大流量煤气压力调节阀流固耦合机理及动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢厂在生产过程中会产生大量的焦炉和高炉煤气,为了降低钢厂的总体能耗和物耗、减少环境污染,目前许多钢厂开始利用废煤气发电,发展循环经济。但在钢厂循环发电工程中,气体供给量大,对混合煤气的流量要求高达54000Nm3/h以上。在混合煤气的输送管路中采用调节阀进行流量和压力的控制,调节阀公称通径超过200mm,阀内大流量煤气的流动是复杂的非定常三维可压湍流流动,调节阀和混合煤气之间的相互作用是典型的流固耦合问题,这种流固耦合作用会对调节阀及混合煤气流场产生较大影响,因此从流固耦合问题出发对大流量调节阀及其流场的准确的分析是调节阀设计制造和优化的重要前提。本文主要针对发电工程所涉及到的基于流固耦合的大流量调节阀进行了研究。
     阐述了流固耦合的基本内涵及研究基础,综述了流固耦合问题的国内外研究概况,介绍了调节阀流固耦合的特点,对在循环发电工程中大流量调节阀流固耦合亟待解决的问题进行了探讨。
     针对大流量调节阀建立了流固耦合系统数学模型,采用流固耦合有限元数值计算方法,分析了调节阀结构振动的有限元方程和流体的有限元方程,探讨了大流量调节阀的流固耦合系统基本方程和边界条件;采用Galerkin有限元方法建立了调节阀与混合煤气流固耦合的有限元方程,采用模态分析法进行了动力响应分析;揭示了混合煤气与调节阀的耦合振动机理,并对阀芯进行了动态特性分析;建立了大流量调节阀低频噪声耦合数学模型,从而得到了符合设计要求的耦合振动和噪声的理论分析,为进一步展开流固耦合研究奠定了理论基础。
     以大流量混合煤气压力调节阀为研究对象,将数值仿真方法应用于大流量调节阀流固耦合系统的研究中,探讨了流固耦合对大流量调节阀及其流场的影响。揭示了在不同工况下,基于流固耦合的大流量调节阀内混合煤气流场及速度矢量分布,研究了流体旋涡形成的原因、位置及其对调节阀振动产生的影响;探讨了流固耦合对流场压力及压力损失情况、流量及压力控制精度、气流脉动频率的影响。所建立的流固耦合仿真模型对提高模拟的精度以及分析结构的流激振动问题均有实际意义,得到的结果为大流量调节阀的优化设计、噪声研究和试验研究提供了理论指导。
     在流固耦合的基础上对大流量调节阀流动特性和噪声进行了研究,得到了不同工况下的流量系数和流阻系数的数值以及噪声水平,绘制出大流量调节阀的实际工作流量特性曲线和流阻特性曲线,采用最小二乘参数辨识的方法建立了流阻系数随开度变化的控制模型,可以为大流量调节阀在较宽工况范围内的流动阻力实现良好的模拟和预测。仿真结果为大流量调节阀优化设计提供了结构和流场参数的量化数据,为理论分析提供了实验基础和理论依据,是降低结构噪声和进行结构优化设计的基础和必要措施。
     为使大流量调节阀结构参数和流场参数达到最优,以结构、流场和噪声分析结果为设计准则,提出了大流量调节阀的多学科设计优化框架,实现了涉及到多学科、多物理场的大流量调节阀的建模、分析以及优化的一体化集成。以保证煤气输送能力为前提,在追求减小调节阀噪音的系统优化目标下,减小了调节阀的壁厚和流体速度,满足了雷诺数、应力强度和阀体总质量的要求,即优化后在降低噪音的同时,可以降低产品价格成本、使流动趋于稳定、并且提高调节阀疲劳强度。
     分别对基于流固耦合的调节阀阀体和阀芯的动力学特性进行了分析,得到了流体对调节阀阀体和阀芯固有频率及振型的影响,并对其持续动力响应情况进行了探讨,从而能够判断调节阀在受到不同频率的载荷时能否成功地克服共振、疲劳,及其它受迫振动所引起的不良效果。
     以调节阀模态分析和结构强度分析为基础,提出了针对大流量调节阀流固耦合系统的结构损伤识别方法,根据阀芯的固有频率的变化来判断损伤裂纹的出现,根据频率变化的多少确定裂纹的大小,从而能够快速有效的诊断出工作环境比较特殊的大流量调节阀内部阀杆的损伤情况,避免煤气泄漏以及阀的动作缓慢或不能正常调节等故障的发生。
     通过试验方法,对大流量调节阀动力学模型的有效性和流固耦合数值仿真的可靠性进行了验证。结果表明所建立的调节阀动力学分析模型用于模态的研究具有较高精度,所建立的基于流固耦合的调节阀模型具有较高可靠性,并且对流量和压力的控制精度以及得到的流量系数和流阻系数要比不考虑流固耦合时的精度要高。
     从流固耦合问题出发研究大流量混合煤气压力调节阀,提高调节阀的综合性能,实现调节阀在流固耦合作用下的结构优化设计,对于提高我国大流量调节阀的设计研究水平,推动钢厂的燃气-蒸汽联合循环发电工程的进一步发展具有重要的理论意义和工程实践价值。
     本课题得到国家863高技术研究发展计划项目“钢厂循环发电工程中大流量煤气的智能优化控制及应用技术(2008AA04Z130)”和高等学校博士学科点专项科研基金资助项目“大流量高频响核电控制阀的多场耦合振动与泄漏自感知机理研究”(20110131110042)的支持。
The steel mills generate vast amounts of blast furnace gas (BFG) and coke-oven gas (COG) in the production. In order to reduce the energy consumption and environmental pollution, some steel mills build combined cycle power plants (CCPP) to make use of the mixed gas. But in this cycle power generation engineering, gas supply is large, and the flow requirement is up to54000Nm3/h. The control valve is used in delivery lineto contril flow and pressure. The nominal size of control valve is more than7.874in. The flow of gas in control valve is complex three-dimensional unsteady turbulence. This is a tiplcal fluid-structure interaction (FSI) problem between control valve and gas, which would produce great influence on control valve and flow. Therefore accurate analysis of control valve and flow about FSI is important premise in control valve designing, manufacting and optimizing. This article mainly aims at high flow control valve based on FSI in generation engineering.
