垃圾焚烧锅炉多目标优化运行评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展,人们生活水平的迅速提高,城市化进程的不断加快,城市生活垃圾产量急剧增加。城市生活垃圾处理技术主要包括卫生填埋、垃圾堆肥、垃圾焚烧及综合利用四种,其中垃圾焚烧处理技术具有减容化、无害化、资源化方面的独特优势,正作为一种比较成熟的处理技术在我国大中型城市得到大力推广应用。
     由于城市生活垃圾具有热值较低、水分较高、成分复杂等特点而导致垃圾在焚烧发电过程中出现燃烧稳定性较差、垃圾焚烧锅炉运行经济性较差、垃圾焚烧污染物原始排放浓度较高等问题。为了更好地解决这些问题,需要对垃圾焚烧过程中燃烧稳定性、垃圾焚烧锅炉运行经济性与环保性进行及时评价分析和诊断,根据评价结果制定相应的优化策略指导垃圾焚烧锅炉优化运行。因此,垃圾焚烧锅炉多目标优化运行评价为垃圾焚烧锅炉优化运行提供了重要的理论依据。本论文通过理论分析的方式,针对垃圾焚烧机理、垃圾焚烧污染物形成机制及垃圾焚烧锅炉多目标优化运行评价这些方面开展以下几点研究:
     详细地介绍了垃圾焚烧技术的基本原理,对垃圾焚烧炉燃烧过程、影响垃圾焚烧的主要因素及垃圾焚烧烟气中HCl、NOx、SO2、二恶英等各种污染物的形成机制进行了分析。
     以某城市生活垃圾焚烧锅炉为研究对象,当垃圾热值变化时,利用垃圾焚烧锅炉热力校核计算方法对该垃圾焚烧锅炉分别进行了传热校核对比计算和锅炉热效率对比计算,研究了不同风量配比对垃圾焚烧锅炉热效率的影响情况。
     基于垃圾焚烧锅炉运行的历史数据信息,将反映垃圾焚烧锅炉运行经济性与环保性、燃烧稳定性三个小目标及整体目标的评价指标分别进行提炼,运用主成分分析方法分别对垃圾焚烧锅炉运行经济性与环保性、燃烧稳定性三个小目标及整体目标进行了评价。
     最后总结了全文的主要研究内容,并对现有研究工作的不足和仍需完善之处提出了建议和展望。
With the high-speed development of economy、the rapid improvement of civil life and the incessant speedup of city course, the total yield of municipal solid wastage(MSW) per year is rapidly increased. There are four main ways to dispose MSW, that is sanitary fill、MSW compost、MSW combustion and synthetically use, the disposal technology of municipal solid waste combustion has been applied in large or middle size city, because it has the unique advantage of reducing capacity、being harmless to healthy and utilizing resource.
     Because MSW has the characteristic of lower heat value、superior water、complicated component, lower combustion stability、lower operation economy in MSW boiler and superior letting concentration of contamination brought by MSW combustion had happened in the process of electricity generated by MSW combustion. To solve these problem commendably, combustion stability、operation economy and environment in MSW boiler in the process of MSW combustion need to be evaluated and diagnosed in good time, optimization-strategy will be instituted on the basic of evaluation results in order to guide MSW boiler to realize optimization operation. So, evaluation on multi-target optimization operation in MSW boiler provides important theory gist for optimization operation in MSW boiler. This work aims at MSW combustion mechanism、the mechanism of forming contamination and evaluation on multi-target optimization operation in MSW boiler according to theory analysis. The following investigations were made in this dissertation.
     The essential theory of MSW combustion technology were introduced in detail, the process of MSW combustion、the primary factor of affecting MSW combustion and the mechanism of forming contamination including HCl、NOx、SO2、dioxin from MSW combustion flue gas were analyzed.
     Took some MSW boiler for studying object, when the heat value of MSW changed, this MSW boiler was carried through heat transfer checking computation and heat efficiency computation in different gross of air by utilizing the method of checking thermal calculation, different gross of air which can affect the heat efficiency of MSW boiler were researched.
     According to a large amount of historical data in MSW boiler performing, assessing index which can reflect the stability of combustion、the economy and environment of performance in MSW boiler and integrated index were tried out, the stability of combustion、the economy and environment of performance in MSW boiler and integrated target were evaluated by utilizing the method of principal component analysis(PCA).
     Finally, the primary research works were summed up, the prospects and advice for the further studies on existing research works were put forward.
引文
[1]李健,高沛峻.垃圾处理技术[M].北京:中国建筑工业出版社,2005.
    [2]王华.二恶英零排放城市生活垃圾焚烧技术[M].北京:冶金工业出版社,2001.
