无凸轮轴配气机构开发及在可控自燃发动机上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可控自燃是一种燃烧方式的革新,从20世纪末就开始受到世界主要汽车公司和内燃机研究机构的注意和研发。其特征是均质混合气压燃和低温燃烧,综合了汽油机和柴油机燃烧的优点,对实现内燃机高效燃烧、降低排放等方面有重要的研究价值。通过无凸轮配气机构来控制残余废气量是实现可控自燃简单有效的途径之一
     本文自主开发了无凸轮轴电液配气机构,该机构控制灵活,重复性好。实现了气门正时可变,气门升程可变。设计的二级驱动柱塞能同时满足气门开启迅速和减少流量的要求,利用缓冲装置实现了最大升程和落座软冲击,降低了系统工作噪声,提高了系统的工作寿命。建立了电液气门运动数学模型,利用Matlab进行了仿真计算研究,探索了电液气门运动性能的影响因素,该仿真研究在辅助电液气门机构设计、确定和优化系统参数及缩短机构开发周期等方面具有重要意义。
     建立了无凸轮轴电液配气机构模拟试验平台,利用开发的数据采集系统进行了该配气机构性能实验。试验表明:在液压力和油液温度恒定的状态下,进排气门开启和关闭延迟时间符合正态分布;气门关闭过程与液压力无关,随着温度的升高,气门关闭响应延迟有下降的趋势;在液压力6.5MPa时,进气能力与原机相似,气门的落座瞬间速度为0.08m/s。在液压力11Mpa时,气门落座瞬间速度为0.12m/s,实现了气门柔性着陆;在不改变液压力情况下,气门的开启和关闭升程曲线形状相似,机构具有很好的重复性和可靠性。改变系统液压力就可以实现气门升程从3.1mm-11mm连续变化。
     建立了电控单缸无凸轮轴汽油发动机样机,开发了无凸轮轴发动机控制单元硬件和软件。采用前馈开环控制策略,通过查找气门正时脉谱图,可以保证无凸轮轴配气机构在转速为2200r/min以下正常工作,气门的开启和关闭正时重复性较好;制备了SI燃烧方式的基本喷油脉宽和基本点火提前角脉谱图,在配气相位相同的情况下,无凸轮轴发动机达到了原凸轮轴发动机的动力性,而且在一些工况下,比原凸轮轴发动机略有提高,在经济性和排放性能上,与原凸轮轴发动机性能基本相同,为进行下一步试验提供了很好的基础条件。
     在开发的无凸轮轴发动机样机上,首次在国内利用排气门二次开启(SEVO)模式下的缸内EGR实现了CAI燃烧,研究了该模式下CAI燃烧特点、排放情况及工作区域,并进行了SI燃烧到CAI燃烧的转换研究。试验表明:该模式下的CAI燃烧有二次压缩现象,主要是因为在排气门首次关闭时,早于原始配气相位,造成了一定的高温废气留在气缸中,产生了二次压缩,其最高压力为0.5MPa左右,低于采用负气门重叠角实现CAI燃烧时的二次压缩最高压力1.2MPa;CAI燃烧的指示热效率为0.3644,同负荷下的SI燃烧效率为0.3313,提高了10%;
     在发动机转速为1000r/min,保持排气门第一次开启和关闭正时、进气门关闭正时不变,调整进气门开启正时和排气门二次开启正时,将试验中实现CAI稳定、非敲缸燃烧不同工况点下的进气门和排气二次启闭正时点制成CAI燃烧区域。此区域IVO从18°CA ATDC到60°CA ATDC变化,SEVO从18。CA ATDC到46°CA ATDC变化,过量空气系数为1。在CAI正常燃烧区域左侧区域为EGR率过小失火区域,右侧区域为EGR率过大失火区域,当进气门开启正时(IVO)大于60°CA ATDC寸,基本不能实现CAI正常燃烧,但是可以采用火花助燃的方式实现稳定燃烧。整个CAI燃烧区域的EGR率为40%-57%,BMEP为0.227MPa-0.401MPa,当SEVO正时不变时,独立调节IVO正时,就可以控制发动机的负荷。有效热效率为0.25-0.31,CAI燃烧区域大部分的有效热效率在0.284以上,对应的EGR率区域为39.6%-43%,大部分区域内NOX排放低于140ppm。试验中发现温度对CAI的稳定燃烧有非常大的影响,包括发动机的水温、进气温度、特别是排气温度,当排气道温度低于633K时,CAI处于失火状态。
     从S1转换到CAI可以在一个循环内完成,两个循环内到达稳定燃烧状态。由于排气温度高使CAI首循环燃烧迅速,燃烧的最高压力出现在0°CA ATDC附近。
Controlled auto-ignition (CAI) is an innovative combustion process which has been receiving worldwide attention from major automotive manufacturers and engine research institutions. Characterized by its homogenous charge auto-ignition by compression and low temperature combustion, CAI mode is able to realize high thermal efficiency and low engine-out emissions showing great research potential. Trapping or re-breathing high temperature burnt gas via cam-less valve train proves to be a simple and effective method to obtain CAI combustion.
