秸秆固化成型燃料助燃剂研制及燃烧特性试验与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上最大的农业国家,年产各类作物秸秆总量达7.1亿吨。其中,约有40%-50%秸秆未被利用,常被露天焚烧,导致严重的大气污染和火灾,秸秆焚烧已经成为全国各地都面临的一大环境问题。通过固化成型技术把秸秆转化成生物质固化成型燃料(Densified biomass briquetting fuel, DBBF)是秸秆能源化利用的有效方法。但是,当DBBF用于小型炊事炉时,存在点不着火、点火时间长和烟气污染等问题,从而严重影响了DBBF的推广和使用。因此,研制经济、有效和环境友好的成型燃料专用引火助燃剂,对解决成型燃料点火难、污染问题及成型燃料炉具的改进具有重要的实际意义。本文针对玉米秸秆固化成型燃料(Densified corn stover briquetting fuel, DCBF)及其LLA-6型生物质半气化炉,研制了多种DCBF引火助燃剂,并对其点火性能和点火特性进行了试验研究与评价、实现了DCBF的快速点燃,并且烟气排放达到了环保要求;同时,还开展了DCBF燃烧特性及其数值模拟方面的研究,获得了一些重要的结论。
     1.引火助燃剂研制及其点火特性和烟气排放特性研究。(1)用废机油、废柴油和工业酒精以不同的体积比研制出25种液体助燃剂,通过反复点火试验,综合考虑成本及点火特性等各种因素,初步选定ED15和DA51两种助燃剂做为备选助燃剂,其最佳用量分别为9 mL和8 mL,比不用助燃剂点火速度快30-40倍。(2)对不同用量的助燃剂ED15和DA51引燃过程中的烟气排放情况(包括烟气中的O2、CO2、CO、烟气温度、NO、NO2、NOx、SO2和燃烧效率这9项指标)进行了试验研究,研究结果表明:两种助燃剂烟气排放指标均符合北京市地方排放标准,助燃剂ED15用量为9 mL时污染物排放较低,因此,助燃剂ED15被确定为待推广的助燃剂。
     2. DCBF燃烧特性试验研究与分析。(1)利用柴炉热性能试验方法对LLA-6型炉具的热性能进行了测试,结果显示其热效率只有20%,没能达到北京市地方标准(热效率≥35%)。(2)利用热电偶温度传感器和精密天平分别对炉具内各位置的温度和燃烧失重量进行测定。根据所测温度和失重量数据对燃烧过程进行动力学分析。利用“多变混合速率扫描法”得出DCBF在LLA-6型炊事炉中燃烧时的燃烧机理:在快速升温阶段和降温阶段DCBF燃烧符合的三维扩散机理,球形对称,3D,D4,减速形a-t曲线,其积分形式表达式为;在快速升温与温度恒定之间的拐点处和恒定温度阶段DCBF燃烧机理属于化学反应,F2,减速形a-t曲线,其积分形式表达式。(3)利用烟气分析仪对燃烧过程中烟气排放的各种污染物指标进行监测,发现在整个燃烧过程中污染物排放指标均符合北京市地方污染物排放标准。有风条件下的各种污染物排放指标略高于无风条件下的各种污染物排放指标。因此,在无风条件下助燃剂ED15用量为9mL时效果最佳。
     3. DCBF燃烧特性的数值模拟。利用Fluent软件和燃烧过程所遵循的基本定律,采用湍流和有限速率等燃烧模型对DCBF燃烧特笥进行数值模拟,结果发现:(1)燃烧炉内CO2浓度为18.4%,在炉口处的CO2浓度为9%左右,排烟管中CO2浓度为6.47%;在助燃器内几乎没有任何化学反应发生,助燃器并没有起到应有的助燃作用,而是起了降低热效率的作用。(2)通过对32种不同改进情况进行模拟,结果表明助燃器通风孔全部关闭时(即没有二次进风)效果最好。助燃器内部温度范围为990-1020K,炉口处最高温度为1020K。没有二次进风时炉口处温度分别比关闭0排、1排、2排、3排和4排通风孔时高19.86%、29.86%、37.67%、39.59%和39.73%。因此,推荐改造最佳方案为不用助燃器,不带二次进风。由助燃器散热及二次进风带走的热损失q2和q3之和为19.21%。将助燃器及二次进风除掉,将助燃器部分直接改为火焰通道,可将原炉具的热效率20%提高到39.21%,可以使热效率提高近1倍,并可使炉具达到北京市地方标准。
     综上所述,助燃剂ED15用量为9 mL时引燃DCBF效果最佳,在无风条件下,将LLA-6型炉具助燃器部分改为封闭式的火焰通道,DCBF燃烧效果最佳,热效率可达到39.21%。
China is one of the largest agricultural countries in the world. Approximately,0.71 billion tons of various crop residues are generated annually.50%-60% crop residues are not used, which are ussally burnt in open field, leading to serious air pollution and fire disaster, Crop stalks can be used to make densified biomass briquetting fuel (DBBF), which is one of effective ways to use crop stalks and widely used in rural areas in China. However, DBBF is facing a bottle-neck problem with igniting. DBBF is a kind of densified biomass with high density (0.8-1.4g/cm3), which is very difficult to be ignited. Farmers normally need to take 20 to 30 minutes for successfully igniting cooking stoves. In addition, long-time ignition causes thick smoke and harmful gases emission, posing serious environmental pollution and threat to people's health. And it seriously affected the further promotion of DBBF. Therefore, it is imperitive to develop efficiency, affordable, and environmentally friendly ignition-assisting agents. Densified corn stover briquetting fuel(DCBF) was used as the experimental material for type LLA-6 household cooking stove. The research was conducted to:develop ignition-assisting agents, study on ignition characteristics, DCBF combustion characteristics and numerical simulation.
