催化/热障功能梯度涂层的建模、仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生态环境的日益恶化和环境资源的日渐短缺,人们对环境保护和节约能源越来越重视。各国为限制内燃机排放所制定的法规更加严格,各大内燃机制造厂家在内燃机节能技术方面的竞争也愈演愈烈。因此,尽可能地降低油耗和减少有害排放就成为内燃机的发展目标。本文引入功能梯度材料(FGM)的概念,结合燃油掺水乳化燃烧技术,运用催化燃烧技术,在内燃机燃烧室部件内表面(活塞顶面、缸盖和气阀底面)先喷涂陶瓷/金属热障功能梯度涂层(TBC),再喷涂催化剂/陶瓷催化功能梯度涂层(EBC),以形成催化/热障功能梯度涂层(TBC-EBC),使喷入的燃油和水蒸气在相对较低的温度下(200~500℃)发生重整催化反应,生成少量的氢气,从而改善燃油的燃烧过程,同时提高内燃机的环保性能、经济性能和隔热性能。这是一个全新的研究方向。
     本文结合2001年度武汉理工大学材料复合新技术国家重点实验室开放基金项目“环保型梯度热障涂层的设计方法与制备工艺的研究”,对催化/热障功能梯度涂层中传热和热应力分布进行了理论分析与数值计算。同时,建立了催化/热障功能梯度涂层的水蒸气重整催化性能数学模型。最后,对催化/热障功能梯度涂层的制备工艺和性能评价进行了初步的实验研究。
     文中首先阐述了催化/热障功能梯度涂层的材料结构模型和物性模型,然后根据热传导理论和热弹性理论,建立了用于催化/热障功能梯度涂层中传热和热应力分析的多层平板模型和多层圆筒模型,它们都是由金属基体层、过渡金属层、陶瓷/金属热障功能梯度层和催化剂/陶瓷催化功能梯度层四层组成,其中梯度层的梯度结构分别采用多项式和幂函数两种分布函数。通过具体的计算实例,采用解析解和有限元解对催化/热障功能梯度涂层多层平板模型和多层圆筒模型的温度场和热应力场进行了分析计算。经计算对比,发现两者能够很好地吻合。
     为了分析催化/热障功能梯度涂层对内燃机的节能和降低排放的影响,根据化学反应动力学理论和多相催化理论,建立了甲烷水蒸气重整催化反应的化学反应速度数学模型,将内燃机中催化/热障功能梯度涂层的水蒸气重整催化反应分为预催化方式和表面催化方式,并从这两个方面来分析了甲烷水蒸气重整催化反应作用下的着火燃烧化学反应方程式。进一步,根据脂肪烃和芳烃的水蒸
    
     武汉理工大学硕士学位论文
    气重整催化反应实验数据,建立了轻油水蒸气重整催化反应的化学反应速度数
    学模型,可以获得氢气的生成速度或量。这对于研究燃油水蒸气重整催化反应
    对内燃机燃烧过程的影响是很有意义的。
     根据催化/热障功能梯度涂层的结构和性能要求,使用等离子喷涂技术,并
    对涂层的制备工艺参数进行了优化,制备了催化/热障功能梯度涂层试样和可用
    于实机实验催化/热障功能梯度涂层。借助扫描电子显微镜和X射线能谱分析仪,
    对所制作的涂层试样进行了金相显微分析和成份分析,并对涂层的催化效果进
    行了初步的评价。从试验获得的数据表明,本文所制备的催化/热障功能梯度涂
    层中催化涂层的表面上有催化剂的烧结颗粒,这将必然影响到涂层的重整催化
    作用效果。因此,文中提出了对等离子喷涂设备的改进措施和涂层喷涂后的后
    处理措施。这为催俗热障功能梯度涂层的成功制备打下了良好的基础。
With the deterioration of ecological environment and the shortage of environmental resource, human beings pay more attention to the environmental protection and energy conservation. The rule of law established for emission of internal combustion engine (ICE) is stricter; the competition of energy-saving technology among ICE plants is more violent. Therefore, energy-saving and emission decrease are the development objects of ICE. Introducing into Functionally Gradient Materials (FGM), integrating the emulsive combustion technology with the catalytic combustion technology, Ceramic/Metal Gradient Thermal Barrier Coatings (TBC) and Catalyst/Ceramic Gradient Environmental Barrier Coatings (EEC) are sequentially sprayed on the inside surface of chamber components of ICE to form Catalysis/Thermal Barrier Functionally Gradient Coatings (TBC-EBC), which can result in reforming catalysis reaction between fuel and steam under relative low temperature (200-500℃) to produce a small quantity of hydrogen gas and improve th
    
    e combustion process of fuel as well as the emission - behavior, economic performance and the reliability of ICE. This is a new research direction."