     An electro-hydraulic cam-less valve train was developed in this thesis aimed to achieve variable engine valve phase and valve lift. Two-stage hydraulic piston mechanism was featured by fast engine valve opening and low flow ratio requirement. Cushioning system was used to avoid mechanical impact between hydraulic piston and its stop, which reduced the working noise and improved the valve train endurance. A Matlab model of this electro-hydraulic valve train was previously built to assist system design. Items showing effect on the system performance were numerically explored. Thanks to this numerical model, working parameters was finally determined and optimized.
     Test bench for this cam-less valve train was established and valve train system functionalities were analyzed through the data acquisition system. The results indicated a normal distribution for the intake and exhaust valve opening and closing delay at constant working fluid pressure and temperature. While the valve closure has nothing to do with the working pressure, higher fluid temperature claimed a faster valve closing response. Soft landing was achieved with seating velocity effectively reduced to 0.08 m/s. Valve lift swept from 3.1 mm to 11 mm while changing the working pressure. Obtained valve opening and closing profile showed great repeatability at constant working pressure.
     Engine test platform was established with cam-less valve train mounted on the engine head and fully controlled with self-developed electrical management system. With open-loop feedforward control strategy by looking up valve phasing map, cam-less valve train ensured engine speed up to 2200 r/min. Basic fuel injection pulse and optimal ignition advanced angle were sampled. After calibration, cam-less engine reached the power of original engine with camshaft, and even higher at some operating points. Fuel economy and emission performances reached the same level with original engine.
     Stable CAI combustion with second exhaust valve event was firstly achieved on the engine test platform in our country. CAI combustion, emission features and operation region were studied. Mode transition between SI and CAI was also analyzed. In this study, exhaust gas recompression process was observed on the pressure history due to the trapped burnt gas as a result of advanced first exhaust valve closing. Recompression peak pressure was 0.5MPa, lower than that of NVO strategy,1.2MPa. Experiment results revealed that indicated thermal efficiency was 0.3644 at selected operating points,10% higher than that of SI mode.
     Stable CAI combustion region was obtained as a function of IVO and SEVO, with fixed equivalence F/A ratio of approximately stoichiometric and with fixed exhaust valve event and fixed IVC at engine speed of 1000 r/min. Within this operation region, IVO timing swept from 18°CA ATDC to 60°CA ATDC and SEVO timing swept from 18°CA ATDC to 46°CA ATDC. Left side of this region with early IVO was limited by misfire due to its lower EGR rate; on the other hand, right side of this region was restricted by misfire owing to the extreme lean fresh charge. Even delayed IVO timing implied CAI misfire. EGR rate, adjusted by varying IVO or SEVO timing, ranged from 40% to 57%. Within the entire CAI region, BMEP swept from 0.227MPa to 0.401MPa. With second exhaust valve closing kept constant, engine load could be altered by adjusting the IVO timing. The brake thermal efficiency swept from 0.25 to 0.31, higher than 0.284 in most of this region, with corresponding EGR rate from 39.6% to 43% and NOx emission lower than 140ppm. Experiment tests indicated that temperatures, includes cooling water temperature, intake charge temperature and especially, exhaust gas temperature, had significant influence on the CAI combustion. Misfire occurred for the operating points with exhaust gas temperature lower than 633K.
