功率超声作用下柴油乳化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经济发展与能源密切相关,而目前能源紧缺,这势必给经济的发展带来阻碍,因此寻找合适的替代能源是必要的。柴油作为内燃机燃料,需求量在能源的总消耗中占有很大比例,因此寻找柴油替代燃料成为缓解能源问题的重要途径。已有研究证明乳化柴油具有显著的节约能源和降低污染的效果,受到越来越多的重视。功率超声技术可以制得稳定性好、质量高的乳化柴油,因此被广泛地应用于柴油乳化领域。但是对于功率超声乳化柴油的原理、机制以及超声能量在乳化过程中的分配情况的研究还鲜有报道。本研究通过考察功率超声声强、作用时间、温度等因素对乳化液内小液滴平均粒径及其分布的影响,建立了功率超声乳化柴油的热力学模型,借助模型对实验结果进行理论分析。
     将乳化剂Span 80(亲油性乳化剂HLB值为4.3)和Tween 80(亲水性乳化剂HLB值为15)按一定比例混合得到复配乳化剂,然后将一定量的复配乳化剂加到柴油中,然后在功率超声作用于柴油的过程中,将水逐滴加入。
     在一定声强的功率超声作用下,乳化液液滴平均粒径随作用时间的延长而减小,但不是无限减小的,存在临界粒径。达到临界粒径之前,小液滴粒径分布随作用时间延长而趋于均匀。在临界粒径之前,同一时间下,功率超声声强越大,乳化液出现临界粒径的作用时间越短,临界粒径尺寸越小。温度是乳化液制备过程中至关重要的影响因素:对比绝热与恒温两种条件—绝热条件下的小液滴粒径达到临界粒径后,随作用时间的延长而增大;恒温条件下的小液滴粒径达到临界粒径以后,不随作用时间的延长而改变。
     在上述实验结果的基础上,本研究对功率超声乳化柴油过程进行了热力学分析,得到了乳化过程中体系内能量的分配情况以及功率超声作用过程中和作用后体系状态的变化。
The development of economy is close to energy source, but at present, the source is on short that would hinders the development of economy. So looking for compatible substitute energy source is quite necessary. As the main internal-combustion engine fuel, diesel oil take a great proportion of the consumption of energy source. Therefore, to get an alternative diesel oil is a primary method to solve the problem of source lack. It has been reported that combustion of emulsified diesel oil could save oil and reduce pollution markedly. So it is put on more and more important position. The diesel oil emulsion made by power ultrasound has good quality, and power ultrasound is widely used in emulsion field. But there is no theory research on effect of power ultrasound parameters on emulsion and the action mechanism. This research do great work on building ultrasound emulsified thermodynamics model which can give explanation of the experimental results, through seeing about the effect aspect of power density, process time and temperature, and so on.
    In term of fixed proportion to mix the surfactant span 80 (a lipophilic surfactant with HLB = 4.3) and tween 80 (a hydrophilic surfactant with HLB=15), then adding them into diesel oil and when the diesel oil is being dealt by ultrasound, adding water drop by drop.
    At constant power density, the mean size of emulsion drop reduces versus time until reach the critical size. Before the critical size arriving the distribution of droplet size is vary versus time and becomes uniformity. At constant duration, the larger density of power ultrasound, the time is shorter, and the critical size is smaller. Before critical size, the droplet distribution becomes uniformity as the power density increases. Temperature is one of the most important effect factors: comparing heat preservation and constant temperature conditions, the size of droplet under the former condition increases after critical size, but keep the same size for the latter condition.
    This research analyses the experimental result through thermodynamics methods and educes the energy distribution and the change in the system.
引文
[1] 崔心存.内燃机的代用燃料.北京:机械工业出版社,1990.
    [2] 陈敏.国内车用发动机代用燃料研究综述.柴油机,2003(5):8-11.