    Conjoining the project of "Research on Design Methods and Manufacture Techniques for Gradient Thermal Barrier Coatings with Environment Protection Function" funded by the Open Foundation from the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, this paper carried out theoretical analysis and numerical calculation of heat transfer and thermal stress in TBC-EBC. The mathematical model of the steam reforming catalysis reaction on TBC-EBC is established. And, the manufacture techniques and performance evaluation of TBC-EBC are also carried out in experiments.
    The structure model and the physical property model of TBC-EBC are set forth. In terms of heat transfer theory and thermoelastic theory, multi-layer plate model and multi-layer cylinder model are established for heat transfer and thermal stress analysis in TBC-EBC. They are both composed of four layers, i.e. substrate layer, bond layer,
    
    
    
    
    gradient TBC layer and gradient EBC layer, of which the gradient structure of gradient TBC layer and gradient EBC layer adopt polynomial and exponential function model. As for concrete calculation example, the temperature field and the thermal stress field in TBC-EBC are analyzed by analytical solution and the finite element method. The results show that the analytical solution shows good agreement with finite element solution.
    In order to study the influence from TBC-EBC on energy-saving and emission behavior of ICE, the chemical reaction speed model of reforming catalysis reaction between methane and steam is established in terms of chemical reaction dynamics and multi-phase catalysis theory. The ignition chemical equations of methane/steam reforming catalysis reaction in the pre-catalysis reforming reaction and the surface catalytic reforming reaction are studied. Furthermore, on the basis of experimental data from the steam reforming reaction with aliphatic hydrocarbon and aromatic hydrocarbon, the chemical reaction speed model of reforming catalysis reaction between fuel and steam is established, through which the quantity of hydrogen gas can be obtained. It is very meaningful for the study of the steam reforming reaction' s influence on the combustion process in ICE.
    According to the structure and performance requirement, TBC-EBC samples and real TBC-EBCs for ICE have been fabricated by plasma spray technique. The samples are observed by scanning electron microscopy (SEM), the components in them are analyzed by X-ray spectroscopy (XRS). And, the catalytic effect of TBC-EBC is appraised. The experiment shows that the sintered catalyst particles were found on the surface of TBC-EBC samples, which will affect the catalysis performance of TBC-EBC. As a result, the modified measures and the post treatment are put forward in order to provide foundation for the successful fabrication of TBC-EBC.
