天然气加气站事故交通应急疏散策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油资源的日益短缺和国家能源战略的调整、环保要求和汽车技术的不断提高,燃气车辆不断增多,与之相对应的车用加气站的数量也越来越多。然而,接连发生的加气站燃气泄漏与火灾事故使得加气站的使用安全问题成为安全监管部门、加气站运营人员、驾乘人员甚至加气站周边居民日益关注的问题。如何避免事故的发生以及一旦发生燃气泄漏和火灾等紧急突发事故后,应该采取什么样的措施来尽可能的减少事故伤亡、降低损失,以及如何进行应急交通疏散来避免交通拥堵便成为了问题的焦点。因此,根据加气站突发事故特点来研究事故应急交通疏散策略便显得尤为重要。
     本文首先对加气站的基本概念、分类、以及常规安全措施进行了讨论,分析了加气站的安全设计、设施、要求以及加气站的安全管理措施,依据具体加气站为实例介绍了加气站的安全结构与生产运营模式。本论文接着对加气站事故类型进行了统计与分类,把加气站主要事故划分为燃烧、爆炸、泄漏三类。在进一步分析了各类事故的主要危害的基础上,针对破坏程度较大并且发生频率较高的蒸气云爆炸事故进行了具体的“爆炸边界”分析,将其分为死亡、重伤、轻伤和安全四种不同的“爆炸边界”,并对四种边界进行了简要的计算,使CNG加气站事故更加具体化与简洁化。本文基于应急交通的机理,将应急交通疏散简要分为可预警突发事件交通疏散与非可预警突发事件交通疏散,并引入三种交通疏散策略:分区分阶段疏散策略、反向交通流以及交叉口疏散侧率。在参考《国家突发公共事件总体应急预案》的基础上,将CNG加气站爆炸事故按不同事故等级划分成四类。论文相应提出了四种不同级别下的疏散策略:人流疏散,警告疏散,禁行疏散,强制疏散。最后本文以成都西北桥加气站为实例,使用VISSIM及TransCAD软件分别对四种不同的疏散策略进行了交通仿真。仿真结果说明所提出的疏散策略的合理性与可操作性。
Because the growing shortage of petrol resources and national energy strategy adjustment accompany with the environmental requirements and continues development of vehicle technology, gas vehicles was highly increased. Correspondingly the number of compress natural gas (CNG) stations becomes more and more. However, as the consequence the spate of CNG station accidents as leakage and explosion make the using security as a serious problem which getting more and more attention among the administration, stations operator, drivers and even the residents around the CNG stations. Thus, how to avoid accident and what should people do if the accident happened to reduce the lost? And what kind of emergency traffic evacuation scheme is useful for preventing the occurrence of traffic congestion even traffic damage as far as possible. All these questions have significant realistic meaning and become the focus. All of that remind us it is very important to research the evacuation scheme based on the characteristics of emergency accident itself.
     Firstly, the basic conception, classification and routine security measures of CNG station were discussed in this paper also the security standards of design, facilities, requirements and management measures in CNG station were analyzed. According to specific example, security structure and operation mode of CNG station were introduced. Secondly, we make a statistics of CNG station accidents and mainly classify them into three types: combustion, explosion and leakage. And further introduce the main damage of every type of accident. Focus on the gas cloud explosion accident which is the commonest accident type and may bring a great lost the“explosion borders”were calculated: death radius, serious injury radius, minor injury radius and safety radius which were based on the different damage level and makes the CNG station accidents became more concrete and concise. This paper also introduces the principle of emergency traffic, divides the emergency evacuation into two parts: alertable emergency evacuation and un-alertable emergency evacuation. Three traffic evacuation measures were introduced: staged evacuation、contraflow and intersection evacuation scheme. Based on the“national master plan for responding to public emergencies”we classify the accidents into four different levels. Consequently, four different evacuation schemes were got. They were: pedestrian evacuation、alert evacuation、forbidden evacuation and mandatory evacuation. Finally, we taking the Xibei Bridge CNG station as a real model of the accident and making traffic simulation with the help of VISSIM and TransCAD to proof the rationality and maneuverability of that four evacuation schemes
引文
[1]国务院.国家突发公共事件总体应急预案,2006年1月.