     1. Development of ignition-assisting agents and study on igniting and emission characteristics.25 kinds of ignition-assisting agents were developed by mixing waste engine, waste diesel oil, and industrial alcohol at different volume ratios. ED15 and DA51 achieved better igniting results. ED 15 with 9mL dosage and DA51 with 8mL dosage took 40 and 53 seconds to successfully ignite the DCBF, which were 30-40 times shorter than those without using ignition-assisting agent. ED 15 and DA51 showed similar emission and combustion characteristics in terms of O2, CO, CO2, NOx, and SO2 emissions, and fume gases temperature and combustion efficiency. The average concentrations of CO, CO2, NOx, and SO2 for ED 15 and DA51 at all dosages met the requirements by Beijing local standard. Compared to other agent and other dosages, ED15 at the dosage of 9mL achieved similar combustion efficiency but emitted less pollutants, therefore, is recommended for practical application.
     2. Experimental study on analyses on the combustion characteristics of DCBF. The thermal performance, temperature, and combustion weight loss were measured and analyszed. The results showed that thermal efficiency of type LLA-6 stove was only 20% and could not reach to Beijing local standard(thermal efficiency≥35%). The reaction mechanism of combustion of DCBF was obtained by the "volatile mix rate scanning method". The results showed that the reaction mechanism belonged to three-dimensional,3D, sphericity symmetry, D4 Deceleratory a-t curves in the rapid heating stage and the cooling stage during the combustion of DCBF process. The mechanisms function expression of integral form was ; The reaction mechanism belonged to chemical reaction, F2, Deceleratory a-t curves in the rapid heating inflection point and constant temperature stage. The mechanisms function expression of integral form was . Combustion results without wind condition was obviously better than that of with wind condition through temperature monitoring of different positions in the stove. Pollution emission concentrations met the requirement of Beijing local standard "General Technical Requirements of Household Biomass Stoves" (DB11/T 540-2008) through monitoring various pollutants. Pollutants emission of DCBF with wind was slightly higher than that of no wind. Therefore, combustion results was optimal in no wind conditions with a dosage of 9 mL.
