高温微粒红外辐射特性测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化工、冶金、动力、建筑、医药、生物、食品、航天及大气科学等领域,存在大量粒子态物质。典型的含粒子介质包括:含炭黑及飞灰的火焰,催化反应器内反应物,射流及固体火箭尾喷焰等。固体火箭发动机喷焰内含有大量高温粒子Al_2O_3、MgO、ZrO_2和发射性气体H_2O、CO_2、CO。研究喷焰的红外特征,必须掌握高温粒子的光谱参数。粒子的光学常数(复折射率)属于基本物性参数,与其组份、温度、表面状况有关。由于粒子的比表面积比其块状物质大得多,且高温粒子易聚集成团,导致粒子表面状况复杂,因此,粒子的光学常数并不等同于构成粒子材料的光学常数。粒子的复折射率不能直接通过实验测量(没有直接测量的仪器),须由实验测定其它量,然后结合相应的理论模型反求,属反问题研究。目前国内尚未开展高温粒子复折射率的研究。本课题来源于国家自然科学基金重点项目(编号:50336010),红外辐射特性及传输的多尺度多参数分析项目的一部分,其目的是研制高温粒子光谱辐射特性测量装置,对高温粒子进行在线测量,通过该装置实现对高温粒子的光学特性的理论和实验研究,提供不同温度下的粒子的光学特性测量数据库。
     论文研究围绕建立高温粒子光谱辐射特性测量装置及其实验测量这一特殊性要求,对该测量装置研制中所涉及的粒子辐射特性测量原理、测量方法、光散射理论、测量模型参数优化及测量不确定度评价方法等内容进行了深入的研究,主要完成了以下几方面的研究工作:
     1.建立了高温粒子光谱辐射特性测量装置,并调试完善了该实验装置。在国内率先开展高温下光谱复折射率的实验,实验平台能兼顾粒子与块状材料测量。实现了对多(微)粒子的悬浮和加热,实现了不同温度与浓度的准稳定粒子空间分布场,为粒子辐射奠定了实验基础。
     2.研究利用粒子系透射率光谱,结合精确Mie散射理论及色散K-K关系式的均一系粒子光谱复折射率反演模型,建立了高温粒子的光谱复折射率反演模型,并对反演的单值性和多值性进行了分析,同时分析了测量误差对反演模型的影响。
     3.为了比照粒子的复折射率的求解结果,并在实验中更好地对粒子系的浓度和平均粒径进行有效的检测,本文基于Mie光散射理论及Lambert-Beer光透射定律,利用遗传算法反演粒子系粒径分布。并在Matlab环境下仿真,仿真验证粒子辐射特性的一些关键参数,得出该求解方法是合理的。
     4.针对粒径分布反演传统算法收敛精度不高、易陷入局部最优的缺点,根据粒子群的激光透射模型,提出一种基于随机微粒群算法(SPSO)反演粒子系粒径分布的快速有效方法,对于非独立模式下的R-R分布、正态分布、对数正态分布等粒子粒径分布情况进行了反演计算,获得了合理的粒径分布。
     5.在介绍了FT-IR光谱仪使用和FT-IR响应函数确定的基础上,描述了采用Al_2O_3压片的粒子透射率实验和Al_2O_3弥散粒子的透射率测量试验,结合高温粒子复折射率反演模型反演得到不同温度下的Al_2O_3粒子的复折射率,并对实验系统不确定度进行了详尽的分析。
     本论文的研究内容为不同温度下粒子光学常数测量数据库的建立奠定了坚实的理论和技术基础。
Many materials in the fields of chemical, metallurgical, power, construction, medicine, biology, food, aerospace, military and atmospheric sciences, and other fields, are in state of particle. Typical particle medium include: the flame of contain carbon black and fly ash, reactant in catalytic reactor, jet stream and the plume of a solid propellant rocket. The plume of a solid propellant rocket engine is full of high temperature particles which include Al_2O_3、MgO、ZrO_2and emission gases which include H_2O、CO_2、CO. Inorder to research the spectral properties of the plume of a solid rocket, we must master spectral property of high temperature particle.