    [3] 梁斌.生物柴油的生产技术.化工进展,2005,24(6):577-585.
    [4] Cherng-Yuan Lin, Jenq-Yih Pan. The effects of sodium sulfate on the emissions characteristics of an emulsified marine diesel oil-fired furnace. Ocean Engineering, 2001, 28:347-360.
    [5] 蒙志谋,毛汉领,黄振峰.随车乳化器的研制及乳化特性的实验研究.内燃机,2006,(3):4-10.
    [6] 许锋,杨晓英,杜宝国等.柴油机燃用乙醇复合柴油试验研究.大连理工大学学报,2003,43(5):609-613.
    [7] 周树青,杨俊霞,查守辉.乳化柴油的研制及应用.炼油技术与工程,2003,33(8):26-28.
    [8] O. Behrend, K. Ax, H. Schubert, Influence of continuous phase viscosity on emulsification by ultrasound. Ultrason Sonochem, 2000(7):77-85.
    [9] 梅业玲.采用ST—5配伍的乳化柴油.污染防治技术,1997,10(2):114-115.
    [10] 楼建平,陈龙安,刘小清.乳化柴油的试验研究与分析.试验.测试,1998,(9):21-23.
    [11] 陈登龙,丁以钿,林建生.乳化柴油的研究.化工科技,2002,10(1):15-18.
    [12] 周林森.柴油掺水乳化燃烧对NO_x与烟度排放的影响.华北水利水电学院学报,1996,17(1):56-59.
    [13] 史德胜,许锋,隆武强等.柴油机掺水燃烧的试验研究.车用发动机,2004,(6):9-13.
    [14] 许乐平,彭水生.燃用乳化柴油对减少柴油机N0_x排放量的试验研究.大连海事大学学报,1997,23(2):65-67.
    [15] ROY J. CROOKES, FARIBORZ KIANNEJAD and MAROUAN A. A. NAZHA. SYSTEMATIC ASSESSMENT OF COMBUTION CHARCTERISTICS OF BIOFUELS AND EMULSIONS WITH WATER FOR USE AS DIESEL ENGINEFUELS. Energy Covers. Mgml. 1997, 38(15-17): 1785-1795.
    [16] 张高勇,刘碧莲.日本表面活性剂的发展与现状.
    [17] 马玉龙,厚立琪.压电超声乳化装置.声学学报,1982,7(3):194-195.
    [18] 罗曾义.超声乳化理论和技术.声学技术,1996,15(4):201-206.
    [19] 应崇福.超声学.北京:科学出版社,1990.
    [20] 声学研究进展.中科院声学所成立30周年论文集.1994:154-16.
    [21] Eiji Mori, etal. Ultrasonics International 89 Conference Proceedings, 256.
    [22] W. P. Mason. Electromechanical Transducer and WaveFilters. VanNostrand, NewYork, 1948.
    [23] H. Flynn. Physics of Acoustic Cavitationin Liquids. Physical Acousties, W. P. Mason, ed., Academic Press, NewYork, 1964,1B, 167.
    [24] C. E. NuadeandA. T. Ellis, Trans. Am. Soc. Mech. Engrs. 1961, D83:648.
    [25] 汪承浩,赵哲英.声学学报,1982,7:364-371.
    [26] 林仲茂.超声变幅杆的原理和设计.北京:科学出版社,1987.
    [27] 戴向国,傅水根,王先逵等.新型超声变幅杆结构设计.现代制造工程,2002(4):22-23.
    [28] 候立琪,林仲茂,应崇福.声学学报,1979,(4):271-278.
    [29] Lin ZhongMao, et al. A Novel, high Efficiency Ultrasonic Emulsification Device and its Applications [C]. Ultrasonic Technology 1987, (Editor: KohjiToda), Toyohashi International Conferenceon Ultrasonic Technology, MYU Tokyo, 1987, 309-312.
