洁净煤燃烧技术跨世界先进行列.中国工业报,http://www.gkong.com.
    [11]张缠保,石勇,武瀚.循环流化床锅炉发展概况及前景[J].山西电力,2005(2):66-68.
    [12]李双祥,李坚.国产生物质锅炉现状调查报告[J].应用能源技术,2010(5):23-25.
    [13]时璟丽,张成.垃圾焚烧发电技术在我国的应用及发展趋势[J].可再生能源,2005(2):63-66.
    [14]2010-2015年中国垃圾发电行业市场全景调研及投资评估深度研究报告.中国行业研究网,http://www. chinairn. com.
    [15]徐秀良.试论余热锅炉的发展前景[J].经济技术协作信息,2008(15):109.
    [16]吴亦三.余热锅炉技术的发展[J].节能技术,1998(8):15-20.
    [17]董芃.新型大容量复合循环水管式系列热水锅炉的设计开发[J].工业锅炉,2006(6):22-24
    [18]Zhaosheng Yu, Xiaoqian Ma, Yanfen Liao. Mathematical modeling of combustion in a grated-fired boiler burning straw and effect of operating conditions under air and oxyen-enriched atmospheres[J]. Renewable Energy,2010(5):895-903.
    [19]Norbert Modlinski. Computational modeling of a utility boiler tangentially-fired furnace retrofitted with swirl burners [J]. Fuel Processing Technology,2010(11):1601-1608.
    [20]北京锅炉厂设计科译.锅炉机组热力计算标准方法[S].北京:机械工业出版社,1976.11:1-86.
    [21]E.E.Khalil, P.Hutchinson, J.H.Whitelaw. The calculation of the flow and heat-transfer characteristics of gas-fired furnaces [J]. Symposium (International) on Combustion, 1981(1):1927-1938.
    [22]徐雪源.锅炉排烟温度分析[J].锅炉技术,1999(3):7-20.
    [23]程乐鸣,岑可法,倪明江,等.循环流化床锅炉炉膛热力计算[J].中国电机工程学报,2002,22(10):147-151.
    [24]程乐鸣.大型循环流化床锅炉的传热研究[J].动力工程,2000(2):587-591.
    [25]董祖康,沈勤,王孟浩,等.JB/Z201-83,电站锅炉水动力计算方法[S].中华人民共和国机械工业部,1983.10:1-48.
    [26]杨震.电站锅炉炉管失效机理和提高可靠性的措施[J].锅炉技术,2001(12):1-7.
    [27]史进渊,杨宇,邓志成.大容量电站锅炉受热面管子的可靠性设计与寿命评价[J].动力工程,2004(4):461-465.
    [28]中国电力可靠性管理年报[R].北京:中国电力企业联合会电力可靠性管理中心,2001.
    [29]杜少俊,杨宇亮.工业热水锅炉水循环故障原因分析[J].太原理工大学学报,2005(5):603-605.
    [30]董芃,徐艳英,兰日华.自然循环锅炉水动力回路分析法[J].哈尔滨工业大学学报,2007(3):462-466.
    [31]徐艳英,董芃,兰日华.自然循环热水锅炉水动力回路分析法的计算原理[J].热能动力工程,2006(5):473-476.
    [32]董芃,徐艳英,兰日华.采用水动力回路分析法进行自然循环热水锅炉水动力数值计算[J].工业锅炉,2006(2):8-13.
    [33]袁良义,李长征,魏继勇.应用Excel进行自然循环热水锅炉水动力计算[J].江苏锅炉,2008(3):6-10.
    [34]车得福,李燕,姚明宇,等.一种实现锅炉水动力通用计算的新型系统划分方法:中国,200510096006[P].2006-03-01.
    [35]车得福,闫凯,吉平等.一种锅炉水动力通用设计和校核的方法:中国, 200710017379[P].2007-08-08.
    [36]浙江省科学技术委员会.杭州锅炉厂“锅炉CAD应用系统”项目鉴定报告,1998,12.
    [37]浙江省科技厅.浙江省科技成果鉴定书,2006.12.
    [38]钟崴,傅迎春,童水光.通用锅炉热力计算软件的系统建模研究[J].动力工程,2002(2):1681-1685.
    [39]周鸿波,钟崴,徐阳,等.通用工业锅炉热力计算系统得开发与应用[J].化工机械,2006(5):300-304.
    [40]浙江省机械工业联合会.科学技术成果鉴定证书,2010.12.
    [41]A.H. Gonzalez, J.M.D.L. Cruz, B.D. Andres-Toro and J.L.R. Martin. Modeling and simulation of gas distribution pipeline network [J]. Applied Mathematical Modelling, 2009(33):1584-1600.