     The optical constant (complex refractive index) of the material is a basic physical property that is related to the composition, temperature and surface condition. Since the surface of the particle material is much bigger than that of the bulk material, moreover, since the high temperature particles are easy to accumulate into a mass, Thus the surface of the high temperature particle is very complicated and the complex refractive index of particle is big different from that of bulk material. The complex refrative index of particles can not directly measure through experiment (not have directly measure instrument), must survey other quantity from experiment, then combination corresponding theoretical model to inverse, it belongs to the conversion problem research. But now, our country has not developed high temperature complex refractive index of particle. This program is from nation natural science fund major project (serial number:50336010), is a part of item of multiple-dimensioned and multiparameter analyze in infrared radiation characteristic and radiation transfer. It’s purpose is to develop high temperature particle spectral radiation property measurement equipment, carries out online measurement on high temperature particle, realizes the theoretical and experimental research on high temperature particle optical property, offers different temperature optical property measurement data base.
     Based on the specific aspect of set up high temperature particle spectral radiation property measurement equipment and the particle spectral radiation property measurement under different temperature, combining the development of the spectral radiation property measurement instrument, the thesis elaborates the radation transfer theory deeply, optical property measurement method, light scattering theory, module parameter optimizing and the evaluation method of the measure uncertainty. The finished research works are as follows:
     1. Set up high temperature particle spectral radiation property measurement equipment, debug and well measurement equipment. Domestically, first to take off experiment of high temperature spectral complex refractive index, which can consider both particle and piece form material measurement. It realized multiform particle levitation and heat up; realized the quasi-stationary particle space distributing field of different temperature and density; established experiment foundation for particle radiation.
     2. Research on inversion model which use the precise Mie theory and the Kramers-Kronig relation and transmittance to solve complex refractive index of monodispersion particl. We establish inversion model of complex refractive index of high temperature particl, analyse monodrome and multiple valued of inversion model, analyse influence of measurement error to inversion model.
     3. In order to contrast result of complex refractive index of particle, better detect density andt average diameter of particl in experiment, based on the Mie theory and the Lambert-Beer transmittance law, we use genetic algorithms to inverse particle distribution. Under Matlab environment, we emulate and verify some crucial parameters of particle radiation property, prove the method is reasonable.
     4. To resolve the problems that the traditional algorithm of particle size distribution inversion has no good convergence accuracy and is apt to be trapped in local optima, a stochastic particle swarm optimizer(SPSO) algorithm, which is based on laser transmitting model, is proposed to estimate the size distribution of particles.The novel SPSO-based method is proved to be available to retrieve the reasonable particle size distribution such as R-R distribution, normal distribution and lognormal distribution for the independent model.
     5. Base on introduction using of FT-IR spectrometer and define of response function of FT-IR spectrometer, we proceed the preform transmission experiment and dispersion transmission experiment of Al_2O_3particles, we inverse the complex refractive index of Al_2O_3 particles under different temperature and analyse the uncertainty of experiment system.
     The studied contents of the thesis establish a strong technical and theoretical foundation for the complex refractive index of particle database under different temperature.