    [30] 林书玉,张福成.大尺寸夹心式压电换能器的设计.应用声学,1994,13(3):30-33.
    [31] 林书玉.A3夹心式压电超声扭转换能器的研制.声学技术,1996,14(4):159-161.
    [32] 林书玉,张福成.模式转换弯曲振动超声换能器的研究.应用声学,1994,13(1):37-39.
    [33] 林书玉.扭转振动压电超声换能器的研究.声学技术,1995,14(3):135-138.
    [34] 林书玉.弯曲振动压电陶瓷换能器.压电与声光,1994,16(5):27-30.
    [35] 林书玉.纵-扭复合振动模式指数型复合超声变幅杆的研究.应用声学,1997,16(5):42-46.
    [36] 阮世勋.扭振超声变幅杆谐振参数测定方法的研究.应用声学,1996,(2):27-33.
    [37] 阮世勋.几种扭振复合超声变幅杆的研究.应用声学,1998,17(1):21-27.
    [38] 林仲茂.20世纪功率超声在国内外的发展.声学技术,2000,19(2):101-105.
    [39] Abismail B., Canselier J. P., Wilhelm A. M., et al. Emulsificationby ultrasonic: drop size distribution and stability. Ultrason Sonochem, 1999, 6: 75-83.
    [40] Eric Cottell. Ultrasonic combustion gives 25% fuel saving. Ultrasonics, 1975,13(2):51.
    [41] 许锋,齐国荣,朱国朝等.油水乳化柴油的实用性研究.机电设备,1999,(3):33-37.
    [42] 顾煜炯,杨昆,杜大明.燃油掺水超声乳化技术的研究.现代电力,1997,14(2):6-10.
    [43] 方岳亮,王建黎,李永超等.超声波辅助制备生物柴油的新方法研究.化肥工业,32(5):40-44.
    [44] Ruey-Shin Juang, Kung-Hsuan Lin. Ultrasound-assisted production of W/O emulsions in liquid surfactant membrane processes. Colloids and Surfaces A, 2004,(238): 43-49.
    [45] 冯若主编.超声手册.南京:南京大学出版社,2001.
    [46] 梁治齐,李金华.功能性乳化剂与乳状液.北京:中国轻工业出版社.2000.
    [47] 李葵英编.界面与胶体的物理化学.哈尔滨:哈尔滨工业大学出版社.1998.
    [48] 周兰营,苏玉芹.乳化重油工业应用试验研究.河北化工,2000:42-44.
    [49] 叶伟云.乳化油燃烧节油的探讨.能源研究与利用,1996(6):73-75.
    [50] 黄文.燃油乳化研究和应用的现状.仪器仪表与分析检测,2002(2):5-6.
    [51] 金长善.超声工程.哈尔滨:哈尔滨工业大学出版社,1989.
    [52] 冯伟骏.功率超声对Pb-Sn合金凝固行为的影响:(硕士学位论文).大连:大连理工大学,2004.
    [53] 林仲茂.超声变幅杆的原理与设计.北京:科学出版社,1987.
    [54] Alexei Moussatov, Christian Granger, Bertrand Dubus, Cone-like bubble formation in ultrasonic cavitation field. Ultrason Sonochem, 2003 (10): 191-195.
    [55] 黄忠水,纪威,鄂卓茂.柴油乳化燃料的配制及应用.柴油机,2002,(1):28~31.
    [56] Song Myung Geun, jho SungHo, Kim Jongyun, el at. Rapid Evaluation of water-in-oil (w/o) Emulsion Stability by Turbidity Ratio Measurements. J Colloid Interface Sci., 2000, 230: 213~215.
    [57] 刘蔚.乳化柴油及其实验研究:(硕士学位论文).大连:大连理工大学,2003.
    [58] 王志诚.热力学.统计物理.北京:高等教育出版社,1998.
    [59] B.A.基列耶夫著,张志炳等译.物理化学.上海:商务印书馆,1953.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700