抑爆铝锰合金箔的开发与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的发展,燃油、乙烷等易燃易爆液态及气态化学品的储存和运输量越来越大。因此,抑制这些易燃易爆化学品在储运过程中燃烧、爆炸就尤为重要。目前,较为普遍的抑爆方法是在易燃易爆化学品中装填抑爆材料。
     金属抑爆材料多采用3003或3A21铝合金冷轧箔制成,铝箔经切缝、拉网叠制成型等工序,加工成蜂窝状结构,可以起到阻抗爆炸瞬间的能量释放,吸收爆炸产生的高温并迅速向外散热,阻止火焰的蔓延与扩大的作用,为存储和运输的安全提供保障。但是3003和3A21冷轧箔存在脆性大、伸长率低的缺点,加工困难,使用过程中易出现掉渣掉沫的现象。因此本文根据公司要求,制得FJ-1、FJ-4两种合金铸坯,并将其轧制成箔,通过研究成品退火对合金箔力学性能、热导率和电导率的影响,确定成品退火工艺,最终得到力学性能良好,热导率、电导率符合要求的抑爆材料。
     本文利用Metalscan2000/2000F型发射光谱仪、带偏光的金相显微镜(OM)等分析手段,通过调整各添加元素的吸收率,制得成分符合公司要求的两种合金铸坯,并研究均匀化退火工艺对合金铸坯显微组织的影响,确定合适的均匀化退火工艺。然后将两种合金铸坯轧制成箔,研究成品退火工艺对合金箔显微组织、力学性能、热导率和电导率的影响,并与普通抑爆材料的各项性能指标作出比较。
     研究结果表明,FJ-1合金铸坯晶粒呈等轴状分布,晶粒的平均尺寸为68um,晶界处有块状相和骨骼状相析出。经580℃×4h的均匀化退火后,合金中块状相和骨骼状相完全溶解,呈细小颗粒状分布。FJ-4合金铸坯的铸态组织主要由树枝状的a-A1相和枝晶间的共晶体组成,经600℃×4h的均匀化退火后合金中骨骼状和不规则块状第二相消失。
     FJ-1冷轧箔的显微硬度为86HV,抗拉强度为205MPa,伸长率为3%,随着退火温度的升高,合金箔的硬度和抗拉强度减小,伸长率增大。经340℃x2h退火后,FJ-1合金箔的显微硬度为48HV,抗拉强度为131MPa,伸长率为28%。FJ-4冷轧箔的显微硬度为81HV,抗拉强度为197MPa,伸长率为2.5%,经340℃x2h退火后合金箔的显微硬度为56HV,抗拉强度为138MPa,伸长率为26%。两种合金箔的强度和硬度均达到抑爆材料的要求,且塑性良好。340℃下延长保温时间,两种合金箔的力学性能改变不大。
     FJ-1冷轧箔的电导率为42%IACS,热导率为161W.(m.K)-1,FJ-4冷轧箔的电导率为40%IACS,热导率为156W·(m·K)-1。两种合金箔的电导率和热导率均随退火温度的升高先增大,后有所减小。经340℃x2h退火后,FJ-1合金箔的电导率为50%IACS,热导率为215W.(m.K)-1,FJ-4合金箔的电导率为48%IACS,热导率为208W.(m.K)-1,均符合金属抑爆材料对电导率和热导率的要求。
With the development of the industry, the storage and transportation quantity of fuel, ethane and other explosive fluid chemicals is becoming larger and larger. So, it is important to restrain these chemicals explode in storage and transportation process. At present, the most popular method to restrain explode is filling metal explosion suppression materials in explosive chemicals.
     Most of the metal explosion suppression materials are made by3003or3A21cold rolled foils. The aluminum foils were made by slitting and stretching into a network of honeycombed. However,3003and3A21cold-rolled foils are crisp and difficult to be machined. In addition, the fragile aluminum foils create a problem that explosion suppression materials are easy to generate debris. So in this paper, according to the requirements of a company, FJ-1, FJ-4aluminum-manganese alloys were obtained and then rolled into foil. This paper discusses the impact of annealing temperature and soaking time on the mechanical properties, thermal conductivity, electrical conductivity of those two kinds foils and got the most appropriate annealing process. Finally obtained the metal explosion suppression materials with high hardness, high strength, good plasticity and eligible thermal conductivity and electrical conductivity.
     In this paper, to get the ingredient qualified aluminum-manganese alloy ingot blanks by adjusting the alloy elements additions and by using analysis and test facilities such as Metalscan2000/2000F Emission Spectrometer, Optical Microscopy(OM),and mechanical properties testing. Then study on the influences of the temperature of homogenizing treatment, soaking time, cooling method on the microstructure of the alloy ingot blanks to get the most appropriate annealing process. Next, rolling the alloy ingot blanks into foils, and study on the influences of the annealing temperature, soaking time on the microstructure, mechanical properties, thermal conductivity, electrical conductivity of the alloy foils and drew a comparison with usual metal explosion suppression materials.