     This paper expounds the basic connotation of FSI and research foundation, summarizes the general research situation at home and abroad about FSI. The FSI characteristic of control valve is introduced. The problems of control valve based on FSI that urgently need to be solved in cycle power generation engineering are discussed.
     The mathematical model of FSI system of control valve is established. Using the finite element numerical calculation method, the structural vibration equation and fluid eauation are analysized. The basic equation and boundary conditions are discussed. The finite element equation aout FSI is established using Galerkin method and the dynamic response is analysed using modal method. Coupling vibration mechanism is revealed. The dynamics characteristic on valve plug is discussed. Low frequency noise coupling mathematical modal is established, which lays a theoretical foundation on further expansion of FSI.
     The numerical simulation method is used to analyse the FSI system of high flow control valve. The effect of FSI on control valve and flow field is discussed. The mixed gas flow field and veloctity vector distribution in control valve at different opening is revealed. The cause and location of the formation of vortex flow are studyed, and the effect on control valve vibration is analysed. The impact of FSI on pressure and flow is discussed. The model of FSI has a practical significance to improve the accuracy of simulation and analyse the problem of flow inducing vibration. The results provide the therretical guide for optimization design, the noise and experimental research.
     On the basis of FSI of high flow control valve, flow characteristic and the noise are studied. The flow coefficient and flow resistance coefficient at different opening and noise level are got. And the curves are drawed. The relation of flow resistance coefficient and opening is fitted out using the least square parameter identification method, which realize the valve are good simulation and prediction in a wider condition. The results provide the quantitative data of structure and flow field for optimization design, offer the experimental foundation and theoretical basis for the theoretical analysis. This is basis and necessary measure to reduce noise and optimization.