     Mode transition from spark ignition (SI) to CAI could be realized within two cycles and stable CAI combustion was in turn obtained. Due to the high temperature of burnt gas from SI mode, first CAI combustion was advanced and the in-cylinder peak pressure appeared near the TDC.
引文
[1]. http://rlly. cn/new_page_89. htm.
    [2].沈镭,刘立涛.中国能源政策可持续性评价与发展路径选择[J].资源科学,第31卷,第8期,2009.08.
    [3].杨柳,何洪.汽车尾气的危害与治理[J].城市问题,第八期,2008.
    [4]. Magnus Christensen, Patrik Einewall Bengt Johansson. "Homogeneous Charge Compression Ignition (Hcci) Using Isooctane, Ethanol and Natural Gas--A CoMParison With Spark-Ignition Operation" [C]. SAE Paper,972874,1997
    [5]. T. kohany and E. Sher. Using the 2nd Law of Thermodynamics to Optimize Variable valve Timing for Maximizing torque in a Throttled SI Engine. [C].SAE Paper,1999.01-0328
    [6].Pucher, G. R, Gardiner, D. P, Bardon, et al. Alternative Combustion Systems for Piston Engines Involving Homogenous Charge Compression Ignition Concepts-A review of Studies Using Methanol, Gasoline and Diesel Fuel[C]. SAE Paper 962063,1996
    [7].Matsuo Odaka, Hisakazu Suzuki, Noriyuki Koike et al. Search for Optimizing Control Method of Homogeneous Charge Diesel Combustion[C]. SAE Paper 1999,01-0184
    [8].Norimasa Iida. A Study of Autoignition and Combustion in Two-Stroke ATAC Engine — Compression Ignition Characteristics of Low Carbon Alternative Fuels[C]. SAE Paper1999,01-3274
    [9]. Hashizume, T., T. Miyamoto, H. Akagawa, et al.Combustion and Emission Characteristics of Multiple-Stage Diesel Combustion[C]. SAE Paper No.980505.
    [10]. Hisakazu S., N. Koike, and M. Odaka. Combustion Control Method of Homogeneous Charge Diesel Engines[C]. SAE Paper No.980509.
    [11]. Ishibashi, Y., and M. Asai. Improving the Exhaust Emissions of Two-Stroke Engines by Applying the Activated Radical Combustion[C]. SAE Paper No. 960742.
    [12]. Ishibashi, Y., and M. Asai. A Low Pressure Pneumatic Direct Injection Two-Stroke Engine by Activated Radical Combustion Concept [C]. SAE Paper No. 980757.
    [13]. Van Blarigan, P., N. Paradiso, and S. Goldsborough.Homogeneous Charge Compression Ignition with a Free Piston:A New Approach to Ideal Otto Cycle Performance[C]. SAE Paper,982484.
    [14]. YANG J, Cuip T, KENNEY T. Development of a gasoline engine system using HCCI technology-The concept and the teat results[C]. SAE paper,2002,01-2832
    [15]. Onishi, S. et al, Active Thermo-Atmosphere Combustion(ATAC)-A New Combustion Process for Internal Combustion Engines[C].SAE paper 790501,1979
    [16].Noguchi et al. A study on gasoline engine combustion by observation of intermediate reactive products during combustion[C], SAE paper 790840,1979
    [17]. Niat P, Foster D E. Compression2Ignited Homogeneous Charge Combustion[C]. SAE 830264,1983
    [18].Thring R H. Homogeneous Charge Compression Ignited(HCCI) Engine[C]. SAE paper 892068,1989
    [19]. N. B. Kaahaaina, A. J. Simon. Versuche an einem gemischan sugenden Verbrennungsmotor mit selbstzundnung[C].SAE Paper 2001-01-0549
    [20]. Christensen, M, Hultqvist A. and Johansson, B. Demonstrating the Multi Fuel Capability of a Homogenous Charge Compression Ignition Engine with Variable Compression Ratio[C]. SAE Paper 1999-01-3679,1999
    [21].Pucher, G. R, Gardiner, D. P, Bardon, M. F., et al. Alternative Combustion Systems for Piston Engines Involving Homogenous Charge Compression Ignition Concepts-A review of Studies Using Methanol, Gasoline and Diesel Fuel[C]. SAE Paper 962063,1996.