    [2]Kaiser G, D.A review of models for Predicting the dispersion of ammonia in the atmosphere. [J]Plan/Operations Progress,1989,8(l):58-64
    [3]Fiseher,Franz,BEB Erdgas and Erdol GmbH. Methods and Results of Risk Assessment For Sour Gas Production Systems, 1992[C].219-226, SPE.
    [4] Peat, Marwick, Mitchell and Company. Network Flow Simulation for Urban Traffic Control, System-Phase II.v.1, prepared for the Federal Highway Administration, Washington, D.C., 20590. 1973
    [5] T. Sugiman and M. Jyuji. Development of a New Evacuation Method for Emergencies: Control of Collective Behavior by Emergent Small Groups. Journal of Applied Psychology. 1988, 73(1): 3-10
    [6] Z. Sinuany-Stern and E. Stern. Simulating the Evacuation of a Small City: the Effects of Traffic Factors. Socio-Economic Planning Sciences.1993, 27(2): 97-108
    [7] X. Chen, J. W. Meaker and F. B. zhan. Agent-Based Modeling and Analysis of Hurricane Evacuation Procedures for the Florida Keys. Natural Hazards.2006, 38(3):321-338
    [8] X .Chen and F. B. Zhan. Agent-based Modeling and Simulation of Urban Evacuation: Relative Effectiveness of Simultaneous and Staged Evacuation Strategies. Presented at 83rd Annual Meeting of the Transportation Research Board, Washington, D.C., 2004
    [9] R. L. Church and R. M. Sexton. Modeling Small Area Evacuation : Can Existing Transportation Infrastructure Impede Public Safety? Caltrans Testbed Center for Interoperability Task Order 3021 Report, Vehicle Intelligence and Transportation Analysis Laboratory, University of California, Santa Barbara, 2002
    [10]Thomas J. Cova, Justin P. Johnson .A network flow model for lane-based evacuation routing.Transportation Research Part A 37,579-604,2003.
    [11]M. Batty, J. DeSyllas and E. Duxbury. The Discrete Dynamics of Small-scale Spatial Events: Agent-base Models of Mobility in Carnivals and Street Parades. International Journal of Geographical Information Science.2003, 17(7): 673-697
    [12]L. D. Han, F. Yuan. Evacuation Modeling and Operations Using Dynamic Traffic Assignment and Most Desirable Destination Approaches. Paper Presented at the Transportation Research Board 2005 Annual Meeting, Washington D.C., 2005
    [13]Y. Liu, X. Lai and G. L. Chang. A Two-level Integrated Optimization Model for Planning of Emergency Evacuation: a Case Study of Ocean City under Hurricane Evacuation. Transportation Research Board, No.05-1786, 2005: 34-41
    [14]赵永涛.天然气爆炸效应及应用探讨[J],爆破2006,23(4):90-92
    [15]庞建军,杨志波.汽车加油加气站爆炸原因分析及预防措施[J],工业安全与环保,2008,34(6):26-27
    [16]陈杰,李求进,吴宗之. 100起CNG加气站事故的统计分析及对策研究[J],中国安全生产科学技术,V5 N1, 2009:71-75
    [17]袁建平,方正,卢兆明,黄河潮.城市灾时大范围人员应急疏散探讨[J],自然灾害学报.2005,14(6):116-119
    [18]温丽敏.重大事故应急疏散研究[D],东北大学博士论文.2000:1-17
    [19]李伏京,方卫宁,胡清梅,邓野.地铁车辆安全疏散性能的仿真研究[J],系统仿真学报.2006,18(4):852-855
    [20]蒋光胜.大城市突发事件交通组织与疏散对策研究[D],北京工业大学硕士论文.2005
    [21]徐高.人群疏散的仿真研究[D],西南交通大学硕士论文.2003:1-23
    [22]魏新利,李惠萍,王息健.工业生产过程安全评价[M],北京:化学工业出版社,2005
    [23]刘诗飞,詹予忠。重大危险源辨识及后果分析[M],北京:化学工业出版社,2004
    [24]刘铁民,张兴凯,刘功智.安全评价方法应用指南[M],北京:化学工业出版社,2005
    [25]戴树和.工程风险分析技术[M],北京:化学工业出版社,2007
    [26]蒋军成,郭振龙.工业装置安全卫生评价方法[M],北京:化学工业出版社,2004
    [27]宇德明.易燃、易爆危险品运输过程定量风险评价[M],北京:中国铁道出版社,2000
    [28]蒋军成.郭振龙.安全系统工程[M],北京:化学工业出版社,2004
    [29]蒋军成,郭振龙.工业装置安全卫生评价方法[M],北京:化学工业出版社,2004
    [30]吴宗之,高进东,魏利军.危险评价方法极其应用[M],北京:冶金工业出版社
    [31]祖因希.祖建国.汽车加油加气站安全技术管理[M],北京:化学工业出版社,2005
    [32]Hodgkinson P E, Stewart M. Coping with Catastrophe: a Handbook of Disaster Management [M]. London: Rout-ledge, 1991.