    [3]宋晓岚.城市垃圾处理与可持续发展[J].长沙大学学报,2001,第4期:36~40.
    [4]韩光福,黄刚飙等.城市固体废弃物—生活垃圾处理技术发展方向[J].东南大学学报(哲学社会科学版),2001,第3卷第4期.
    [5]张益,赵由才.生活垃圾焚烧技术[M].北京:化学工业出版社,2000.
    [6] Kai Shen, Jidong Lu, Zhenghua Li, Gang Liu. An adaptive fuzzy approach for the incineration temperature control process[J]. Fuel, 2005, Vol.84:1144-1150.
    [7] Jidong Lu,Kai Shen,Gang Liu, et al. Adaptive fuzzy controller for municipal incinerators[C]. 3rd i-CIPEC, October 21-23, 2004, Hangzhou, China.
    [8] Jidong Lu, Kai Shen, Tongyong Dong, et al. Research on the fuzzy control of incinerator of municipal solid waste[C].Proceedings of the International Conference on Power Engineering-03(ICOPE-03), November9-13,2003, Kobe, Japan.
    [9]沈凯,陆继东,昌鹏,等.模糊自适应方法在垃圾焚烧炉温度控制系统中的应用[J].动力工程,2004,24 (3):366-369.
    [10]昌鹏,陆继东,沈凯,等.垃圾焚烧炉炉温加权因子自适应控制方法研究[J].锅炉技术,2004, 35(6):77-81.
    [11]张衍国,王哲明,李清海,等.炉排-流化床垃圾焚烧的热态试验研究[J].热力发电,2005(8):19-22.
    [12]张衍国,武俊,李清海,等.垃圾焚烧重金属迁移特性及其影响因素[J].环境污染治理技术与设备,2005,6(12):6-12.
    [13] Zhang Yanguo,Li Qinghai,Meng Aihong,et al. Effects of Sulfur Compounds on Cd Partitioning in a Simulated Municipal Solid Waste Incinerator[J].Chemical engineer,15(2007):889-894.
    [14]李清海,张衍国,陈勇,等.垃圾焚烧发电厂热力系统的特点及优化[J].热力发电,2005(9):66-68.
    [15]蒋旭光,李香排,池涌,等.流化床中典型垃圾组分与煤混烧时HCl排放和脱除研究[J].中国电机工程学报,2004, 24(8):210-214.
    [16]金余其,徐旭,李威武,等.城市垃圾焚烧HCl排放与脱除试验研究[J].燃烧科学与技术,2001,7(4):270-273.
    [17]张东平,严建华,池涌,等.流化床垃圾焚烧NOx排放的神经网络预测[J].电站系统工程,2004,20(3):1-3.
    [18]徐旭,严建华,岑可法.垃圾焚烧过程二恶英的生成机理及相关理论模型[J].能源工程,2004 (4):42-45.
    [19]李建新,严建华,金余其等.生活垃圾焚烧飞灰重金属特性分析[J].浙江大学学报(工学版),2004, 38(4):490-494.
    [20]潘新潮,马增益,王勤等.等离子体技术在处理垃圾焚烧飞灰中的应用研究[J].环境科学,2008,29(4):1114-1118.
    [21]阎常峰,陈勇,李海滨等.垃圾综合治理焚烧过程中重金属的迁移规律[J].太阳能学报,2005,26(6):887-892.
    [22]阎常峰,林伯川,陈恩鉴,陈勇.垃圾焚烧灰渣中硫、氯、氟及磷的沉积分布规律[J].燃烧科学与技术,2003,9(2):165-168.
    [23]赵光杰,李海滨,赵增立,阎常峰,吴创之.电热式熔融固化垃圾焚烧飞灰的实验究[J].可再生能源,2005,123(5):44-46.
    [24]马晓茜,汤勇.层燃式焚烧炉中垃圾团块内部温度场分析[J].燃烧科学与技术,2000,6(1):54-56.
    [25]马晓茜,孙振刚.焚烧炉中多孔介质状垃圾团块传热分析[J].工程热物理学报,2002,23(8):157-160.
    [26]马晓茜.垃圾焚烧炉炉内环境与入炉垃圾间的传热分析[J].电站系统工程,1999,15(1):45-48.
    [27]马晓茜,卢苇.垃圾焚烧炉热力模型研究[J].化学工程,2000,28(4):36-40.
    [28]赵绪新,马晓茜.CAO垃圾焚烧系统热力模型研究[J].工业加热,2001(1):14-16.
    [29] R H Essenhigh, Proc Nat Incinerator Conf. Amer Soc Mech Eng[J]. New York, 1968,87,2.