引文
1余其铮,谈和平,阮立明.煤在燃烧过程中各种产物辐射特性的研究.动力工程. 1993, 3:18~22
    2 E. I. Vitkin, V. G. Karelin, A. A. Kirillov, A. S. Suprun, J. U. Khadyka. A Physical-Mathematical Model of Rocket Exhaust Plumes. International Journal of Heat and Mass Transfer. 1997, 40 (5): 1227~1241
    3赵井泉,夏培杰.用计算机模拟技术研究潜影形成的机理.感光科学与光化学. 1986, 4 (3): 12~21
    4 T. Sakai, T. Tsuru, K. Sawada. Computation of Hypersonic Radiating Flowfield Over a Blunt Body. AIAA. Journal of Thermophysics and Heat Transfer. 2001, 15 (1): 91~98
    5 F. E. Kruis, A. Goossens, H. Fissan. Synthesis of semiconducting nanoparticles. Journal of Aerosol Science. 1996, 27: 165~166
    6 M. A. Tanbenblatt, J. S. Batchelder. Measurement of the size and refractive index of a small particle using complex forward-scattered electromagnetic field. Appl. Opt. 1991, 30(33): 4972~4979
    7 T. heibel. Use of Rayleigh scattering ratios to determine the refractive index of small particle. J. of Aerosol Science. 1993, 24: 221~222
    8 H. P. Tan, Y. Shuai, S. K. Dong. Analysis of rocket plume base heating by using backward Monte-Carlo method. AIAA J. of Thermophysics and Heat Transfer. 2005, 19(1): 125~127
    9 S. F. Gimelshein, D. A. Levin, J. A. Drakes, et al.Modeling of ultraviolet radiation in steady and transient high-altitude plume flows.AIAA J. of Thermophysics and Heat Transfer. 2002, 16(1): 58~67
    10 Baillis D., Sacadura J.F.. Thermal radiation properties of dispersed media: theoretical prediction and experimental characterizeation. J. Quantitative Spectroscopy and Radiative Transfer. 2000, 67: 327~363
    11郑楚光,李剑云,周英彪.燃烧微粒光学特性的测量与计算.华中理工大学学报. 1994, 22 (3): 25~29
    12阮立明.煤灰粒子辐射特性的研究.哈尔滨工业大学工科博士学位论文.1997, 7
    13王玄玉,潘公配,何艳兰.压片法测试纳米氧化铝的红外消光特性.光谱实验室. 2005, 22(2): 449~452
    14 R. B. Lyons, J. Wormhoudt, J. Gruninger. Scattering of radiation by particles in low-altitude plumes. J. Spacecraft and Rocke. 1983, 20 (2): 189~192
    15 E. J. Beiting. Solid rocket motor exhaust model for alumina particles in the stratosphere. J. Spacecraft and Rockets. 1997, 34 (3): 303~310
    16 W. K. Rhim, K. Ohsaka. Thermophysical properties measurement of molten silicon by high-temperature electrostatic levitator: density, volume expansion, specific heat capacity, emissivity, surface tension and viscosity. Journal of Crystal Growth. 2000, 208: 313~321.
    17 F. A. Akopov, G. E. Val’yano, A. Yu. Vorob’ev, V. N. Mineev, V. A. Petrov. Thermal radiative properties of ceramic of cubic ZrO2 stabilized with Y2O3 at high temperatures. High Temperature. 2001, 39 (2): 244~254
    18 L. A. Akashev, V. I. Kononenko. Optical properties of liquid aluminum and Al-Ce alloy. High Temperature. 2001, 39 (3):384~387
    19 A. V. Kostanovskii, M. G. Zeodinov, M. E. Kostanovskaya. Experimental determination of the emissivity of isotropic graphite at temperatures above 2300K. High Temperature. 2001, 39 (1):163~165
    20 M. Musella. , S. Eckhoff , H. R. Tschudi, I. Alxneit. Development of an apparatus for the determination of spectral reflectivity at high temperatures in the visible. Int. J. Thermophysics. 2002, 23 (5): 1303~1310
    21 P. F. Paradis, T. Ishikawa, S. Yoda1. Noncontact measurements of thermophysical properties of molybdenum at high temperatures. Int. J. Thermophysics. 2002, 23 (2): 555~569