     3. Numerical simulation on DCBF combustion characteristic. Model Fluent, Turbulent, and Finite-Rate were used to simulate DCBF combustion characteristics. The numerical simulation results showed that CO2 concentrations in stove, stove mouth and exhaust pipe were 18.4%,9% and 15%, respectively. No any chemical reaction was found in the combustion device, meaning that the combustion device did not play any role in ignition assisting. (2) Closed vent of combustion-assisting device was favourable to be the improving on combustion. The temperature was 990-1020K in combustion-assisting device and 1020K at stove mouth. The temperatures of stove mouth without secondary inlet were 19.86%,29.86%,37.67%,39.59% and 39.73% higher than those with inlet at stove, respectively, when ventilation holes was closed 0 row,1 row,2 rows,3 rows and 4 rows. The type LLA-6 stove achieved the best combustion results without combustion-assisting device. The heat loss from the combustion device (q2) and the second inlet(q3) were 19.21%. The thermal efficiency could be increasing from 20% to 39.21% if the combustion-assisting device was taken away and the second inlet was closed.
     Therefore, it is recommended to use ignition-assisting agent ED15 with a dosage of 9 mL for the ignition of DCBF. The thermal efficiency could reach to 39.21% at no wind and no combustion-assisting device.
引文
[1]中国国家统计局.2008中国统计年鉴[M].北京:中国统计出版社,2008,12-15.
    [2]中国国家统计局.2009中国统计年鉴[M].北京:中国统计出版社,2009,12-15.
    [3]王庆玉.第一次全国污染源普查农业污染源普查培训教材[M].北京:国务院第一次全国污染源普查领导小组办公室,2007,46.
    [4]曹稳根,高贵珍,方雪梅等.我国农作物秸秆资源及其利用现状[J].宿州学院学报,2007,22(6):110-126.
    [5]白立勇,周广田,赵文娟.农作物秸秆综合利用技术研究进展[J].广西轻工业,2007,1.14-23.
    [6]王宁堂,王军利,李建国.农作物秸秆综合利用现状、途径及对策[J].陕西农业科学,2007,2,112-115.
    [7]徐晓军.固体废物污染控制原理与资源化技术[M].北京:冶金工业出版社,2007,306-312.
    [8]刘巽浩,高旺盛.集约持续农业工程技术[M].郑州:河南科学技术出版社,2000,210.
    [9]修玉峰,陈英毅.农作物秸秆的综合利用与农村循环经济[J].农机化研究,2006,10,31-33.
    [10]赵捐利.农作物秸秆综合利用的途径[J].农业技术与装备,2007,2,40.
    [11]王宝山,周景宇.对农作物秸秆综合利用发展方向的探索[J].农业机械,2009,9,75-76.
    [12]龚锡强.湖北襄樊市农作物秸秆利用现状及建议[EB/OL].http://grain.nj.gov.cn/default.php?mod=article&do=detail&tid=6181,2006-07-14
    [13]农友.农作物秸秆综合利用潜力大[N].科学导报,第A03版,2005-01-26.
    [14]徐洪波,焦庆余,徐国堂.高效预制组装架空火炕的研究[J].农业工程学报,1991,7(3):81-86.
    [15]赵青玲,张培远,刘俊红等.原料含水率及成型直径对秸秆成型燃料耐久性的影响[J].环境污染与防治,2006,28(12):911-913.
    [16]樊峰鸣,张百良,李保谦等.大粒径生物质成型燃料物理特性的研究[J].农业环境科学学报,2005,24(2):398-402.
    [17]中华人民共和国国家发展和改革委员会.可再生能源中长期发展规划.2007,9,12.
    [18]秦伟.生物质:生态能源技术在路上[J].中国装备,2009,10,44-46.
    [19]农业部.秸秆热解气化技术[J].农业工程技术(新能源产业),2008,3,23-25.
    [20]庞云芝,李秀金.中国沼气产业化途径与关键技术[J].农业工程学报,2006,22(S1):53-57.