    [22]. Stanglmaier, R. H, and Roberts, C. E. Homogenous Charge Compression Ignition (HCCI):Benefits, Compromises, and Future Engine Applications [C]. SAE Paper 1999-01-3682,1999.
    [23]. Suzuki H, et al.Exhaust Purification of Diesel Engines by Homogeneus Charge with Compression Ignition Part 1 [C].SAE Paper 970313.
    [24]. Flowers, D, Aceves, S, Smith, R., et al.HCCI in a CFR Engine:Experiments and Detailed Kinetic Modelling[C]. SAE Paper 2000-01-0328,2000
    [25].Lavy, J, Dabadie, J., Angelberger, C., et al.. Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines:the 4-SPACE Project[C]. SAE Paper 2000-01-1837,2000.
    [26]. Shi Shao-Xi. Recent Progress in Combustion Technologies for Automotive Engine[J]. Journal of Combustion Science and tecmology, Vol.7 No.1,1-15,2001
    [27]. Magnus Christensen, Bengt Johansson.. "Influence of Mixture Quality on Homogeneous Charge Compression Ignition " [C]. SAE Paper,982454,1998.
    [28]. Toshio Shudo, Yoshitaka Ono. HCCI combustion of hydrogen, carbon monoxide and dimethyl ether[C], SAE Paper 2002-01-0112,2002
    [29]. T. Shudo, Y. Ono, T. Takahashi, Influence of hydrogen and carbon monoxide on HCCI combustion of dimethyl ether[C], SAE Paper 2002-01-2828,2002
    [30].O. Stenlaas, M. Christensen, R. Egnell et al, Reformed Methanol Gas as Homogeneous Charge Compression Ignition Engine Fuel[C], SAE Paper 2004-01-2991,2004
    [31]. Vahid Hosseini, M. David Checkel, Reformer Gas Composition Effect on HCCI Combustion of n-Heptane, Iso-Octane, and Natural Gas [C],2007-01-0049,2007
    [32]. Aaron Oakley, Hua Zhao Nicos, Ladommatos, Tom Ma, "Experimental Studies on Controlled Auto-Ignition (CAI) Combustion of Gasoline in a 4-Stroke Engine" [C]. SAE Paper,2001-01-1030,2001.
    [33].Ricklin PU, Kazakov A, Dryer FL, Kong SC, Reitz RD. The effects of NOx addition on the auto ignition behavior of natural gas under HCCI conditions[C]. SAE paper 2002-01-1746.
    [34]. Chen Z, Konno M, Oguma M, Yanai T. Experimental study of CI natural-gas/ DME homogeneous charge engine[C]. SAE paper 2000-01-0329.
    [35]. Aceves SM, Flowers D, Martinez-Frias J. Espinosa-Losa F, Pitz WJ, Dibble R. Fuel and additive characterization for HCCI combustion[C]. SAE paper 2003-01-1814; 2003.
    [36]. Shibata G, Oyama K, Urushihara T, Nakano T. Correlation of low temperature heat release with fuel composition and HCCI engine combustion[C]. SAE paper 2005-01-0138.
    [37].Farrell JT, Bunting BG. Fuel composition effects at constant RON and MON in an HCCI engine operating with negative valve overlap[C]. SAE paper 2006-01-3275; 2006.
    [38]. Shudo T, Ono Y. HCCI Combustion of hydrogen, carbon monoxide and dimethyl ether[C]. SAE paper 2002-01-0112; 2002.
    [39]. Zheng ZQ, Yao MF, Chen Z, Zhang B. Experimental study on HCCI combustion of dimethyl ether (DME)/methanol dual fuel[C]. SAE paper 2004-01-2993; 2004.
    [40].Szybist JP, McFarlane J, Bunting BG. CoMParison of simulated and experimental combustion of biodiesel blends in a single cylinder diesel HCCI engine[C]. SAE paper 2007-01-4010; 2007.