    22 G. Pottlacher, A. Seifter. Microsecond laser polarimetry for emissivity measurements on liquid metals at high temperatures-application to tantalum. Int. J. Thermophysics. 2002, 23 (5): 1281~1291
    23 F. E. Volz. Infrared Optical Constants of Ammonium Sulfate Sahara Dust. Volcanic Pumice, and Flyash. Applied Optics. 1973,12(3 ): 564~568
    24 V. P. Tomaselli, R. Rivera, D.C.Edewaald, K.D.Moller. Infrared Optical Constants of Black Powders Determined from Reflection Measurements.Applied Optics. 1981, 20(22): 3961~3967
    25 J. Janzen. The Refractive Index of Colloidal Carbon. J. Collid Interface Sci. 1979, 69(3): 436~447
    26 J. D. Felske, T. T. Charalampopoulos, H. S. Hura. Determination of The Refractive Indices of Soot Paarticles from The Reflectivities of Compressed Soot Pellets. Combust. Sci. Tech. 1984, 37(2): 263~284
    27 B. J. Stagg, T. T. Charalampopoulos. Refrctive Indices of Pyrolytic Graphite, Amorphous Carbon and Flame Soot in the Temperature Range 25℃to 600℃. Combust. Flame. 1993, 94(3): 381~396
    28 W. H. Dalzell, A. F. Sarofim. Optical Constants of Soot and Their Application to Heat-Flux Calculations. J. Heat Transfer. 1969, 91(2): 100~104
    29 G. Leveque, Y. V. Renard. Determination of Optical Constants of Film Reflectance Spectra. Appl. Optics. 1990, 29(22): 3207~3212
    30 D. R. Huffman. The application of bulk optical constants to small particles. Optical Effects Associated with Small Particles. Edited by P. A. Barber, P. K. Chang, World Science, 1988: 279~296
    31 S. G. Jernings , R. G.Pinnick , S B. Gillespie. Relation Between Absorption Coefficient and Imaginary Index of Atmospheric Aerosol Constitutents. Applied Optics,1979,18(9): 1368~1371
    32李剑云,柳朝晖,周英彪,郑楚光.求解微粒吸收指数的改进方法.工程热物理学报. 1996,17(1): 116~120
    33 S. C. Lee, C. L. Tien. Optical Costants of Soot in Hydrocarbon Flames. Eighteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh. 1980:1159~1166
    34 C. L. Tien, S. C. Lee. Flame Radiation. Prog. Energy Combust. Sci. 1982, 8: 41~59
    35 M. Q. Brewster, T. Kunitomo. The Radiative Properties of Particles in Fluidized-Bed Coal Combustion. J. Heat Transfer. 1984,106(11): 678~683
    36 J. Mullins, A. Williams. The Optical Properties of Soot: a Comparison Between Experimental and Theoretical Values. Fuel. 1987, 66(2): 277~280
    37 M. E. Milham, R. H. Frikel, J. F. Embury, D. H. Anderson. Determination of Optical Constants from Extinction Measurements. J. Opt. Soc. Am. 1981,71(9): 1099~1106
    38王如兴.煤、灰微粒的复折射率研究.硕士论文.哈尔滨工业大学. 1993
    39 J. D. Felske, J. C. Ku. A Technique for Determining the Spectral Refractive Indices, Size, and Number Density of Soot Particles from Light Scattering and Spectral Extinction Measurements in Flames. Combust. Flame. 1992, 91(1): 1~20
    40 J. C. Ku, J. D. Felske. Determination of Refractive Indices of Mie Scatters from Kramers-Kronig Analysis. J. Opt. Soc. Am. A, 1986,3(5): 617~623
    41 C. Willis. Tne Complex Refractive Index of Particles in a Flame. J. Phys., D: Appl. Phys.. 1970, 3(12): 1944~1956
    42 R. P. Gupte, T. F. Wall. The Complex Refractive Index of Particles. J. Phys., D: Appl. Phys.. 1981, 14(2): L95~L98
    43 P. J. Wyatt. Some Chemical, Phsical and Optical Properties of Fly Ash Particles. Appl.Optics. 1980,19(6): 975~982
    44 B. Pluchino, S. S. Goldberg, J. M. Dowling, C. M. Randall. Refractive index measurements of single micron-sized carbon particles. Appl. Opt.. 1980, 19: 3371~3372