    [21]李秀金.我国大型秸秆生物气化工程试运行成功[J].农业工程技术(农产品加工),2009,3,66.
    [22]李阳,孙岩峰,张玉苍等.玉米秸秆液化产物水解制糖研究[J].中国酿造,2008,22,50-53.
    [23]王高升,张吉宏,陈夫山等.玉米秸秆多羟基醇液化研究[J].生物质化学工程,2007,41(1):14-18.
    [24]杨湄,刘昌盛,黄凤洪等.秸秆热解液化制备生物油技术[J].中国油料作物学报,2006,28(2):228-232.
    [25]徐凤英,梁英,方桂珍.秸秆直接液化技术研究进展[J].安徽农业科学,2008,36
    (18):7836-7838.
    [26]M. J. O'Dogherty. A review of the mechanical behaviour of straw when compressed to high densities[J]. Journal of Agricultural Engineering Research,1989,44,241-265.
    [27]盛奎川,蒋成球,钟建立.生物质压缩成型燃料技术研究综述[J].能源工程,1996,3,8-11.
    [28]刘俊红.生物质成型燃料在农村推广的机制设计与政策研究[D].郑州:河南农业大学,2007.
    [29]Margaret K.M., Pamela L.S.. Life cycle assessment of a biomass gasification combined-cycle power system[M].中国环境科学出版社,2000.
    [30]Faborode M.O., Callaghan A.R.. Optimizing the compression/briquetting of fibrous agricultural materials[J]. Journal of agricultural Engineering Research,1987, 38(4):245-262.
    [31]Dogherty M.J., Wheeler J.A.. Compression of straw fo high denisties in closed cylindrical dies[J]. Journal of agricultural Engineering Research,1994,29(1):61-72.
    [32]张莉梅.液压生物质成型设备与技术的推广应用研究[D].郑州:河南农业大学,2006.
    [33]Osobov V.I.. Theoretical principles of compressing fibrous plant materials[J]. Thudy Viskhom,1967,55,221-265.
    [34]Ayhan Demiras, Ayse Sahin. Evaluation of Biomass Reside (1) Briquetting Waste Paper and Wheat Straw Mixtures[J]. Fuel Processing Technology,1998,55,185-193.
    [35]Mohsenin N., Zaske J.. Strees Relaxation and Energy Requirements in Compaction of Unconsolidated Materials[J]. Journal of Agricultureal Engineering Research,1976, 21(2):197-203.
    [36]王春光,杨明邵,高文焕.农业纤维物料压缩现状[J].中国农业大学学报,1996,l(6):14-18.
    [37]李保谦,张百良,马孝琴.液压驱动式秸秆成型技术研究及其产业化[C].2000年国际可再生能源研讨会论文集,2000.
    [38]王民,郭康权.秸秆制作成型燃的试验研究[J].农业工程学报,1993,9(1):99-103.
    [39]许静,喻国胜,肖江.生物质燃料的加工及其应用[J].中国林业,2004,1,32-33.
    [40]Connell, M.G.R.. Carbon sequestration and biomass energy offset:theoretical, potential and achievable capacities globally, in Europe and the UK[J]. Biomass and Bioenergy, 2003,24(2):97-116.
    [41]Kaygusuz K., Tuker M.F.. Biomass energy potential in Turkey[J]. Renewable Energy, 2002,26,661-678.
    [42]Preto F.. Combustion of wood processing residues in a circulating fluidized bed[J]. Sama V pisupated proceedings of 17th International Conference on Fluidized Bed Combustion[C]. Florida ASME,2003,5,607-612.
    [43]Hiltunen M. A., Vilokki H.A.J., Holopainen H.A.. Green energy from wood-based fuels using foster wtheeler CFB boilers[J]. Sama V pisupated proceedings of 17th International Conference on Fluidized Bed Combustion[C]. Florida ASME,2003,5,77-81.