    [41]. Vincent Knop, Benoist Thirouard and Jerome Cherel. Influence of the Local Mixture Characteristics on theCombustion Process in a CAITM Engine[C]. SAE paper 2008-01-1671.
    [42]. Goran Haraldsson, Per Tunestal, Bengt Johansson, Jari Hyvonen. HCCI combustion phasing with closed-loop combustion control using variable compression ratio in a multi-cylinder engine[C]. SAE Paper 2003-01-1830
    [43]. Magnus Christensen, Anders Hultqvist, Bengt Johansson. Demonstrating the multi-fuel capability of a homogeneous charge compression ignition engine with variable compression ratio[C]. SAE Paper 1999-01-3679
    [44]. T. Aoyama, Y. Hattori, J. Mzuta and Y. Sato. An Experimental Study on Premixed Charge Compression Ignition Gasoline Engine[C]. SAE Paper 960081.
    [45]. Magnus Christensen, Patrik Einewall Bengt Johansson.. "Homogeneous Charge Compression Ignition (Hcci) Using Isooctane, Ethanol and Natural Gas--A CoMParison With Spark-Ignition Operation" [C]. SAE Paper,972874,1997
    [46]. Jan-Ola Olsson, Olof Erlandsson and Bengt Johansson. Experiments and Simulation of a Six-Cylinder Homogeneous Charge Compression Ignition (HCCI) Engine[C]. SAE Paper,2000-01-2867.
    [47]. Anders Hultqvist, Ulf Engdar, Bengt Johansson and Jens Klingmann. Reacting Boundary Layers in a Homogeneous Charge Compression Ignition (HCCI) Engine[C]. SAE Paper,2001-01-1032.
    [48]. Thomas W. Ryan Ⅲ and Timothy J. Callahan. Homogeneous charge compression ignition of Diesel Fuel[C]. SAE Paper 961160
    [49].彭亚平.基于进气温度控制的乙醇燃料SI-HCCI复合燃烧模式发动机研究[D].吉林大学,2008,05
    [50].Yoichi Ishibashi, Masahiko Asai. "Improving the Exhaust Emissions of Two-Stroke Engines By Applying the Activated Radical Combustion" [C]. SAE Paper,960742,1996.
    [51]. George Kontarakis, Nick Collings, Tom Ma, Demonstration of HCCI Using a Single Cylinder Four-stroke SI Engine with Modified Valve Timing[C]. SAE Paper,2000-01-2870.
    [52]. Don Law, Dan Kemp, Jeff Allen, et al. Controlled Combustion in an IC-Engine with a Fully Variable Valve Train[C]. SAE Paper.2001-01-0251
    [53]. Jian Li, Hua Zhao, Nicos Ladommatos. Research and development of controlled auto-ignition (CAI) combustion in a 4-stroke multi-cylinder gasoline engine[C].SAE Paper2001-01-3608
    [54]. M. Richter, J. Engstrom, A. Franke et al, The influence of charge inhomogeneity on the HCCI combustion process[C]. SAE Paper 2000-01-2868
    [55]. P. Wolters, W. Salber et al, Controlled Auto Ignition Combustion Process with an Electromechanical Valve Train[C]. SAE Paper 2003-01-0032
    [56]. Makoto Kaneko, Koji Morikawa, Jin Itoh, Youhei Saishu, Study on homogeneous charge compression ignition gasoline engines~Second report:Control of autoignition by mixture stratification[C]. SAE Paper 2001-08-0101
    [57].0. Lang and W. Salber, J. Hahn, Thermodynamical and Mechanical Approach Towards a Variable Valve Train for the Controlled Auto Ignition Combustion Process[C]. SAE Paper 2005-01-0762
    [58]. Magnus Sjoberg, Lars-Olof Edling, Torbjorn Eliassen et al, GDI HCCI: Effects of injection timing and air swirl on fuel stratification, combustion and emissions formation[C]. SAE Paper 2002-01-0106
    [59]. Craig D. Marriott, Rolf D. Reitz, Experimental investigation of direct injection gasoline for premixed compression-ignited combustion-phasing control[C]. SAE Paper 2002-01-0418