     In order to make the structure parameters of high flow control valve and flow field parameters to achieve optimal, using the structure and fluid analysis results as design criteria, the multidisciplinary design optimization (MDO) framework is present. This realizes the integration which involves modeling, analysis and optimization of multidisciplinary and two field control valve. To ensure that gas transmission capacity as the prerequisite, making reducing valve noise as optimization goals, the wall thickness of valve and fluid velocity are reduced. These meet the Reynolds, stress intensity and body total quality requirements. When reducing noise, the product price cost is lowered, flow tends is made to be stable and fatigue strength of valve plug is improved.
     The dynamic characteristics of control valve body and valve plug based on FSI are analyzed. The effect on natural frequency and vibration mode is achieved and the continuous dynamic response is discussed, which can judge the control valve in different frequency overcome resonance, fatigue and other vibration successfully.
     Using the analysis of modal and structure strength as the foundation, the structure damage identification method is proposed, which can judge the emergence of crack damage according to the natural frequency and determine how much the size of the crack according to the frequency change. Thus the internal plug damage of control valve in special work environment can be diagnosed fastly and effectively, avoiding the failure of gas leakage and unnormal regulation.
     Through the test method, the validity of the dynamic model and the reliability of the numerical simulation method is confirmed. The results show that the model has a high precision. Control accuracy of flow and pressure, flow coefficient and resistance coefficient has high accuracy when considering FSI.
     Studying the control vavle based on FSI can improve the comprehensive performance and realize optimization, which has the important theoretical meaning and engineering practical value for improving the research level of high flow control valve and promoting further development of the cycle power generation engineering.
     This research is based upon work supported by National high-tech research development plan of China (863plans) under Grant No.2008AA04Z130and by Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20110131110042.
引文
[1]彭华玉,杨定斌.燃气-蒸汽联合循环发电在涟钢的应用及效果[J].金属材料与冶金工:程,2009,37(1):46-49.
    [2]王丽.济钢燃气-蒸汽联合循环发电项目投资及效应分析[J].山东冶金,2007,29(4):72-73.
    [3]胡松.燃气-蒸汽联合循环技术在钢铁企业的应用研究[J].中国水运,2008,8(7):209-211.
    [4]李文兵,李华德.钢铁企业高炉煤气系统动态仿真[J].冶金自动化,2009,33(2):33-37.
    [5]B Seyedan, P L Dhar, R R Gaur, et al. Computer Simulation of a Combined Cycle Power Plant[J]. Heat Recovery System & CHP,1995,15(7):619-630.
    [6]H Takano, Y Kitauchi and H Hiura. Design for the 145-MW Blast Furnace Gas Firing Gas Turbine combined Cycle Plant[J]. ASME Journal of Engineering for Gas Turbines and Power, 1989,111(2):218-224.
    [7]A L Polyzakis, C Koroneos and G Xydis. Optimum Gas Turbine Cycle for Combined Cycle Power Plant [J]. Energy Conversion and Management,2008,49(4):551-563.
    [8]D C Sue and C C Chuang. Engineering Design and Exergy Analyses for Combustion Gas Turbine based Power Generation System [J]. Energy,2009,29(8):1183-1205.
    [9]J Y Shin, Y J Jeon, D J Maeng, et al. Analysis of the Dynamic Characteristics of a Combined-cycle Power Plant [J]. Energy,2002,27(12):1085-1098.
    [10]K Kunitomi, A Kurita, Y Tada, et al. Modeling Combined-cycle Power Plant for Simulation of Frequency Excursions[J]. IEEE Transactions on Power Systems,2003,18(2):724-729.
    [11]屠珊.汽轮机调节阀内气体流动诱发的阀门不稳定性研究[D].西安交通大学博士学位论文,2002.
    [12]贾空军,芮丰.恒功率流量控制阀的设计与应用[J].流体传动与控制,2007,(4):31-35.
    [13]周双珍,卢来洁等.供气流量自动调节阀的设计与应用[J].液压与气动,2008,(10):76-78.
    [14]范晓.一种新型的平衡式套筒调节阀的设计和应用[J].通用机械,2007.(1):77-79.
    [15]赵凯,李占平,关友兵.智能电液阀门执行机构控制器的研究[J].机电产品开发与创新,2006 19(3):115-117.
    [16]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [17]曾娜,郭小刚.探讨流固耦合分析方法[J].沈阳工程学院学报,2008,4(4):382386.