     The results shows that the grains of FJ-1alloy are equiaxed shape and the average grain size is68μ m. There are massive phases and skeletal phases separate out in the grain boundaries. After homogenizing annealing of580℃X2h, the massive and skeletal precipitated phases have been completely broke down and turn to granulated shape. The microstructure of FJ-4alloy ingot blanks is composed of dendritic a-Al and precipitated phases between the dendritic crystal. The precipitated phases are massive or skeletal and turn to granulated shape after homogenizing annealing of600℃X4h. Extending soaking time, the precipitated phases of the two alloy would grew up.
     The two kinds alloy foils were been annealing treatment. And with the increase of annealing temperature, the hardness and strength of the foils decreases and the elongation increases. After annealing of340℃×2h, the Vickers hardness of FJ-1alloy foil is48HV, the tensile strength is131MPa, and the elongation reaches28%. The Vickers hardness of FJ-4alloy foil is56HV, the tensile strength is138MPa, and the elongation is26. The hardness and strength of these two alloy foils both fit for serving as metal explosion suppression materials. And the foils have good plasticity and easy to process. Extending soaking time under340℃causes little change of the mechanical properties of the foils.
     The thermal conductivity and electrical conductivity of the two kinds alloy foils increase at first and then decrease as the increase of the annealing temperature. After annealing of340℃×2h, the electrical conductivity of FJ-1alloy foil is50%IACS, and the thermal conductivity is215W·(m·K)-1. The electrical conductivity of FJ-4alloy foil is48%IACS, and the thermal conductivity is208W.(m· K)-1. Both the two kinds foils fit for serving as metal explosion suppression materials.
引文
[1]侯向东,王祝堂.易燃易爆流体储运抑爆铝箔[J].轻合金加工技术,2011,39(6):1-10
    [2]汪之清,贺发达,高子江等.抑爆材料及其应用前景[J].消防科技,1992,(6):13-18
    [3]Robert Zalosh. Deflagration suppression using expanded metal mesh and polymer foams[J]. Journal of Loss Prevention in the Process Industries,2007,20:659-663
    [4]Kobori, Mamoru; Handa, Takashi; Yumoto, Taro. Effect of tank height on fire speead between two model oil tanks[J]. Journal of Fire and Flammability,1981,12:157-168
    [5]曾海军.民用航空器燃油箱防爆的设计和合格审定[J].民航科技,2005(2):60-65
    [6]邢志祥,张贻国,马国良.网状铝合金抑爆材料抑爆性能研究[J].中国安全科学学报,2012,22(2):75-80
    [7]南子江,宋爱英,曹法和等.铝合金抑爆材料抑爆性能研究[J].兵器材料科学与工程,2001,24(4):19-22
    [8]王树有,郑应民,顾晓辉.铝合金抑爆材料性能对比实验分析[J].爆破器材,2005,34(3):36-38
    [9]周丹,陈长江.浅析HAN阻隔防爆材料的性能与应用[J].消防技术与产品信息,2002,(7):74-75
    [10]刘定胜.装甲车辆采用防爆材料[J].兵器材料科学与工程,1991,(8):19
    [11]田宏,顾伟芳,田原.防火抑爆材料eXess[J].消防技术与产品信息,2006,9:60-64
    [12]田宏,吴穹,左哲等.防火防爆用网状金属材料[J].工业安全与环保,2004,30,(3):38-40
    [13]潘复生,张静等.铝箔材料[M].北京,化学工业出版社,2005
    [14]田原,顾伟芳,田宏.新型网状铝合金防火抑爆材料的性能及其应用[J].工业安全与环保,2007,33,(3):38-40
    [15]李建国,苏丽媛,孙是丁.3003防爆铝箔在油品中的腐蚀原因研究[R].中国铝加工技术创新及产业升级大会,2010:203-209
    [16]李广琴,左秀荣,宋天福等.变形铝锰系合金的应用现状及发展动态[J].材料热处理,2006,35(10):63-67