    [60].Henrik Nordgren, Anders Hultgvist, Bengt Johansson, Start of Injection Strategies for HCCI Combustion[C]. SAE Paper 2004-01-2290
    [61]. Richard Standing, Navin Kalian, Tom Ma et al, Effects of Injection Timing and Valve Timings on CAI Operation in a Multi-Cylinder DI Gasoline Engine[C].SAE Paper 2005-01-0132
    [62].Yufeng Li, Hua Zhao, Nikolaos Brouzos et al, Effect of Injection Timing on Mixture and CAI Combustion in a GDI Engine With an Air-Assisted Injector[C].SAE Paper 2006-01-0206
    [63].Tian Guohong, Wang Zhi, Wang Jianxin et al, HCCI Combustion Control by Injection Strategy With Negative Valve Overlap in a GDI Engine[C], SAE Paper 2006-01-0415
    [64]. John Waldman, Dennis Nitz, Tanet Aroonsrisopon et al, Experimental Investigation Into the Effects of Direct Fuel Injection During the Negative Valve Overlap Period in an Gasoline-Fueled HCCI Engine[C]. SAE Paper 2007-01-0219
    [65]. Simon Brewster, Geoffrey Cathcart, Christian Zavier, The Potential of Enhanced HCCI /CAI Control Through the Application of Spray-Guided Direct Injection[C].SAE Paper 2008-01-0035
    [66].Jari Hyvonen, Goran Haraldsson, Bengt Johansson, Supercharging HCCI to extend the operating range in a multi-cylinder VCR-HCCI engine[C]. SAE Paper 2003-01-3214
    [67]. Thomas Johansson, Bengt Johansson, Per Tunest\asl et al, HCCI Operating Range in a Turbo-charged Multi Cylinder Engine with VVT and Spray-Guided DI[C].SAE Paper 2009-01-0494
    [68].Toshio Yamada, Noriaki Fujii, Masatoshi Suzuki, et al, A Study of Extending the Operational Range of a Gasoline HCCI Engine by Using the Blow-Down Supercharging System[C]. SAE Paper 2009-08-0221
    [69].Lucien Koopmans, Hans Strom, Staffan Lundgren et al, Demonstrating a SI-HCCI-SI Mode Change on a Volvo 5-Cylinder Electronic Valve Control Engine[C], SAE Paper 2003-01-0753
    [70]. A. Fuerhapter, W. F. Piock and G. K. Fraidl, CSI-Controlled Auto Ignition-the Best Solution for the Fuel Consumption-Versus Emission Trade-Off? [C], SAE Paper 2003-01-0754.
    [71]. A. Fuerhapter, E. Unger, W. F. Piock et al, The new AVL CSI Engine-HCCI Operation on a Multi Cylinder Gasoline Engine[C], SAE Paper 2004-01-0551.
    [72]. Nebojsa Milovanovic, Dave Blundell, Stephen Gedge and Jamie Turner, SI-HCCI-SI Mode Transition at Different Engine Operating Conditions[C]. SAE Paper 2005-01-0156.
    [73].Nebojsa Milovanovic, Dave Blundell, Stephen Gedge et al, Cam Profile Switching (CPS) and Phasing Strategy vs Fully Variable Valve Train (FVVT) Strategy for Transitions between Spark Ignition and Controlled Auto Ignition Modes[C]. SAE Paper 2005-01-0766.
    [74]. Halim Santoso, Jeff Matthews and Wai K. Cheng, Managing SI/HCCI Dual-Mode Engine Operation[C].SAE Paper 2005-01-0162.
    [75]. Alasdair Cairns and Hugh Blaxill, The Effects of Two-Stage Cam Profile Switching and External EGR on SI-CAI Combustion Transitions[C].SAE Paper 2007-01-0187.
    [76].Guohong Tian, Zhi Wang, Qiangqing Ge et al, Mode Switch of SI-HCCI Combustion on a GDI Engine[C]. SAE Paper 2007-01-0195.
    [77].Yan Zhang, Hui Xie, Nenghui Zhou et al, Study of SI-HCCI-SI Transition on a Port Fuel Injection Engine Equipped with 4VVAS[C]. SAE Paper 2007-0199.