    [18]娄涛.基于ANSYS的流固耦合问题数值模拟[D].兰州大学硕士学位论文,2008.
    [19]BATHE K J, ZHANGH. A flow condition base dinater polation finite element procedure for incompressible fluid flows [J]. Computers & Structures,2002,80:1267-1287.
    [20]KOHNOH, BATHE K J. Anine-node quadrilateral FCBI element for incompressible fluid flows[J]. International Journal for Numerical Methods in Fluids,2006,51:673-699.
    [21]Mehmet Akkose. Suleyman Adanur, Alemdar Bayraktar. Elasto-plastic earthquake response of arch dams including fluid-structure interaction by the Lagrangian approach[J]. Applied Mathematical Modelling,2008,32:2396-2412.
    [22]Bong Jae Chung, Ashwin Vaidya. An optimal principle in fluid-structure interaction[J]. Physica D,2008,237:2945-2951.
    [23]George Papadakis. A novel pressure-velocity formulation and solution method for fluid-structure interaction problems. Journal of Computational Physics [J].2008,227:3383-3404.
    [24]Axel Gerstenberger, Wolfgang A. Wall. An Extended Finite Element Method Lagrange multiplier based approach for fluid-structure interaction [J]. Comput. Methods Appl. Mech. Engrg.2008,197:1699-1714.
    [25]D. Sun, J.S.Owen, N.G.Wright. Application of the k-ω turbulence model for a wind-induced vibration study of 2D bluff bodies[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,97:77-87.
    [26]Z. Feng, A.Soulaimani, Y.Saad. Nonlinear Krylov acceleration for CFD-based aeroelasticity [J]. Journal of Fluids and Structures,2009,25:26-41.
    [27]Tayfun E. Tezduyar, Matthew Schwaab, Sunil Sathe. Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) technique [J]. Comput. Methods Appl. Mech. Engrg,2009,198: 3524-3533.
    [28]Mario A. Storti, Norberto M. Nigro. Strong coupling strategy for fluid-structure interaction problems in supersonic regime via fixed point iteration [J]. Journal of Sound and Vibration, 2009,320:859-877.
    [29]Gulay Altay, M. Cengiz Dmeci. Fluid fluid and solid interaction problems Variational principles revisited [J]. International Journal of Engineering Science.2009,47:83-102.
    [30]Ramon Codina, Guillaume Houzeaux, Herbert Coppola-Owen. The fixed-mesh ALE approach for the numerical approximation of flows in moving domains [J]. Journal of Computational Physics,2009,228:1591-1611.
    [31]P.J. Blanco, R.A. Feijoo, E.A. Dari. A variational framework for fluid-solid interaction problems [J]. Comput. Methods Appl. Mech. Engrg.2008,197:2353-2371.
    [32]R. Galvao, E.Lee, D.Farrell. Flow control in flow-structure interaction [J]. Journal of Fluids and Structures,2008,224:1216-1226.
    [33]Iman Borazjani, Liang Ge, Fotis Sotiropoulos. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies [J]. Journal of Computational Physics,2008,227:7587-7620.
    [34]O.O. Bendiksen, G. Seber. Fluid-structure interactions with both structural and fluid nonlinearities [J]. Journal of Sound and Vibration,2008,315:664-684.
    [35]M.P.Paidoussis, GX.Li. Pipes Conveying Fluid:A Model Dynamical Problem [J]. Journal of Fluids and Structure,1993,7(2),137-204
    [36]A.S. Tijsseling. Water hammer with fluid-structure interaction in thick-walled pipes [J]. Computers and Structures,2007,85:844-851.
    [37]A.S. Tijsseling, A.E. Vardy. Fluid-structure interaction and transient cavitation tests in a T-piece pipe [J]. Journal of Fluids and Structures,2005,20:753-762.
    [38]T.G. Hwang, D.H. Doh, H.J. Jo. Analysis of fluid-elastic-structure interactions in an impinging jet with a dynamic 3D-PTV and non-contact 6D-motion tracking system [J]. Chemical Engineering Journal,2007,130:153-164.