    [44]Amand L.E., Leekner B.. Metal emissions from co-combustion of sewage sludge and coal/wood in fluidized bed[J]. Fuel,2004,83,1803-1821.
    [45]Orjala M., Karki J., Hasa H., et al. The effect of wood fuels on power plant availability[J]. The Finnish Wood Energy Technology Programme,2004,139-154.
    [46]郝芳洲.魏秀青.加速户用高效低排放生物质炉具在我国农村的推广应用[J].可再生 能源(特刊),2007,12.
    [47]Chen X.F., Liu G.Q.. Development and commercialization of improved stoves in China[J]. Glow,2007,39.
    [48]郝芳洲.积极推广户用高效低排放炉具[J].节能与环保,2007,5,10-11.
    [49]郝芳洲.发展中的我国生物质成型燃料及其炉具产业[J].新能源产业,2009,8,5-7.
    [50]Sudhagar Mani, Lope G. Tabil, Shahab Sokhansanj. Specific energy requirement for compacting corn stover[J]. Bioresource Technology,2006,97,1420-1426.
    [51]C.K.W. Ndiema, P.N. Manga, C.R. Ruttoh. Influence of die pressure on relaxation characteristics of briquetted biomass[J]. Energy Conversion and Management,2002,43, 2157-2161.
    [52]S.Yaman, M. Sahan, H. Haykiri-Acma, K. Sesen, S. Kucukbayrak. Fuel briquettes from biomass-lignite blends[J]. Fuel Processing Technology,2001,72,1-8.
    [53]Fabienne Rabier, Michael Temmerman, Thorsten Bohm, et al. Particle density determination of pellets and briquettes[J]. Biomass and Bioenergy,2006,30,954-963.
    [54]Ayhan Demirbas. Properties of charcoal derived from hazelnut shell and the production of briquettes using pyrolytic oil[J]. Energy,1999,24(2):141-150.
    [55]Ingwald Obernberger, Gerold Thek. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour[J]. Biomass and Bioenergy,2004,27,653-669.
    [56]石深泉,薛振治.煤用增燃剂[J].中外技术情报,1995(1):34-35
    [57]缪娟.燃煤助燃剂及配方原理[J].焦作矿业学院学报,1995,14(4):53-57
    [58]吴宪平,周国江.生物质型煤的研究概况[J].应用能源技术,2007(8):1-4
    [59]邓文贤,岳伟飞.火锅煤球.中国:1030090A[P].1989-01-04
    [60]武增华,李小平,曹伟红,等.易燃炭球.中国:1059755A[P].1992-03-25.
    [6l]曲飞宇.中国废润滑油市场状况及其再利用分析[A].新材料产业,2008,3,43-46.
    [62]钱敏.废机油再生利用:再造一个大油田[N].中国化工报,2007-09-20.
    [63]北京市公安局公安交通管理局.2009年全国机动车和驾驶人数量增长迅猛[Z].http://www.bAAtgl.gov.cn/publish/portal0/tab63/info16248.htm,2010-01-08.
    [64]中华人民共和国国家统计局.2009年中国统计年鉴[M].中国统计出版社,2009,15-30.
    [65]Lindley j.A., Vossoughi M.. Physical properties of biomass briquets[J]. Transactions of the ASAE,1989,32(2):361-366.
    [66]盛奎川,钱湘群,吴杰.切碎棉杆高密度压缩成型的试验研究[J].浙江大学学报(农业与生命科学版),2003,29(2):139-142.
    [67]Demirbas A.. Physical properties of briquettes from waste paper and wheat straw mixture[J]. Energy Conversion and Management,1999,40,437-445.
    [68]Wang Min, Guo Kangquan, Zhu Wenrong. A preliminary study on the preparation of pressurized straw briquette[J]. Transactions of the CSAE,1993,9(1):99-104.
    [69]Kronbergs E.. Mechanical strength testing of stalk materials and compacting energy evaluation[J]. Industrial Crops and Products,2000,11,211-216.