    [78].Hiromu Kakuya, Shiro Yamaoka, Kengo Kumano, Investigation of a SI-HCCI Combustion Switching Control Method in a Multi-Cylinder Gasoline Engine [C]. SAE Paper 2008-01-0792
    [79]. Wilhelm Hannibal, Rudolf Flierl, Lutz Stiegler et al, overiew of current continuously variable valve lift systems for four stroke spark ignition engines and the criteria for their design ratings[C]. SAE paper 2004-01-1263.
    [80]. Titolo A. The Variable Valve Timing System-Application on a V8 Engine[C]. SAE paper 910009,1991
    [81].Yukio Nakayama, Takeshi Maruya, Toshihiro Oikawa, and Mikio Fujiwara, Masashi Kawamata. Reduction of HC Emission from VTEC Engine During Cold-Start Condition [C]. SAE paper 940481.
    [82].Masato Matsuki, Kenji Nakano, Tohru Amemiya, et al. Development of a Lean Burn Engine with a Variable Valve Timing Mechanism[C]. SAE Paper 960583.
    [83]. J. Eaton, I. Gilbert, D. Lacy, et al. A Camshaft Integrated 2-Mode Variable Valve Actuation System [C]. SAE Paper 2005-01-0769.
    [84].Ronald J. Pierik et al. Low-Friction Variable-Valve-Actuation Device, Part 1:Mechanism Description and Friction Measurements[C]. SAE Paper 970338.
    [85]. Niculae Negurescu, Constantin Pana, Marcel Ginu Popa et al. Variable Valve Control Systems for Spark Ignition Engine[C] SAE Paper 2001-01-0671.
    [86]. Peter Kreuter, Peter Heuser, Joachim Reinicke-Murmann, et al. Variable Valve Actuation-Switchable and Continuously Variable Valve Lifts[C]. SAE Paper2003-01-0026.
    [87]. Michael B. Riley, David W. Fiddes. A Fully Variable Mechanical Valvetrain with a Simple Moving Pivot [C]. SAE Paper2005-01-0770.
    [88].Alan Warburton, Lain Fleming, James Scott et al. Intelligent Valve Actuation (IVA) System for Gasoline and Diesel Engines[C]. SAE Paper2005-01-0772.
    [89]. M. Sellnau, T. Kunz, J. Sinnamon et al.2-step Variable Valve Actuation: System Optimization and Integration on an SI Engine[C]. SAE Paper 2006-01-0046.
    [90].Haoran Hu, Joseph M. Vrih, Mark A. The Integrated Lost Motion VVT Diesel Engine Retarder[C]. SAE Paper 973180.
    [91]. Rudolf Flierl and Daniel Gollasch, Andreas Knecht, et al. Improvements to a Four Cylinder Gasoline Engine Through the Fully Variable Valve Lift and Timing System UniValve[C] SAE Paper 2006-01-0223.
    [92]. M. F. Mathieson, S. J. Charlton, and D. N. Johnston, et al. A Hydraulic Tappet with Variable Timing Properties[C] SAE Paper 930823.
    [93]. Takasuke Shikida, Yoshikatsu Nakamura, Tamio Nakakubo et al. Development of the High Speed 2ZZ-GE Engine[C]. SAE Paper 2000-01-0671.
    [94]. Shinichi Takemura, Shunichi Aoyama, Takanobu Sugiyama, et al. A Study of a Continuous Variable Valve Event and Lift (VEL) System[C]. SAE Paper 2001-01-0243
    [95]. Mario Berg, Gerhard Kachel, and Peter Kuhn. Mechanical Fully-Flexible Valve Control with delta-st[C]. SAE Paper 970251.
    [96]. Ronald J. Pierik and James F. et al. Design and Development of a Mechanical Variable Valve Actuation System[C]. SAE Paper 2000-01-1221.
    [97]. Michael B, Riley, Mark McElwee et al. A Mechanical Valve System with Varialbe Lift, Duration, and Phase Using a Moving Pivot[C]. SAE Paper 970334.
    [98]. Jong-Cheol Lee and Chun-Woo Lee, James A. et al. The Application of a Lost Motion VVT System to a DOHC SI Engine[C]. SAE Paper 950816.