    [39]F. Choulya, A. Van Hirtum, P.-Y. Lagree. Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid-structure interaction [J]. Journal of Fluids and Structures,2008,24:250-269
    [40]Arati Nanda Pati. Fluid-structure interaction for a pressure driven flow [J]. Mathematical and Computer Modelling,2007,47:1-26.
    [41]K.H. Yoon, J.Y. Kim, K.H. Lee. Control rod drop analysis by finite element method using fluid-structure interaction for a pressurized water reactor power plant [J]. Nuclear Engineering and Design,2009,239:1857-1861.
    [42]Emmanuel B. Agamloh, Alan K. Wallace, Annette von Jouanne. Application of fluid-structure interaction simulation of an ocean wave energy extraction device [J]. Renewable Energy,2008,33:748-757.
    [43]N. Mole, G. Bobovnik. An improved three-dimensional coupled fluid-structure model for Coriolis flowmeters [J]. Journal of Fluids and Structures,2008,24:559-575.
    [44]S. Mitra, K.P.Sinhamahapatra.2D simulation of fluid-structure interaction using finite element method [J]. Finite Elements in Analysis and Design,2008,45:52-59.
    [45]Karl Kuehlert. Simulation of the fluid-structure-interaction of steam generator tubes and bluff bodies [J]. Nuclear Engineering and Design,2008,238:2048-2054.
    [46]Frederic Lagoutiere, Nicolas Seguin, Takeo Takahashi. A simple ID model of inviscid fluid-solid interaction [J]. Journal of Differential Equations,2008,245:3503-3544.
    [47]C. Alberto Figueroa, Seungik Baek, Charles A. Taylor. A computational framework for fluid-solid-growth modeling in cardiovascular simulations [J]. Comput. Methods Appl. Mech. Engrg, 2009,198:3583-3602.
    [48]S. Yigit, M. Schafer, M. Heck. Grid movement techniques and their influence on laminar fluid-structure interaction computations [J]. Journal of Fluids and Structures,2008,24:819-832.
    [49]Matteo Astorino, Jean-Frederic Gerbeau, Olivier Pantz. Fluid-structure interaction and multi-body contact:Application to aortic valves [J]. Comput. Methods Appl. Mech. Engrg, 2009,198:3603-3612.
    [50]Christoph Niklasch, Nico Herrmann. Nonlinear fluid-structure interaction calculation of the leakage behaviour of cracked concrete walls [J]. Nuclear Engineering and Design,2009,239: 1628-1640.
    [51]Mehdi Sotudeh Chafi, Ghodrat Karami, Mariusz Ziejewski. Numerical analysis of blast-induced wave propagation using FSI and ALE multi-material formulations [J]. International Journal of Impact Engineering,2009,36:1269-1275.
    [52]R. Amirante. Evaluation of the flow forces on an open centre directional control valve by means of a computational fluid dynamic analysis [J]. Energy Conversion and Management,2006,47: 1748-1760.
    [53]M. Grujicic, G. Cao. Finite element analysis-based design of a fluid-flow control nano-valve [J]. Materials Science and Engineering,2005,117:53-61.
    [54]X. Zhang, S. S. Nair. Robust Nonlinear Control of a Novel Indexing Valve Plate Pump; Simulation Studies [J]. Journal of Dynamic Systems, Measurement, and Control,2002,124.
    [55]James A. Davis. Predicting Globe Control Valve Performance—Part I; CFD Modeling [J]. Transactions of the ASME,2002,124.
    [56]Asghar Alizadehdakhel, Masoud Rahimi, Ammar Abdulaziz Alsairafi. CFD and experimental studies on the effect of valve weight on performance of a valve tray column [J]. Computers and Chemical Engineering,2009,7.
    [57]Syed Fahad Anwer, Nadeem Hasan, Sanjeev Sanghi. Computation of unsteady flows with moving boundaries using body fitted curvilinear moving grids [J]. Computers and Structures, 2009,87:691-700.
    [58]陆鑫森,R.w.克劳夫.流体-结构相互作用的杂交子结构法[J].振动与冲击,1982.
    [59]戴大农,王勖成,杜庆华.流固耦合系统动力响应的模态分析理论[J].固体力学学报,1990.