    [70]Yadong Li, Henry Liu. High-pressure densification of wood residues to form an upgraded fuel[J]. Biomass and Bioenergy,2000,19,177-186.
    [71]Zhang Bailing, Li Baoqian, Zhao Cahaohui, et al. Test and research on HPB-1 biomass briquetting machine[J]. Transactions of the CSAE,1999,15(3):133-136.
    [72]Paivi Lehtikangas. Quanlity propertyes of pelletised sawdust,logging residues and bark[J].
    Biomass and bioenergy,2001,20,351-360.
    [73]马孝琴.生物质(秸秆)成型燃料燃烧动力学特性及液压秸秆成型机改进设计研究[D].郑州:河南农业大学,2002.
    [74]刘圣勇,赵迎春,张百良.生物质成型燃料燃烧理论分析[J].能源研究与利用,2002,6,26-28.
    [75]刘伟军,王佐民,于晓东等.生物质型煤燃烧机理分析和燃烧速度试验研究[J].煤炭转化,1998,21(4):52-56.
    [76]K.C. Kanufman, W.A. Fiveland. Combustion modeling of coal-fired, aerodynamically air-staged buener. Third international conference on combustion technologies for a clean environment, Lisbon, Portugal,1995,20,1-8.
    [77]A. Saljnikov. Mathematical model of pulverized coal combustion in swirl burners. Fifth inernational conference on combustion technologies for a clean environment, Lisbon, Portugal,1999,7,649-657.
    [78]O. Faltsi-saravelou, P.N. Wild. Prediction of NO emission from a swirling coal flame. Third international conference on combustion technologies for a clean environment, Lisbon, Portugal,1995,20,9-16.
    [79]韩才元,徐明厚,周怀春等.煤粉燃烧[M].北京:科学出版社,2001.
    [80]B. R. Stanmore, S.P. Visona. Prediction of NO emissions from a nmuber of coal-fired power station biolers[J]. Fuel Processing Technology,2000,64(1-3):25-46.
    [81]M. Xu, J.L.T. Azevedo, M.G.Carvalho. Modeling of the combustion precess and NOx emission in a utility boiler[J]. Fuel,2000,79(13):1611-1619.
    [82]Xiaohai Han. Modeling and simulation of SOx and NOx reduction process in pulverized coal furnace[D]. The University of Stuttgart,2003.
    [83]S.C. Hill, L. Douglas Smoot. Modeling of nitrogen oxides formation and destruction in combustion systems[J]. Progress in Energy and Combustion Science,2000,26,417-458.
    [84]周力行.NOx生成湍流反应率数值模拟的进展[J].力学进展,2000,30(1):77-82.
    [85]J. Zelkowski,袁钧卢,张佩芳译.煤的燃烧理论与技术[M].上海:华东化工学院出版社,1989.
    [86]T. Abbas, M. Costa, P. Costen, S.Godoy, F.C. Lockwood. NOx formation and reduction mechanisms in pulverized coal flames[J]. Fuel,1994,73(9):1423-1436.
    [87]Y. Endo. Development of ultra-low NOx burner for pulverized coal fuels[J]. Fuel and Energy Abstracts,1996,37(2):124.
    [88]刘荣厚,袁海荣,徐璐.玉米秸秆热解反应动力学的研究[J].太阳能学报,2007,28(5):527-531.
    [89]T. B. Zeldovich. The oxidation of mitrogen in combustion explosions [J]. Acta Physicochim(USSR),1946,21,577-628.
    [90]沈维道.工程热力学[M].北京:高等教育出版社,1988.
    [91]朱传征,许海涵.物理化学[M].北京:科学出版社,2000.
    [92]Shafizadeh F., Chin P.P.S.. Thermal deterioration of wood[J]. ACS Symposium Series 1977,43,57-81.
    [93]Thurner F., Mann U.. Kinetic investigation of wood pyrolysis[J]. Industrial & Engineering Chemistry Process Design and Development 1981,20,482-488.