    [33]Barrett B, Ran B, Pillai R. Developing a dynamic trafficmanagement modeling framework for hurricane evacuation[C].The 79th Transportation Research Board AnnualMeeting. Washington DC: TRB, 2000: 115-121.
    [34]Choularton R. Complex organizational learning from disasters[J].Safety Science, 2001, 39(8): 61-70.
    [35]吴国斌,王超.重大突发事件扩散的微观机理研究[J].软科学,2005,19(6):4-7.
    [36]Hu Hong, Liu Xiao-ming, Yang Xiao-kuan. Study on building upscientific and rational emergency management mechanism in China[C]. Proceedings of International Conference on Public Administration. Chengdu: Press of University of Electronic Science and Technology of China, 2006: 391-397.
    [37]Sorensen J H, Vogt B M, Mileti D S. Evacuation: an assessment of planning and research[R]. Washington DC: Oak Ridge National Laboratory, 1987.
    [38]Southworth F, Chin S M. Network evacuation modeling for flooding as a result of dam failure[J]. Environment and Planning, 1987, 19(11): 1543-1558.
    [39]Franzese O, Han L D. Traffic modeling framework for hurricane evacuation [C]. The 80th Transportation Research Board Annual Meeting. Washington DC: TRB, 2001:591-597.
    [40]Dunn C E, Newton D. Optimal routes in GIS and emergency planning applications [J]. Area, 1992, 24(3): 259-267.
    [41]Yamada T. A network of approach to a city emergency evacuation planning[J]. International Journal of Systems Science, 1996, 27(10): 931-936.
    [42]Campos V E G, da Silva P A L, Netto P O B. Evacuation transportation planning: a method of identifying optimal independent routes[C]. Proceedings of Urban Transport V: Urban Transport and the Environment for the 21st Century. Southampton: WIT Press, 2000: 555-564.
    [43]Yang Sai-ni. An on-line emergency vehicle dispatching and routing model with area coverage constraints[C]. The 84th Transportation Research Board Annual Meeting. Washington DC: TRB, 2005: 841-845
    [44]Urbina E, Wolshon B. National review of hurricane evacuation plans and policies: a comparison and contrast of state practices[J]. Transportation Research Part A, 2003, 37(3): 257-275.
    [45]Heath S E, Kass P H, Beck A M, et al. Human and pet related risk factors for household evacuation failure during a natural disaster [ J]. American Journal of Epidemiology, 2001, 153(7): 659-665.
    [46]Southworth F. Regional evacuation modeling: a state of the art review[R]. Washington DC: Oak Ridge National Laboratory, 1991.
    [47]Gregoris·T and Brian·W.Modeling and analyses of freeway contraflow to improve future evacuations.Transportation Research Board, 2004.
    [48]Hediye Tuydes and Athanasios Ziliaskopoulos, Network Re-design to optimize evacuation contraflow. The 83th TRB Annual Meeting of 2004,Washington DC,USA.Jan,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700