    [60]朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则[J].工程力学,2007,24(10):92-99.
    [61]胡耀青,赵阳升,杨栋.三维固流耦合相似模拟理论与方法[J].辽宁工程技术大学学报.2006,26(2):204-206.
    [62]张云峰,刘占生.基于子循环_样条插值预测校正方法的流固耦合分析[J].机械工程学报,2008,44(2):62-67.
    [63]刘云贺,俞茂宏,王克成.流体—固体瞬态动力耦合有限元分析研究[J].水利学报,2002,(2):85-89.
    [64]陈新民,梁胜.基于ALE方法的油水两相流固耦合模型研究[J].合肥工业大学学报,2009,32(6):880-889.
    [65]张潇,王延荣,张小伟.基于多层动网格技术的流固耦合方法研究[J].船舶工程,2009,31(1):64-66.
    [66]邬海军,郭鹏程,廖伟丽,罗兴铸.ANSYS在水轮机部件流固耦合振动分析中的应用[J].水电能源科学,2004,22(4):64-66.
    [67]苏丽杰,郭星抨,聂义勇.一维流固耦合振动问题的有限元分析[J].机械设计与制造,2004,(5):84-85.
    [68]刘习军,刘振宇等.圆柱形弹性壳液耦合系统大幅低频重力波振动机理的研究[J].应用力学学报,2006,23(2):172-176.
    [69]刘小兵,刘德民,曾永忠,王辉艳.基于流固耦合的水轮机振动的数值研究[J].水动力学研究与进展.2008,(6):715-721.
    [70]吴钰骅,金伟良等.海底管道流固耦合振动数值模拟[J].浙江大学学报,2009,43(4):782-788.
    [71]鲁丽,杨翊仁.流体和结构参数对板-流体耦合振动的影响[J].西南交通大学学报,2009,44(3):370-374.
    [72]邹光胜.管道流固耦合系统的非线性动力学行为及振动主动控制研究[J].东北大学博士学位论文[D],2003.
    [73]鄢奉林.汽车排气总管流固耦合的有限元分析[D].武汉汽车工业大学硕士学位论文,2000.
    [74]杨超,范士娟.输液管道流因耦合振动的数值分析[J].振动与冲击,2009,28(6):56-59.
    [75]张立翔,杨柯,黄文虎.FSI效应对管道水击运动特性的影响分析[J].水电能源科学,2001,19(4):43-47.
    [76]任建亭,林磊,姜节胜.管道轴向流固耦合振动的行波方法研究[J].航空学报,2006,127(12):280-284.
    [77]初飞雪.两端简支输液管道流固耦合振动分析[J].中国机械工程,2006,17(3):248-251.
    [78]陈香林,周文禄.压力管道流固耦合振动特性分析[J].火箭推进,2007,33(5):27-31.
    [79]徐合力,蒋炎坤.弯曲输流管道流固耦合流动特性研究[J].武汉理工大学学报,2008,32(2):343-346.
    [80]黄灿,李春兰,黄世军等.考虑流固耦合低渗透储层数值模拟研究[J].内蒙古石油化工,2008,(13):82-84.
    [81]郭永存,王仲勋,胡坤.煤层气两相流阶段的热流固耦合渗流数学模型[J].天然气工业,28(7):73-74.
    [82]薛强,梁冰,李宏艳.可压缩流体渗流的流固耦合问题数值模拟研究[J].地下空间,2001,21(5):386-391.
    [83]梁权伟,王正伟,方源.考虑流固耦合的混流式水轮机转轮模态分析[J].水力发电学报,2004,23(3):116-120.
    [84]蔡敢为,蓝永庭,李兆军等.混流式水轮机转轮内流固耦合的有限元模型[J].广西大学学 报,2008,33(1):35-39.
    [85]刘志远,郑源,张文佳.ANSYS-CFX单向流固耦合分析的方法[J].水利水电工程设计,2009,28(2):39-31.
    [86]李进,杜冲,侯一方.车辆液力减振器流-固耦合仿真计算与分析[J].机械管理开发,2009,24(5):1-2.