引文
[1] 陆瑞松等.内燃机传热与热负荷.北京:国防工业出版社,1985.1~10
    [2] 陈大荣.船舶柴油机设计.第一版.北京:国防工业出版社,1985.1~20
    [3] 唐少波.现代轿车发动机电控技术及应用,汽车研究与开发,1999(3):15~18
    [4] 蔡胜有,黄勇.Al_2O_3基涂层技术在汽车尾气催化净化装置中的应用与开发.功能材料,1998,29(3):225~228
    [5] 闻立时等.无水冷柴油机陶瓷隔热涂层.发动机用先进陶瓷,科学出版社,1993.353~357
    [6] 刘元诚,吴锦祥,崔可润.内燃机原理.大连:大连海运学院出版社.1985.280~315
    [7] 谷口雅人.陶瓷挺柱.国外内燃机,1995.39~43
    [8] 张新时等,1999年度国家自然科学基金项目指南.高等教育出版社,60~61
    [9] Xu Binshi, Zhu Sheng, Liu Shican. Applications of the latest thermal spraying technology in China. in: Akira Ohmori, eds. Proceedings of the 14th International Thermal Spray Conference. Kobe: High Temperature Society of Japan, 1995:133~136
    [10] Kojima Y, Wada K, Teramae T, et al. Highly durable thermal barrier coating for heavy duty gas turbine. in: Akira Ohmori, eds. Proceedings of the 14th International Thermal Spray Conference. Kobe: High Temperature Society of Japan, 1995:95~99
    [11] Rabin B H, Shiota Ⅰ. Functionally gradient materials. MRS Bulletin, 1995, 20(1): 14~18
    [12] Sampath S, Herman H, Shimoda N, et al. Thermal spray processing of FGMs. MRS Bulletin,1995, 20(1): 27~31
    [13] Tanigawa Y, Akai T, Kasai T. One-dimensional transient heat conduction and associated thermal stress problems of a plate with nonhomogeneous material properties. Transactions of the Japan Society of Mechanical Engineers(A), 1995, 61(583): 115~121
    [14] Itoh Y, Takahashi M, Okamura T, et al. Thermal stress mitigating properties for graded thermal barrier coatings of gas turbine. Transactions of the Japan Society of Mechanical Engineers(A), 1995, 61(583): 122~127
    [15] Matsuzaki Y, Fujioka J, Yoshikawa T. Transient thermal cycle damage of thermal barrier type of functionally gradient material. Journal of the Japan Institute of Metals, 1994, 58(1): 98~105
    
    
    [16] Xiao Jinsheng, Wen Dongsheng, Lu Yunbin, et al. Simulation and design for the microstmctures of ceramic/metal gradient thermal barrier coatings, in: Senoo M, Xu B, Tokuda M,et al, eds. Mechanical Properties of Advanced Engineering Materials. Tsu: Mie University Press, 1997:605~612
    [17] 肖金生,吕运冰,张开银.燃烧室隔热陶瓷/金属功能梯度涂层的研究。见:海锦涛,张立斌,陆辛编.中国机械工程学会成立六十周年学术会议论文集.北京:机械工业出版社.1997
    [18] 王利坡,傅维标.乳化油微爆的统一模型.燃烧科学与技术,2000,6(1):6~11
    [19] 贺占博,张健,张凤才.乳液结构与乳化燃油燃烧热的关系.燃烧科学与技术,1999,5(4):387~393
    [20] 王利坡,傅维标.含易燃添加剂乳化油的着火延迟特性.燃烧科学与技术,2000,6(3):252-257
    [21] 李海林,王海,苗福生.柴油机燃烧复合乳化燃料消烟作用的研究.农业机械学报,1998,29(3):6~10
    [22] 王贺武,周龙保.含氧燃料添加剂对柴油机性能和排放的影响.内燃机学报,2001,19(1):1~4