    [30] R H Essenhigh, T J Kuo.Proc Nat Incinerator Conf Amer Soc Mech Eng[J]. New York,1970,2.
    [31] J塞克利,J W埃文斯,H Y索恩,胡道和译.气-固反应[M].北京:中国建筑工业出版社,1986,400.
    [32] Y.B.Yang, Y.R. Goh,etal. Mathematical modeling of MSW incineration on a travelling bed[J]. Waste Management .2002, 22:369-380.
    [33] Y.B. Yang, Y.R. Goh, etal. Effect of Channel Size on the Mixing/Combustion Process in a packed-Bed [J].Waste Incinerator, in preparation.
    [34] Onishi K.Fuzzy control of municipal refuse incineration plant[J].Collected Papers of Automatic Measurement Control Society.1991, 27(3):326-332.
    [35] Ryu C K, Shin D H and Choi S M, Effect of fuel layer mixing in waste bed combustion[J]. Advances in Environmental Research, 2001, 5(5): 259-267.
    [36] Kalitko V A and Mosse A L, Thermal Processing of Wastes in a Shaft Incinerator with a Plasma Blast and a Combustible Filtering Material: Analysis of the Energy Consumption and Variants[J].Journal of Engineering Physics and Thermophysics, 2001, 74(1): 119-129.
    [37] Cole J A, Widmer NC and Seeker W R et.al., Research and development to improve naval shipboard waste management using a compact closed-loop-controlled waste incinerator[J].Chemosphere,2001, 42(5): 765-774.
    [38] Yasuyuki Fujita, Masahide Nishigaki, Stoker-Type Incineration Technology for Municipal Solid Waste, The 3rd International Conference on Combustion, Incineration / Pyrolysis and Emission Control[C].October 21-23, 2004, Hangzhou, China, 105-110.
    [39] M. Leskens, L. B. M. Van Kessel, P. M. J . Van den Hof .MIMO closed2loop identification of an MSW incinerator [J].Control Engineering Practice , 2002 , (10) :315-326.
    [40]朱金荣.链条炉排的分区模型[J].热能动力工程,2000,15:50-52.
    [41] H. Huang, A. Buekens. On the mechanisms of dioxin formation in combustion processes [J].Chemosphere,1995,31(9):4099-4117.
    [42]徐旭,严建华,岑可法.垃圾焚烧过程二恶英的生成机理及相关理论模型[J] .能源与环境,2004,4:42-45.
    [43] Kari Tuppuraincn,Ismo Haloncn,Paivi Ruokojzrvi,etal,Formation of PCDD/Fs in Municipal Solid Waste Incineration and its inhibition Mechanisms:A Review[J].Chemospere,1998.36(7):1493-1511.
    [44]张永照.工业锅炉[M].北京:机械工业出版社.1993.10.
    [45]范金城,梅长林.数据分析[M].北京:科学出版社.2002.3.
    [46]李国良,贺小明,朱文彬,等.火电厂经济性评价管理系统开发研究[J].华东电力,2008,36(10):25-28.
    [47]卢志刚,韩彦玲,朱连波,等.考虑负荷变化的多运行数据配电网经济性评价[J].电力系统及其自动化学报,2009,21(2):109-114.
    [48] R.W.J.Westerhout, M.P.Van Koning sbruggen, A.G.J.Van DerHan,etc. Techno—Economic Evaluation of High Temperature Pyrolysis Process for mixed plastic waste[J].Chemical Engineering Research and Design, 1998, 76(3):427-439.
    [49]姜宝成,王永镖,李炳熙.地源热泵的技术经济性评价[J].哈尔滨工业大学学报,2003,35(2):195-198,202.
    [50]张保生.主成分分析法在发电企业财务风险评价中的应用研究[J].中国管理信息化,2009,12 (3):33-35.
    [51]朱颖超.基于主成分分析法的炼油企业绩效评价[J].工业技术经济,2008,27(6):81-84.
    [52] Narasimhan S,Mah R S H,Tamhane AC,et al. A composite statistical test for detecting changes of steady states[J].AIChE Journal,1986,32(9):1409-1418.
    [53] Narasimhan S,Chen S K,Mah R S H.Detecting changes of steady states using the mathematical theory of evidence[J].AIChE Journal,1987,33(1):1930-1932.
    [54]刘吉臻,杨光军,潭文,等.基于数据驱动的电站燃烧稳定度综合评价[J].中国电机工程学报,2007,27(35):1-6.
    [55]方向阳,姜书翔.乌鲁瓦提水电站机组运行稳定性分析[J].水电站机电技术, 2004, 8(5):20-22.
    [56]周怀春.煤粉火焰稳定性的动态分析及状态诊断的研究[D].武汉:华中理工大学,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700