    [87]孙伟,韩建礼,刘西侠.基于动网格模型的两栖车辆数值模拟[J].舰船科学技术,2009,31(1):146-150.
    [88]朱代义,谷正气,梁小波.基于流固耦合燃油箱动态特性分析[J].现代制造工程2009,(6):13-17.
    [89]董非,范秦寅.内燃机流固热耦合数值模拟的研究[J].汽车工程,2009,31(2):146-150.
    [90]严宇,张力,张钊源.节流阀失效的流固耦合分析研究[J].石油化工安全技术,2006,22(2).
    [91]张传涛,单代伟,栾金堂.高压孔板式节流阀流固耦合分析[J].石油机械,2007,35(10):37-39.
    [92]Ye Qifang, Chen Jiangping. Dynamic analysis of a pilot-operated two-stage solenoid valve used in pneumatic system [J]. Simulation Modelling Practice and Theory 2009,17:794-816.
    [93]Jian Deng, Xue-Ming Shao. Evaluation of the viscous heating induced jam fault of valve spool by fluid-structure coupled simulations [J]. Energy Conversion and Management 2009,50:947-954.
    [94]陈彬,刘阁.液压换向阀的耦合水击振动特性研究[J].实验力学,2009,24(1):73-79.
    [95]张伟政,俞树荣,张希恒,余建平.调节阀内部流场的数值模拟与试验分析[J].兰州理工大学学报,2008,34(3):65-68.
    [96]贾汝民,张伟政.调节阀流场CFD数值模拟与流道优化[J].化工机械,2009,36(2):131-134.
    [97]周碧池,李春,李沈坚.调节阀内部流场数值模拟及能量损失分析[J].能源研究与信息,2008,24(3):167-171.
    [98]刘刚,方金春,雍歧卫.调节阀动态特性的数值模拟[J].阀门,2004,(4):8-14.
    [99]何世权,李斌.角式调节阀流量特性的数值模拟及分析[J].化工机械,2008,36(5):291-294.
    [100]黎焱.一种新型电动球阀的数值模拟与实验研究[J].浙江大学硕士学位论文[D],2007.
    [101]Zienkiewicz O C. Coupled problems and their numerical solution in:Lew is R W, Bettess P, Hinton Eeds. Numerical Methods in Coup led Systems. John Wiley and Sons Ltd, New York 1984.
    [102]赵罘,王平,赵跃进.2-m望远镜装配体的模态优化及随机振动响应[J].机械设计与研究,2006,22(5):120-123.
    [103]王艳珍,于兰英,柯坚等.水压锥阀流场的CFD解析[J].机械.2003,30(5):20-22.
    [104]冯卫民,韩宁.大口径环喷式流量调节阀数值模拟优化[J].武汉大学学报:工学版.2006,39(1):76-79,105.
    [105]安延涛.大型压力调节阀的动态分析及故障检测研究[D].山东大学博士学位论文,2012:45,44,94-95.
    [106]王安麟,吴小峰,周成林.基于CFD的液压滑阀多学科优化设计[J].上海交通大学学报,2010,44(12):1767-1772.
    [107]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报(自然科学版),2004,18(2):123-126.
    [108]Zienkiewicz O C. Coupled problems and their numerical solution in:Lew is R W, Bettess P,Hinton Eeds[J]. Numerical Methods in Coup led Systems. John Wiley and Sons L td, New York (1984).
    [109]王勖成.有限单元法[M].北京:清华大学出版社,2003:529-230.
    [110]任兴民,秦卫阳,文立华.工程振动基础[M].北京:机械工业出版社,2006:178.
    [111]张月蓉.基于瞬态模型的大流量调节阀故障监测与诊断方法的研究[D].山东大学博士学位论文,2012:19-24,21-22.
    [112]吴一红,谢省宗.水工结构流固藕合动力特性分析[J].水利学报,1995,1:27-3.
    [113]钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构,2008,14(1):3-15.
    [114]刘晓明,王晓宇,陈慈慧.流固耦合船舶舱室中低频噪声数值分析[J].船舶力学,2008,12(5):812-818.
    [115]许宏阳.气动调节阀振动原因及其处理[J].石油化工自动化,1998,(2):67.