    45 M. Q. Brewster, D. L. Parry. In-Situ Measurements of alumina particle size and optical constants in composite solid propellant flames. AIAA 22nd Thermophysics Conference. June 8-10, 1987, Honolulu, Hawaii
    46 D. L. Parry, M. Q. Brewster. Optical constants and size of propellant combustion aluminum oxide smoke. AIAA/ASME/SAE/ASEE 24th Joint Propulsion Conference. July 11-13, 1988, Boston, Massachusetts
    47 T. T. Charalampopoulos. An automated Ligh Scattering System an a Method for the in-situ Measurement of the Index of Refaction of Soot Particles. Rev. Sci. Instrum. 1987, 58(8): 1638~1646
    48 T. T. Charalampopoulos, J. D. Felske. Refractive Indices of Soot Particles Deduced from in-situ Laser Light Scattering Measurements. Combust. Flame. 1987,68(4): 283~294
    49 T. T. Charalampopoulos, H. Chang. In Situ Optical Properties of Soot Particles in the Wavelength Range from 340nm to 600nm. Combust. Sci. Tech.. 1988, 59(6): 401~421
    50 B. M. Vaglieco, F. Beretta, A. D’Alessio. In Situ Evaluation of the SootRefractive Index in the UN-Visible from the Measurement of the Scattering and Extinction Coefficients in Rich Flams. Combust. Flame. 1990, 79(2): 259~271
    51 S. A. Self. Optical Properties of Fly Ash. DOE/PC/79903-T1, 1988
    52 S. A. Self. Optical Properties of Fly Ash. DOE/PC/79903-T14, 1991
    53 S. A. Self. Optical Properties of Fly Ash. DOE/PC/79903-T16, Quarterly Report, 1992
    54 T. F. Wall, A. Lowe, L. J. Wibberley, T. Mai-viet, R. P. Gupta. Fly Ash Characteristics and Radiative Heat Transfer in Pulverized-Coal-Fired Furnaces. Combust. Sci. Tech.. 1981, 26(1): 107~121
    55 R. P. Gupta, T. F. Wall. The Optical Properties of Fly Ash in Coal Fired Furnaces. Combust. Flame. 1985, 61(1): 145~151
    56 K. Kamiuto and J. Seki. Study of the P1 approximation in an inverse scattering problem. Journal of Quantitative Spectroscopy and Radiative Transfer. 1987, 37: 455
    57 B. M. Agarwal, M. P. Meguc. Forward and inverse analysis of single and multiple scattering of collimated radiation in an axisymmetric system. Int. J. Heat Mass Transfer. 1991, 34: 633
    58 K. Dressler. Inverse problems in linear transport theory. Eur. J. Mech., B/Fluids. 1989, 8: 351
    59 J. C. Oelund, N. J. McCormick. Sensitivity of multi-scattering inverse transport methods to measurement errors. J. Opt. Soc. Am. A4, 1985, 2: 131
    60 C. H. Ho, M. N. Ozisik. Inverse radiation problems in inhomogeneous media. Journal of Quantitative Spectroscopy and Radiative Transfer. 1988, 40: 553
    61 S. Subramanian, M. P. Menguc. Solution of the inverse radiation problem for inhomogeneous and anisotropically scattering media using a Monte Carlo technique. Int. J. Heat Mass Transfer. 1991, 34: 253
    62 K. Kamiuto, M. Sato, M. Iwamato. Determination of the radiative properties of high-porosity materials by use of the emerging-intensity fitting method. J Journal of Quantitative Spectroscopy and Radiative Transfer. 1989, 42: 477
    63 H. Y. Li, M. N. Ozisik. Identification of the temperature profile in an absorbing, emitting and isotropically scattering medium by inverse analysis.Journal of Heat Transfer. 1992, 114: 1060~1063