    [42]Qing-tang Liu, Zeng-gang Zhang, Ji-hong Pan, et al. A coupled thermo-hydraulic model for steam flow in pipe networks [J]. Journal of Hydrodynamics,2009(6):861-866.
    [43]Vladimir Karlin. Numerical Algorithms for Flows in the Nodes of 2D Model of Pipe Networks [J]. Journal of Computational Physics,1997(32):62-67.
    [44]严煦世,赵洪宾.给水管网理论和计算[M].北京:中国建筑工业出版社,1986:56-65,112-114.
    [45]许仕荣,邱振华.给水管网的计算理论与电算应用[M].湖南大学出版社,1997.9.
    [46]严煦世,范瑾初.给水工程[M].北京:中国建筑工业出版社,1999.
    [47]Bruce E. Larock, Roland W. Jeepson, Gary Z. Watters. Hydraulics of Pipeline Systems [M]. CRC Press LLC,2000:1-28,53-216.
    [48]龚光彩主编.流体输配管网[M].北京:机械工业出版社,2005.2:397-399.
    [49]E.S.Menon. Gas pipeline hydrodynamics [M]. New York:CRC Press,2005.
    [50]曹建林,许传清.电工技术[M].高等教育出版社,2000.7.
    [51]V. Manojlovi, M. Arsenovi, V. Pajovi. Optimized design of a gas-distribution pipeline network [J]. Applied Energy,1994(3):217-224.
    [52]王彤,吴志荣,刘霁阳.建筑热水循环管网计算方法的探讨[J].中国给水排水,2004(5):65-67.
    [53]李祥立,孙宗宇,邹平华.多热源环状热水管网的水力计算与分析[J].暖通空调,2004,34(7):97-101.
    [54]杨东娟,龙国庆,张生录.热水循环管网水力平衡计算方法的探讨[J].工程建设与 设计,2005(5):34-35,45.
    [55]李德波,营从光.复杂环状管网水力计算方法探讨[J].节能,2005(9):16-19.
    [56]胡小龙.复杂燃气管网水力计算算法[J].上海煤气,2006(2):4-6,19.
    [57]A. V. Chiplunkar, S. L. Mehndiratta, P. Khanna. Analysis of looped water distribution networks. Environmental Software,1900(4):202-206.
    [58]丁军平.复杂给水管网的流量计算与分析[D].西安科技大学,2006:16-31.
    [59]王国明.环状给水管网的初始流量分配[J].化工给排水设计,1998(4):1-4.
    [60]俞国平.给水管网设计中的一种流量分配方法[J].中国给水排水,2000(4):31-33.
    [61]王诗鹏,张国忠.管网最小平方和法初始流量分配[J].油气储运,2004(11):20-22.
    [62]朱良华,郭维刚.节点方程法多水源管网平差[J].工程与建设,2007(2):153-155.
    [63]D. Brkic, An improvement of Hardy Cross method applied on looped spatial natural gas distribution network [J]. Applied Energy,2009 (86):1290-1300.
    [64]倪林安,李榕.管网平差中Hardy Cross法的分析和改进[J].西安冶金建筑学院学报,1992(1):91-96.
    [65]倪安林.管网平差水压法的分析和比较[J].中国给水排水,1992(1):60-61.
    [66]倪林安,陈光,许群和.管网平差的差分线性化方法[J].西安建筑科技大学学报,341-343.
    [67]朱良华,郭维钢.节点方程法多水源管网平差[J].工程与建设,2007(2):153-155.
    [68]吕谋,李红卫.给水管网平差计算中各种流量法的分析和比较[J].青岛建筑工程学院学报,1994(4):41-47.
    [69]包志仁,刘国华.给水管网平差环方程法的改进[J].浙江大学学报(自然科学版),2000(4):464-467.
    [70]张先迪,李正良主编.图论及其应用[M].北京:高等教育出版社,2005.2:1.
    [71]孙惠泉.图论及其应用[M].科学出版社,2005.3.
    [72]William Kocay, Donald L Kreher. Graphs, Algorithms, and Optimization [M]. Boca Raton:Chapman & Hall/CRC,2005:25-150.
    [73]Paul Boulos, Tom Altman. A graph-theoretic approach to explicit nonlinear pipe network optimization [J]. Applied Mathematical Modeling,1991(9):459-466.
    [74]阎立华,刘丽英,马婷婷.图论法研究多水源管网供水分区[J].沈阳建筑大学学报,2007(1):113-116.
    [75]龙翼.图论在排水管网优化方面的应用[D].西南交通大学,2003.
    [76]曹慧哲,贺志宏,朱蒙生,等.基于图论的多定压节点管网水力计算方法的研究[J].给水排水,2008(1):105-108
    [77]陈钢军,林建华.图论在环状管网水力计算中的应用[J].给水排水,1994(8):5-7.