    [94]Chan W. R., Kelbon M., Krieger B.B.. Modeling and experimental verification of physical and chemical processes during pyrolysis of large biomasss particle[J]. Fuel,1985,64, 1505-1513.
    [95]Font R., Marcilla A., Verdu E., et al. Kinetics of pyrolysis of almond shells and almond shells impregnated with COCl2 in a fluidised bed reactor and in a pyroprobe 100[J]. Industrial and Engineering Chemistry Research,1990,29,1846-1855.
    [96]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [97]王瑞金,张凯,王刚Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [98]韩占忠,王敬,兰小平Fluent:流体工程仿真计算实例与应川[M].北京:北京理工大学出版社,2004.
    [99]Kee R.J., Miller J.A., Jefferson T.H.. Chemkin:A general purpose, problem independent, transportable, fortran chemical kinetics code package[R]. Albuquerque:Sandian National Laboratories,1980.
    [100]Kee R.J., Rupley F.M., Miller J.A.. Chemkin-Ⅱ:A fortran chemical kinetics package for the analysis of gas-phase chemical kinetic[R]. Albuquerque:Sandian National Laboratories,1989.
    [101]Kee R.J., Rupley F.M., Meeks K., et al. Chemkin-Ⅲ:A fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetic[R]. Albuquerque:Sandian National Laboratories,1996.
    [102]饶文涛,黑红旭,陈玉龙等.宝钢热轧加热炉流动、燃烧和传热的CFX模拟[C].能源与热工2000学术年会,中国金属学会,428-435.
    [103]王丹.生物质颗粒燃料燃烧数值模拟[D].长春:吉林大学,2008.
    [104]Aspen Technology. Aspen plus user guide[M]. USA:Aspen Techonolgy,2000.
    [105]GB/T 212-2001,煤的工业分析方法[S],2001.
    [106]GB/T 213-2003,煤的发热量测定方法[S],2003.
    [107]安晓东.柴油乙醇花生油混合燃料实验研究[D].郑州:河南农业大学,2009.
    [108]王煜.工作低热值气体燃料发动机性能研究[D].北京:北京交通大学,2008.
    [109]冯克权.燃气汽车发动机润滑油[J].合成润滑材料,2000,2,1-8.
    [110]姚汝华.酒精发酵工艺学[M].广州:华南理工大学出版社,1999.
    [111]苏)A.K.舒布尼科夫(A.K.Ⅲ等著.燃料,水与润滑剂工艺学[M].北京:人民铁道出版社,1957.
    [112]DB1 1/T 540-2008.北京市地方标准-户用生物质炉具通用技术条件[S].北京市质量技术监督局,2008-05-01.
    [113]Dubdub, I., Hughes, R., Price, D.. Kinetics of insutu combustion of athabasca tar sands studied in a differential flow reactor[J]. chem.. Eng. Res. Des.,1990,68,342-349.
    [114]Mathien P., Dubvisson R.. Performance analysis of a biomass gasifier[J]. Energy Conversion and Management,2002,43,1291-1299.
    [115]张海,吕俊复,徐秀清,等.我国燃煤电站锅炉NOx排放的现状分析和应对措施[J].中国动力工程学报,2005,25(1):125-130.
    [116]徐旭常,周力行.燃烧技术手册[M].北京:化学工业出版社,2007,1270.
    [117]中华人民共和国农业部.NY/T 8-2006民用柴炉、柴灶热性能试验方法[S].2006-10-01.
    [118]国家标准局.GB 4363-84.民用柴炉、柴灶热性能测试方法[S].1984-12-01.
    [119]赖艳华,吕明新,马春元,等.程序升温下秸秆类生物质燃料热解规律[J].燃烧科学与技术,2000,7(3):245-248.
    [120]宋春财,胡浩权.秸秆及其主要组分的催化热解及动力学研究[J].煤炭转化,2003,26(3):91-97.
    [121]王翠苹,李定凯,王凤印,等.生物质成型颗粒燃料燃烧特性的试验研究[J].农业工程学报,2006,22(10):174-177.