    64 H. Y. Li. Inverse radiation problem in two-dimensional rectangular media. Journal of Thermophysics and Heat Transfer. 1997, 11 (4): 556~561
    65 C. H. Ho, M. N. Ozisik. An inverse radiation problem. Int. J. Heat Mass Transfer. 1989, 32: 335
    66 J. C. Bokar. The estimation of spatially varying albedo and optical thickness in a radiating slab using artificial neural networks. Int. Comm. Heat Mass Transfer. 1999, 26 (3): 359~367
    67 H. Y. Li, C. Y. Yang. A genetic algorithm for inverse radiation problems. International Journal of Heat and Mass Transfer. 1997, 40 (7): 1545~1549
    68余其铮,潘迎春,张东辉,季建刚,谈和平.蒙特卡罗法对各向异性介质辐射特性的模拟.工程热物理学报. 1996, 17 (1): 96~100
    69王小东,吴健,邱荣等. MIE散射系数的改进算法.光电工程. 2006, 33(3): 24~27
    70 M. P. Menguc, S. Manickavasagam. Inverse radiation problem in axisymmetric cylindrical scattering media. Journal of Thermophysics and Heat Transfer. 1993, 7 (3): 479~486
    71 J. G. Marakis, G. Brenner, F. Durst. Monte Carlo simulation of a nephelometric experiment. International Journal of Heat and Mass Transfer. 2001, 44: 989~998
    72 N. R. Ou, C. Y. Wu. Simultaneous estimation of extinction coefficient distribution, scattering albedo and phase function of a two-dimensional medium. International Journal of Heat and Mass Transfer. 2002, 45: 4663~4674
    73 L. Hespel, S. Mainguy, J. Greffet. Radiative properties of scattering and absorbing dense media: theory and experimental study. Journal of Quantitative Spectroscopy and Radiative Transfer. 2003, 77: 193~210
    74 Swithenbank J. A laser diagnositic technique for the measurement of droplet and particle size distribution. AIAA Paper.1976, 76: 69
    75纪运景等.激光衍射法测量粒子群粒径分布的反演新算法.光电子激光. 2002, 13(12): 1285~1288
    76徐峰,蔡小舒等.独立模式算法求解颗粒粒径分布的研究.中国激光. 2004, 32(2): 223~229
    77叶茂等.光散射法测量微粒粒径分布的一种反演遗传算法.工程热物理学报. 1999,20(5): 643-645
    78杨娟等.尘埃粒子计数器粒子散射光信号幅度概率分布.光电子激光. 2001,12(1): 67~70
    79殷勇辉,严新平,萧汉梁,王成焘.光散射法测量粒径分布的数值模拟方法研究.武汉理工大学学报. 2003, 27(5): 643~645
    80苏明旭,任宽芳, G. Grehan,蔡小舒等.光复散射对消光法粒径测量的影响:复散射模型与数值模拟.光学学报. 2004,24(5): 696~699
    81严建华,黄群星,等.遗传算法用于颗粒粒度分布重建的研究.计量学报. 2005, 26(1): 86~89
    82姚器钧,光学教程.高教出版社. 1981
    83 R. G. Newton, Scattering Theory of Wave and Particles. Springer Verlag. 1982
    84王梓坤.常用数学公式大全.重庆出版社. 1991
    85 J. C. Ku, J. D. Felske. Determination of Refractive Indices of Mie Scatters from Kramers-Kronig Analysis.J. Opt. Soc. Am. A. 1986,3(5): 617~623
    86苏建良.煤、灰粒子的辐射特性-折射指数的研究.硕士论文.哈尔滨工业大学. 1992
    87 M.伽本尼.光学物理.北京大学激光教研室译.科学出版社. 1976
    88 R. K. Ahrenkiel. Modified Kramers-Kronigs Analysis of Optical Spectrum, J. Opt. Soc. Am. . 1971, 16(11): 1651~1655
    89 S. A. Self. Optical Properties of Fly Ash. DOE/PC/79903-T16, Quarterly Report. 1992
    90 Ruan Li-Ming,Qi Hong,Tan He-Ping.Inverse Radiation Problem for Determination of Optical Constant of Fly-ash Particles . International Journal of Thermophysics. 2007, 28(4): 1322~1341
    91郝金波,董士奎,谈和平.固体火箭发动机尾喷焰红外特性数值模拟.红外与毫米波学报. 2003, 22(4): 246~250
    92阮立明,余其铮,谈和平.求非均匀系微粒光学常数的透射法.红外与毫米波学报. 1996,15: 43~49
    93 D. M. Rossler, F. R. Faxveg, Opacity of black smoke: calculated variation with particulate size and refractive index, Appl. Optics. 1979, 18(8): 1399~1403
    94 Tien C.L.,Drolen B.L..Thermal Radiation in Particulate Media with Dependent and Independent Scattering.Annual Review of Numerical Fluid Mechanic and Heat Transfer,Vol.1,Edited by Hawla T.C.,New York: Hemisphere Pub Corp,1987: 1~32