    [17]王凤春,陈世光,于凡.改善电子屏蔽铝合金箔冲压性能的研究[J].轻合金加工技术,2004,32(9):15-16
    [18]汝成友,王德贤.HAN阻隔防爆技术的防爆原理及其应用[J].中国科技信息,2006,(18):295-296
    [19]Sun Jianhua, Zhao Yi,Wei Chongrong. The comparative experimental study of the porous materials suppressing the gas explosion[J]. Procedia Engineering,2011,26:954-960
    [20]韩志伟,解立峰,宋晓斌等.球形抑爆材料与网状抑爆材料抑爆性能对比研究[J].爆破器材,2011,40(6):15-18
    [21]卢徐节,丁帮勤.铝镁合金抑爆材料和抑爆性能研究[J].沈阳工程学院学报,2006,2(2): 176-178
    [22]A.M.Birk. Review of expanded aluminum products for explosion suppression in containers holding flammable liquids and gases[J]. Journal of Loss Prevention in the Process Industries,2008,21:493-505
    [23]钟若瑛.铝合金抑爆材料在飞机燃油箱上的应用研究[D].[硕士学位论文].西安:西北工业大学
    [24]王季庄,邱镇来.一种抑爆材料的生产方法[P].中国,发明专利,CN1904103A,2007
    [25]陈楼,王瑞海,王亮等.一种阻隔防爆材料及其制造方法[P].中国,发明专利,CN101906561A,2010
    [26]邱镇来.加油站油罐阻隔抑爆材料铝箔[P].中国,发明专利,CN102181756A,2011
    [27]黄晓东.一种新型抑爆材料[P].中国,发明专利,CN101956104A,2010
    [28]韩淑芝,娄明珠.锰含量对3004铝合金组织的影响[J].轻金属,1993,1:61-63
    [29]石敏,刘炳,孙金梅.锰含量对铝锰合金冲击韧度和显微组织的影响[J].材料热处理技术,2010,39(18):13-19
    [30]李学朝.铝合金材料组织与金相图谱[M].北京,冶金工业出版社,2010
    [31]蒋大鸣,张雨平.微量元素在铝合金中的作用[J].轻合金加工技术,2001,29(3):1-5
    [32]李荣平.退火和轧制变形对3003阴极电子铝箔显微组织的影响[D].[硕士学位论文].郑州:郑州大学,2011
    [33]王瑞亮,李新涛,高作文等.Cu对3004铝合金板材组织和性能的影响[J].轻合金加工技术,2010,38(5):50-52
    [34]康绍海,丁冬雁,高勇进等.含Zn3003铝合金的显微组织与性能[J]上海有色金属,2011,32(3):107-110
    [35]汪立峰.铝中合金元素和杂质对器材性能的影响分析[J].现代商贸工业,2009,18:321-322
    [36]王吉会,郑俊萍,刘家臣等.材料力学性能[M].天津:天津大学出版社,2006
    [37]胡宾宾.AA1235铝箔毛料的组织表征和控制[D].[硕士学位论文].重庆:重庆大学,2008
    [38]Ramirez J C, Backerman C. Examination of binary alloy free dendritic growth theories with a Phase-field mode [J].ActaMaterialia,2005,(53):1721-1736.
    [39]莫建新.3104铝合金大扁锭组织特性及均匀化处理研究[D].[硕士学位论文].湖南:中南大学,2011
    [40]仲志国,左秀荣,翁永刚等.变形铝合金均匀化热处理的应用现状与研究进展[J].轻合金加工技术,2006,34(1):10-14
    [41]Eivani A R, Ahmed H, Zhou J, Duszczyk J. Evolution of grain boundary phases during the homogenization of AA7020 aluminum alloy [J]. Metallurgical and Materials Transaction A, 2009,40(3):717-728
    [42]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社,2003
    [43]Porter D A, Easterling K E. Phase. Transformation in metals and alloy[M]. Oxford:Alden Press,1981
    [44]肖纪美.合金能量学[M].上海:上海科学出版社,1985
    [45]胡赓祥,蔡殉,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2006
    [46]韩德胜,李荻.成形加工和飞行震动对防爆铝箔力学性能的影响[J].材料导报,2005,19(5):115-117
    [47]徐丽珠,张民生.退火态3003铝合金板材拉伸断口的研究[J].轻合金加工技术,2010,38(2):30-32
    [48]Li Y J, Amberg L. Evolution of eutectic intermetallic particles in DC-cast.AA3003 alloy during heating and homogenization[J].Materials Science and Engineering A,2003,347:130-135
    [49]王学书,聂波,谢延翠.热处理制度对7075铝合金电导率的影响[J].轻合金加工技术,2001,29(7):40-45
    [50]谢延翠,师雪飞,齐国栋.热处理制度对2A21铝合金电导率的影响[J].轻合金加工技术,2003,31(11):44-46
    [51]张建新,高爱华.改善铝合金导热性能途径的初探与分析[J].稀有金属,2005,29(3):289-292
    [52]钟建华,张建新,饶克等.提高铝合金导热性能的研究[J].铸造技术,2003,24(6):549-550
    [53]刘顺华,毕国权,李长茂等.退火改善铝导体的组织与性能[J].机械工程材料,2000(3):41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700