    [78]石继,张丰周,魏永耀.图论法用于供水管网水力计算的研究[J].水利学报,199(2):49-56.
    [79]戴一奇,胡冠章,陈卫.图论与代数结构[M].北京:清华大学出版社,1995:2.
    [80]车得福,庄正宁,李军,等.锅炉[M].西安:西安交通大学出版社,2008.10:449-454.
    [81]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算[M].北京:科学出版社,2003.4:401-485.
    [82]赵洪宾.给水管网系统理论与分析[M].北京:中国建筑工业出版社,2003.9.
    [83]丁艳军,王培红,吕震中,等.基于过程系统工程理论的热力系统性能模拟[J].热能动力工程,2000(3):153-155.
    [84]王弘轼.化工过程系统工程[M].清华大学出版社,2006.12.
    [85]屈一新.化工过程数值模拟及软件[M].化学工业出版社,2006.7.
    [86]李利军,劳国瑞Aspen工程软件在化工过程工艺开发中的应用[J].化工过程与工程技术,2010(2):54-57.
    [87]邵维忠,杨芙清.面向对象的系统分析[M].北京:清华大学出版社,1998.
    [88]蔡希尧,陈平.面向对象技术[M].西安:西安电子科技大学出版社,1993.
    [89]杜晓明,赵强,刘林等.面向对象的知识表达模型研究[J].计算机工程,1996(5):58-60.
    [90]范玉顺,曹军威.复杂系统的面向对象建模、分析与设计[M],北京:清华大学出版社,2000.
    [91]James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling Language Reference Manual [M]. Addison Wesley Longman, Inc,1999:1-8,32-46.
    [92]赵月红,温浩,许志宏.UML辅助化工过程模拟软件设计[D].中国科学院上海冶金研究所,2000.
    [93]钟崴,许跃敏,童水光.动态绑定技术研究与应用[J].计算机工程,2000,9:81-83.
    [94]唐从耿,刘丛涛,张裕嘉等.锅炉受热面热偏差的改进措施[J].动力工程,2006(6):773-779.
    [95]高吉国,张宏,候恩伟.自然循环水平蒸发受热面应用的探讨[J].工业锅炉 2005(5):17-18.
    [96]朱秋平,林敏,董祖康.锅炉尾部蒸发受热面的布置及其水循环特性分析[J].工业锅炉,2006(6):18-21.
    [97]周云龙,李岩,关月波,等.水流温度不均匀对超临界压力蒸发管水动力特性的影响[J].锅炉技术,2000(4):16-18.
    [98](苏)古尔维奇,(苏)库兹涅佐夫编.马毓义译.锅炉机组热力计算标准方法[S].北京:水利电力出版社,1960:1-86.
    [99]钟崴,许跃敏.通用锅炉热力计算算法研究[J].工业锅炉,2000(2):24-27.
    [100]李振全,张军.电站锅炉热力计算方法的研究与分析[J].中国科技论文在线精品论文,2010,3(14):1418-1422.
    [101]Junye Wang. Theory of flow distribution in manifolds [J]. Chemical Engineering Journal,2011(3):1331-1345.
    [102]R.L. Pigford, M. Ashraf, Y.D. Mlron. Flow distribution in piping manifolds [J]. Ind. Eng. Chem. Fundam,1983 (22):463-471.
    [103]R.A. Bajura. A model for flow distribution in manifolds [J]. J. Eng. Power,1971 (98): 654-665.
    [104]Zhengqing Miao, Tongmo Xu. Single phase flow characteristics in the headers and connecting tube of parallel tube platen systems [J]. Appl. Thermal Eng.,2006 (26): 396-402.
    [105]A. Acrivos, B.D. Babcock, R.L. Pigford. Flow distributions in manifolds [J]. Chem. Eng. Sci.,1959 (10):112-124.
    [106]缪正清.电站锅炉集箱端部轴向引入引出的并联管组系统单相流体流动特性的统一表达式[J].动力工程,1998(6):32-38.
    [107]缪正清,王恩禄,田子平.电站锅炉分配集箱系统单相流体流动特性的研究[J].动力工程,1998(1):43-47.
    [108]缪正清,田子平,王恩禄.电站锅炉汇流集箱系统单相流体流动特性的研究[J].动力工程,1998(2):46-49.
    [109]王峻晔,吴东棣.锅炉分配集箱非线性水动力特性分析[J].上海交通大学学报,1999(3):268-272,275.
    [110]W.瓦格纳,A.克鲁泽.水和蒸汽的性质[M].科学出版社,2003.4.
    [111]吴燕玲,钟崴,童水光,等IAPWS-IF 97水和水蒸气性质计算方法的补充模型及应用[J].热力发电,2008(3):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700