    [23] 马征,陈淑玲.燃用乳化油柴油机排放特性的试验研究.柴油机设计与制造,1999,89(4):10~13
    [24] 谈黎虹,何勇,陈开考.随车乳化器的设计及在495A柴油机上的试验研究.农业工程学报,1998,14(1):116~120
    [25] 丁启朔,彭嵩植.柴油机随车乳化系统的实验研究.农业工程学报,2001,17(2):72~74
    [26] 钟北京,傅维标.甲烷火焰中氢气对着火与燃尽的影响.燃烧科学与技术,2001,7(2):194~198
    [27] 覃川,傅维标,李长乐.催化着火的实验研究.工程热物理学报,1999,20(4):505~509
    [28] 覃川,傅维标,李长乐.有重整反应时热球点燃预混气的理论研究.燃烧科学与技术,2000,6(4):338~341
    [29] 覃川.催化重整反应对烃类燃料燃烧影响的研究.清华大学博士学位论文,1999
    [30] 唐松柏,邱发礼,吕绍洁.镍催化剂对甲烷、二氧化碳重整的活性与稳定性.石油化工,1995,24(9):614~618
    [31] 宋若钧,张量渠等.稀土添加剂对烃类水蒸汽重整镍催化剂性能的影响——水蒸汽吸附的TPD研究.燃料化学学报,1992,20(1):38~44
    [32] 宋若钧,张量渠等.稀土镍催化剂上水蒸汽吸附的TPD研究.天然气化学,1991,2(1):23~30
    
    
    [33] 宋若钧,张量渠.稀土镍催化剂的活性稳定性与组分相互作用的研究.天然气化工(C1化学与化工),1994,19(1):13~19
    [34] 唐松柏,邱发礼,吕绍洁.镍催化剂对甲烷、二氧化碳重整的活性与稳定性.石油化工,1995,24(9):614~618
    [35] Ma, L.; Praharso; Trimm, D. L. Rare-earth oxides promoted nickel based catalysts for steam reforming. Materials Science Forum v 315, 1999: p187~193
    [36] Gamman Jonathan James, Millargraeme John. Catalysts and process for steam reforming of hydrocarbons. Patent Number:WO0016900, Applicant: Gamman Jonathan James, UNIV QUEENSLAND, Millargraeme John. 2000
    [37] U1-Haque Israr, Trimm David L. Catalyst for steam reforming of hydrocarbons. Patent Number: US5599517, Applicant: HALDOR TOPS&526 E AS(DK). 1997
    [38] U1-Haque Israr, Trimm David L. Process for steam reforming of hydrocarbons. Patent Number:US5595719, Applicant: TOPSOE HALDOR AS(DK). 1997
    [39] Gebhard, Steven C.; Wang, Dingneng; Overend, Ralph P.; et al. Catalytic conditioning of synthesis gas produced by biomass gasification. Biomass and Bioenergy 7 1-6, 1994, Pergamon Press Inc, p307~313
    [40] Zhang, Z.K.; Cui ZL; Chen KZ; et al. Thin-shell structure of nanometal particles. Materials Characterization (USA), vol.44, no.4-5, p371~374, 2000
    [41] McCarty, JG; Hou, PY; Sheridan, D; et al. Reactivity of surface carbon on nickel catalysts. American Chemical Society, 1982:p253~282
    [42] Ma, R; Wei, B; Xu, C; et al. Catalytic growth of carbon nanofibers on a porous carbon nanombes substrate. Journal of Materials Science letters (USA), vol. 19, no. 21,p1929~1931, 2000
    [43] Marquevich, Maximiliano; Czemik, Stefan; Chornet, Esteban; et al. Hydrogen from biomass: Steam reforming of model compounds of fast-pyrolysis oil. Energy and Fuels 13 6 1999 ASC. p1160~1166
    [44] Willms R. Scott. Method for simultaneous recovery of hydrogen from water and from hydrocarbons. Patent Number: US5525322, Applicant: UNIV CALIFORNIA.1996