    95 Brewster M.Q.,Tien C.L..Radiation Transfer in Packed Fluidized-Beds: Dependent versus Independent Scattering. ASME Trans. , J. of Heat Transfer, 1982, 104:573~579
    96孙晓刚,戴景民.一种测量固体火箭发动机羽焰真温的数据处理方法研究.红外与毫米波学报. 2003, 22(2): 141~144
    97张宏.大口见面黑体辐射源及其辐射特性的理论与实验研究.哈尔滨工业大学博士学位论文. 2006, 10
    98王汝琳,王咏涛.红外检测技术.化学工业出版社. 2006, 9
    99张宏,戴景民.大口径热管面黑体炉的研制及性能评价.中国计量学院学报. 2006, 17(2): 95~98
    100 Jager H, Frohs W, Kiein R.D.石墨电极的高温氧化.新型炭材料. 1994, 4: 46~47
    101陶锋,王智.用硅钼棒高温加热工艺制作光纤的研究.北方交通大学学报. 2002, 26(3): 66~68
    102黄运生,孙奇兵.硅钼炉的功率调节与模糊控制.控制工程. 2002, 9(5): 36~38
    103秦文虎,周杏鹏.程序温控仪中PID自整定算法.自动化仪表. 2000, 21(1): 17~18
    104周有平,罗中良.温度过程控制的PID参数自整定方法.佛山科学技术学院学报(自然科学版). 2001, 19(2): 33~36
    105黄文友.热加工车间循环冷却水系统设计探讨.工程建设与设计. 2004, 8: 77~78
    106张薇,简淼夫.煤粉燃烧动力学参数的试验.南京化工大学学报, 2001, 23(2): 20~23
    107 PASCAL LEE. Dust Levitation on Asteroids. ICARUS. 1996, 124: 181~194
    108胡芝娟,陆继东.高温气固悬浮试验台动态特性的研究.华中科技大学学报(自然科学版). 2004, 32(6): 90~92
    109 Sonnik Clausen, Jimmy Bak. FTIR Trasmission-emission Spectroscopy of Gases at High Temperatures: Experimental Set-up and AnalyticalProcedures.J.Quant.Spectrosc.Radiat.Transfer.1999, vol.61.No.2: 131~141
    110 Backus G. Inference from inadequate and inaccurate data: I, II, III; Proceedings of the National Academy of Sciences. 1970, 65: 1~3
    111 Albert Tarantola. Inverse problem theory methods for data fitting and model parameter estimation. Elsevier Science Publishers B. U. 1987
    112 Edward W. Larsen. Solution of multidimensional inverse transport problems. Math. Phys. 1984, 25(1): 131~135
    113 Kazuhiko Kudo, et al. Inverse radiative transfer: Temperature recovery. JSME. International Journal Series. B, 1996, 39 (4): 808~814
    114 Philippe Ben-Abdaliah. A variational method to inverse the radiative transfer equation: Application to thermal sounding of atmospheres of giant planets. Journal of Quantitative Spectroscopy and Radiative Transfer. 1998, 60 (1): 9~15
    115 Mie G. . Annalen der Physik. 1908, 4(25): 377
    116 Van de Hulst H C. Light Scattering by Small Particles. NewYork: Wiley. 1957: 2~5
    117 KerkerM. The Scattering of Light and Other Electromagnetic Radiation NewYork: Academic.1969: 1~3
    118 Bohren CF, Huffman D R. Absorbtion and Scattering of Light by Small Particles. NewYork: Wiley.1983: 2~6
    119徐峰,蔡小舒,苏明旭,赵志军,李俊峰.独立模式算法求解颗粒粒径分布的研究.中国激光. 2004, 31(2): 223~228
    120陈敏,孙东松,顾江,沈法华,夏海云.激光雷达探测的大气气溶胶空间二维分布.红外与激光工程. 2007, 36(3): 369~372
    121陈伟,李允,段永刚,黎明,唐炳军,杨应奎.遗传演化建模方法研究.西南石油学院学报. 2000, 22(4): 73~75
    122司秀华,陈国良.一种多搜索策略的多生物序列比对自适应遗传算法.小型微型计算机系统. 2006, 27(5): 854~857
    123 J. Kennedy, R.C. Eberhart. Particle Swarm Optimization. In: Proc. IEEE Int’1. Conf. on Neural Networks, IV. Piscataway, NJ: IEEE Service Center. 1995: 1942~1948
    124 S. Kannan, S. M. R. Slochanal, P. Subbaraj, N. P. Padhy. Application of particle swarm optimization technique and its variants to generationexpansion planning problem. Electric Power Systems Research. 2004, 70: 203~210
    125 P. Y. Yin. A discrete particle swarm algorithm for optimal polygonal approximation of digital curves. Journal of Visual Communication & Image Representation. 2004, 15: 241~260
    126 A. Salman, I. Ahmad, S. A. Madani. Particle swarm optimization for task assignment problem. Microprocessors and Microsystems.2002, 26 :363~371