    [122]包亚莉,郭为民,孙显德,等.气相色谱法测定石脑油族组成[J].内蒙古石油化工,1999,3,117-120.
    [123]Vyazovkin S. Alternative description of process kinetics[J]. Thermochimica Acta,1992, 211(1):181-187.
    [124]Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures[J]. Thermochimica Acta.1971,3,1-12.
    [125]刘振海.热分析导论.北京:化学工业出版社.1991.
    [126]马孝琴,李保谦,崔岩,等.稻秆燃烧过程动力学特性试验[J].太阳能学报,2003,24(2):213-217.
    [127]Mette Stenseng, Anker Jensen, Kim Dam-Johansen. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry[J]. Journal of Analytical and Applied Pyrolysis,2001,58-59,765-780.
    [128]Vlaev L. T., Markovska I. G., Lyubchev L. A.. Non-isothermal kinetics of pyrolysis of rice husk [J]. Thermochimica acta,2003, (406):1-7.
    [129]Ozawa T. A New Method of Analyzing Thermogravimatric Data[J]. Bulletin of the Chemical Society of Japan.1965,38,1881-1886.
    [130]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    [131]J.J.M. Orfao, F.G. Martins. Kinetic analysis of thermogravimetric data obtained under linear temperature programming a method based on calculations of the temperature integral by interpolation[J]. Thermochimica Acta.2002,390(1-2):195-211.
    [132]C.L. Albano, R. Siamanna, T. Aquino, et al. Proceedings of the European Congress on Computational Methods in Applied Science and Engineering, Barcelona,2000.
    [133]V.Mamleev, S.Borbigot, M. Le Bras, et al. Modeling of nonisothermal kinetics in thermogravimetry[J]. Physical Chemistry.2000,2,4708-4716.
    [134]Duflo E., Greenstone M., Hanna R. Cooking stoves, Indoor Air Pollution and Respiratory Health in Rural Orissa[J]. Econ. Political weekly,2008,9:71-80.
    [135]Altun N. E., Hicyilmaz C., Bagci A. S. Combustion Characteristics of Coal Briquettes.1. Thermal Features[J]. Energy & Fuels,2003,17:1266-1276.
    [136]Demirbas A. Hazardous emissions from combustion of biomass[J]. Energy Sources, Part A,2008,30:170-178.
    [137]Molina A., Eddings E.G., Pershing D.W., et al. Char nitrogen conversion:implications to emissions from coal-fired utility boilers[J]. Prog. Energy Combust. Sci.,2000,26:507-531.
    [138]Duo W., DamJohansen K., Ostergaard K. Widening the temperature range of the thermal De NOx process, an experimental investigation[C].23rd Symp. Combust.,1990,297-303.
    [139]Werther J., Saenger M., Hartge E. U., et al. Combustion of agricultural residues[J]. Prog. Energy Combust. Sci.,2000,26:1-27.
    [140]Brown S. D., Thomas K. M. A comparison of NO release from coals and entrained-flow reactor chars during temperature-programmed combustion[J]. Fuel,1993,72:359-365.
    [141]Wang W. X., Brown S. D., Hindmarsh C. J., et al. NOx release and reactivity of chars from a wide range of coals during combustion[J]. Fuel,1994,73:1381-1388.
    [142]Xu X. C., Zhou L. X. Combustion Technology Manual[M]. Chemical Industry Press: Beijing,2007,1270.
    [143]李蓉.生物质和煤混合燃烧试验研究[D].北京:华北电力大学,2008.
    [144]温正,石良辰,任毅如Fluent流体计算应用教程[M].北京:清华大学出版社,2008.
    [145]郭永红,孙保民,康志忠.超细煤粉再燃低NOx燃烧技术的数值模拟[J].动力工程,2005,25(3):422-426.
    [146]侯中兰.家用生物质成型燃料炉具的设计与研究[D].郑州:河南农业大学,2006.
    [147]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700