    [116]王德玉,刘清友,何霞.高压节流阀的失效与受力分析[J].天然气工业,2005(6):94-96.
    [117]张玉润.一种调节阀减振降噪方法的探索[J].自动化与仪器仪表,1999,(1):37-40.
    [118]庞秀伟,郑红丽.控制阀振动和噪声的防治[J].阀门,2006,(3):35-36.
    [119]明赐东.调节阀应用1000问[M].北京:化学工业出版社,2006:132,41,137,156.
    [120]陆培文.调节阀实用技术[M].北京:机械工业出版社,2007:138,119-120,612-613.
    [121]周心一,吴有生.流体动力性噪声的相似关系研究[J].声学学报,2002,27(4):373-378.
    [122]李再承,侯国祥,吴崇建.管系湍流噪声辐射研究方法进展[J].中国舰船研究,2007,2(1):34-38.
    [123]马大猷.噪声与振动控制工程手册[M].机械工业出版社,2002.9:93.
    [124]LIGHTHILLM J. On sound generated aerodynamically I. General theory [J], Proc. R. Soc, Lond,1952.
    [125]POWELLA. Theory of vortex sound [J]. J. Acoust.Soc.Am.,1964,36:177-195.
    [126]张天翔,徐天茂,张洪明.振动边界耦合作用下基于微分求积法的三维不可压缩粘性流体的数值模拟[J].水动力学研究与进展,2005,20(2):196-206.
    [127]谢玉东.钢厂循环发电工程中大流量煤气稳压技术研究[D].山东大学博士学位论文,2010:109-111.
    [128]潘永成.压力调节阀的内流场流动特性和流固耦合特性研究[D].山东大学硕士学位论文.2007:69.
    [129]BLEVINS R D. Review of sound induced by vortex shedding from cylinder [J]. Sound and Vibration,1984, (92):455-470.
    [130]宋辉辉,韩省亮,李永东等.孔板消减气流脉动的数值模拟及实验研究[J].应用力学学报,2011,28(1):39-45.
    [131]王为国,杨洁,王大方.控制阀工程设计估算的理论和实践[J].医药工程设计杂志,2005,26(2):32-35.
    [132]Florian Menter, Robin lantry. AN SYS CFX对飞机气动阻力的精确模拟[J].中国制造业信息化,2005,(7):1.
    [133]蔡伟,薄涵亮,秦本科.组合阀流动阻力数值实验[J].核科学与工程,2007,27(4):322-326.
    [134]徐萃薇编.计算方法引论[M].北京:高等教育出版社,1982:62.
    [135]ROSSD. Mechanics of underwater noise[M]. Perga-mon press Inc,1976.
    [136]周心一,吴有生.流体动力性噪声的相似关系研究[J].声学学报,2002,27(4):373-378.
    [137]姚利.大型煤气压缩机控制在燃气-蒸汽联合循环发电中的应用及改进[J].冶金自动化.2008,32(1):35-40.
    [138]贲可存.烟气转换阀组气力输送特性的研究及其结构的多场耦合分析与优化[D].东南大学博十,2009:95.
    [139]古华,严根华.水工闸门流固耦合自振特性数值分析[J].振动、测试与诊断,2008,28(3):242-246.
    [140]刘金梁,王忠诚,叶喜忠.核级阀门抗震分析与研究[J].阀门,2011(2):34-43.
    [141]焦维光.阀杆拉伤的现场修复[J].中国胶黏剂,2009,18(8):62.
    [142]张方明,谢澄.汽轮机高压加热器进出水电动闸阀故障分析及处理[J].阀门,2004,(2):34-36.
    [143]张方明,谢澄.600MW机组高压加热器电动阀频繁故障原因分析及处理[J].浙江电力,2004,(2):54-56.
    [144]李余德,司马爱平,周瑜等.汽轮机低旁调节阀阀芯裂纹的成因分析[J].金属热处理,2007,32(增刊):152-155.
    [145]王志武,费勤楠,梅伟等.300MW汽轮机高压主汽阀阀杆断裂原因分析[J].金属热处理,2011,36(8):21-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700