    127 P. N. Suganthan. Particle swarm optimizer with neighborhood operator. In: Proceedings of Congress on Evolutionary Computation. 1999
    128 E. Ozcan, C. Mohan. Particle Swarm Optimization: Surfing the waves. In: Proc. of the Congress on Evolutionary Computation. Piscataway , NJ: IEEE Service Center. 1999: 1939~1944
    129 F. Solis, R Wets . Minimization by random search techniques . Mathematics of Operations Research 1, 1981: 19~30
    130 F. Van den Bergh. An analysis of particle swarm optimizers. PhD dissertation, Pretoria: University of Pretoria. 2001
    131 J.C. Zeng, Z.H. Cui. A guaranteed global particle swarm optimizer. Journal of Computer Research and Development (in Chinese), 41 (2004) 1333~1338
    132曾建潮,崔志华.一种保证全局收敛的PSO算法.计算机研究与发展. 2004, 41(8): 1333~1338
    133 L. M. Ruan, Q. Z. Yu, H. P. Tan. A transmission method for the determination of the radiation properties of small ash particles. Journal of Harbin Institute of Technology. 1994, E-1(2): 10~14
    134 V. Tank, E. Lindermeir, H. Dietl. Calibration of a Fourier Transform Spectrometer Using Three Black Body Sources. SPIE. 1991, 1575: 241~243
    135 V. Tank. Spectrometric Hot Gas Remote Sensing-Investigations on Calibration Errors. Journal of Molecular Structure. 1999, 482: 545~550
    136 J. Ishii, A. Ono. Fourier Transform Spectrometer for Thermal-Infrared Emissivity Measurements near Room Temperatures. SPIE. 2000, 4103: 126~132
    137 J. Ishii, A. Ono. Uncertainty Estimation for Emissivity Measurements Near Room Temperature with a Fourier Transforms Spectrometer. Meas. Sci. and Tech. 2001, 12: 2103~2112
    138丁振良.误差理论与数据处理.哈尔滨工业大学出版社. 2002, 5
    139 P. Bonzani, J. Elizabeth, H. Florczak. Improvement to a Bench Top Instrument for Measuring Spectral Emittance at High Temperatures. Rev. of Sci. Instr. 2003, 74(6): 3130~3136
    140王玄玉,潘功配,何艳兰.几种纳米氧化铝的红外消光性能研究.含能材料. 2005, 13(5): 312~315
    141 M. Q. Brewster. Thermal radiative transfer and properties. John Wiley & Sons, Inc., New York, 1992
    142 N. P. Gilbert. Temperature Dependence of the Mie Scattering and Absorption Cross Sections for Aluminum Oxide. Journal of Applied Optics. 1965, 4(12): 1616~1619
    143 N. P. Gilbert. Mie Scattering and Absorption Cross Sections for Aluminum Oxide and Magnesium Oxide. Journal of Applied Optics. 1964, 3(7): 867~872
    144 F. S. Simmons. Rocket exhaust plume phenomenology. The Aerospace Press, El Segundo, California, 2000
    145 Y. K. Lingard, V. A. Petrov, N. A. Tikhonov. Optical properties sintered aluminum oxide at the high temperatures, I region semitransparency, USSSR: Teplofizika Vysokilch Temperature. 1982, 20(5): 872~880
    146 N. A. Anfimov, G. F. Karabadzhak, Y. A. Plastinin. Analysis of mechanisms and nature of radiation form aluminum oxide in different phase states in solid rocket exhaust plumes. AIAA 28th Thermophysics Conference, Orlando, July, 6-9, 1993
    147 Y. Plastinin, A. Afanasjev, H. Sipatchev. Experimental investigation of alumina particles’phase transitions. Final Report Contract. 1996, SPC-95-4023
    148 J. Ishii, A. Ono. Uncertainty Estimation for Emissivity Measurements Near Room Temperature with a Fourier Transforms Spectrometer. Meas. Sci. and Tech. 2001, 12: 2103~2112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700