    [45] 王宝林,高文志,文世骐.汽油机燃烧室催化燃烧试验研究.小型内燃机,1998,27(3):1~3
    [46] 用于内燃发动机尾气的多功能燃烧室涂层,西北工业大学,http://www.zibo.net,2001
    [47] 柴油机高效、清洁燃烧新方法取得突破性进展,清华大学工程力学系试验报告,2001
    
    
    [48] 张怡,施利毅,张仲燕.纳米SnO_2/TiO_2复合光催化材料的制备.上海大学学报(自然科学版),2000,6(4):333~337
    [49] N.Noda, T. Tsuji. Steady Thermal Stresses in a Plate of Functionally Gradient Material. Transactions of the Japan Society of Mechanical Engineers (A), 1991, 57(533): 98~103
    [50] N.Noda, T. Tsuji. Steady Thermal Stresses in a Plate of Functionally Gradient Material with Temperature-Dependent Properties. Transactions of the Japan Society of Mechanical Engineers (A), 1991, 57(535): 153~159
    [51] 张晓丹,刘冬青,葛昌纯.稳态温度场下轴对称梯度功能材料的热应力分析.功能材料,1994,25(5):452~455
    [52] Yoshinobu Tanigawa. Some basic thermoelastic problems for nonhomogeneous structural materials. American Society of Mechanical Engineers, 1995
    [53] 温冬生.陶瓷梯度隔热涂层的热应力分析与优化设计.武汉交通科技大学硕士学位论文,1997
    [54] 周晓琴.内燃机燃烧室部件及陶瓷隔热涂层的热应力有限元分析.武汉交通科技大学硕士学位论文,1999
    [55] 曾宪友.内燃机燃烧室部件及陶瓷隔热陶瓷的瞬态热应力分析.武汉交通科技大学硕士学位论文,1999
    [56] 肖金生.陶瓷金属梯度热障涂层的研究.清华大学博士学位论文,1998
    [57] 刘杰.陶瓷功能梯度涂层的热应力分析与优化设计.武汉交通科技大学硕士学位论文,2000
    [58] 李琳.烃类水蒸汽催化转化反应动力学.天津大学博士学位论文,1989
    [59] 陈振兴,李绍芬,廖晖.环己烷水蒸汽转化反应动力学.石油化工,1991,20(12):845~850
    [60] 李绍芬,李琳,廖晖.石脑油水蒸汽转化的集总动力学模型.化工学报,1991(4):423~431
    [61] 李琳,廖晖,李绍芬.芳烃水蒸气催化转化反应动力学.化学反应工程与工艺,1992,9(3):246~253
    [62] 邓世均.热喷涂高性能陶瓷涂层.热喷涂技术.1999,5(1):7~13
    [63] 贾永昌.热喷涂材料:现状与未来.热喷涂技术.1998,4(4):2~4
    [64] 潘牧,罗志平,南策文.等离子喷涂氧化物涂层的相变问题.热喷涂技术.1998,4(4):21~24
    [65] 祖玉冰.陶瓷材料的喷涂及应用.热喷涂技术.1998,4(3):13~15
    [66] 王智霖,李尚周.等离子涂层强度分析.热喷涂技术.1997,3(4):10~13
    
    
    [67] E.Lugscheider,G.Sch Wier等.氧化物陶瓷的大功率等离子喷涂.热喷涂技术.1997,3(1):29~33
    [68] 张冠中,赵文华,贺勇等.提高厚陶瓷隔热涂层抗热震性的措施.严冬生编,发动机用先进陶瓷.北京:科学出版社,1993.153~161
    [69] Lutz E H. Microstructure and properties of plasma ceramics. J. Am. Ceram. Soc., 1994, 77(5):1274~1280
    [70] 何学良,詹永厚,李疏松 编著.内燃机燃料.北京:中国石化出版社,1999.11:490~536
    [71] 杜善义,王彪.复合材料细观力学.北京:科学出版社,1998.28~40
    [72] Frank P.Incropera, David P.DeWitt. Fundamental of Heat Transfer. America: John Wiley & Sons, Inc. 1981. 179~233
    [73] S.S.Rao. The Finite Element Method in Engineering. UK: Pergamon Press. 1982.21~30
    [74] Hetnarski R B. Thermal stress Ⅰ. Amsterdam: Elsevier Science Publishers B.V. 1991.1~142
    [75] Hirano T, Wakashima K. Mathematical modeling and design. MRS Bulletin, 1995, 20(1):40~42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700