    [99].Iikka Jarvi. VAVACT-Variable Valve Actuation Mechanis[C] SAE Paper 2003-01-0025.
    [100]. Mark A. Mohr and Rudolf Flierl, Wilhelm Hannibal. Potential of a Mechanical Fully-Variable Valve Lift System for Engines with a Side-Mounted Camshaft[C]. SAE Paper 2004-01-1395.
    [101]. Hui Xie, Shengzhi Hou, Jing Qin et al, Control Strategies for Steady and Transient Operation of a 4-Stroke Gasoline Engine with CAI Combustion Using a 4-Variable Valve Actuating System (4VVAS) [C].SAE Paper 2006-01-1083.
    [102]. Yoshihito Moriya, Atsushi Watanabe, Hitoshi Uda, et al. A Newly Developed Intelligent Variable Valve Timing System-Continuously Controlled Cam Phasing as Applied to a New 3 Liter Inline 6 Engine[C]. SAE Paper 960579.
    [103]. Liguang Li, Jianwu Tao, Yunkai Wang, et al. Effects of Intake Valve Closing Timing on Gasoline Engine Performance and Emissions[C]. SAE Paper 2001-01-3564.
    [104].Liyun Zheng, Jeremy Plenzler. Characterization of Engine Variable Cam Phaser Fluid Dynamics and Phaser's Ability to Reject System Disturbances[C]. SAE Paper 2004-01-1389.
    [105].Y. Moriya, A. Watanabe, H. Uda, et al.A newly Developed Intelligent Variable Valve Timing System-Continuously Controlled Cam Phasing as Applied to New 3 Liter Inline 6 Engine[C]. SAE Paper.960579.
    [106]. T. Lichti. Design of a Continuously Variable Cam Phasing (CVCP) System for Emissions, Fuel Economy, and Power Improvement [C]. SAE Paper.982960.
    [107]. R. Steinsberg, I. Lenz, G. Koehnlein, et al. Saupe and W. Buchinger.A Fully Continuous Variable Cam Timing Concept for Intake and Exhaust Phasing[C]. SAE Paper.980767,1998
    [108]. J. Pfeiffer, M. J. Kulpa, K. Simpson, et al. A Verification Study for Cam Phaser Position Control using Robust Engineering Techniques[C]. SAE Paper 2001-01-0777.
    [109]. Seinosuke Hara, Akira Hidaka, Naoki Tomisawa, et al. Application of a Variable Valve Event and Timing System to Automotive Engines[C]. SAE Paper 2000-01-1224.
    [110]. Clearly D. and Silvas G., "Unthrottled Engine Operation with Variable Valve Intake Lift, Duration And Timing" SAE paper 2007-01-1282.
    [111].Ghauri A., Richardson S.H. and Nightingale C. J. E. "Variation of Both Symmetric and Asymmetric Valve Events on a 4-Valve SI Engine and the Effects on Emissions and Fuel Economy", SAE paper 2000-01-1222," 2000.
    [112].Bohac S. and Assanis D. N., "Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions", SAE paper 2004-01-3058,2004.
    [113].Salber W., Wolters P., Esch T., et al, "Synergies of Variable Valve Actuation and Direct Injection", SAE paper 2002-01-0706.
    [114]. Allen J. and Law D., "Production Electro-Hydraulic Variable Valve-Train for a New Generation of I.C. Engines", SAE paper 2002-01-1109.
    [115]. Herranen M., Huntala K., VileniusM. et al, "The Electro-Hydraulic Valve Actuation (Ehva) for Medium Speed Diesel Engine-Development Steps with Simulation and Measurements" SAE paper 2007-01-1289.
    [116]. Chihaya Sugimoto, Hisao Sakai, Atsushi Umemoto et al, Study on VariableValve TimingSystem Using Electromagnetic Mechanism[C], SAE paper 2004-01-1869.
    [117]. M. Pontoppidan and G. Gaviani, G. Bella, et al. Enhanced Mixture Preparation Approach for Lean Stratified SI-Combustion by a Combined Use of GDI and Electronically Controlled Valve-Timing[C]. SAE Paper 2000-01-0532.
    [118]. S. Butzmann and J. Melbert, A. Koch. Sensorless Control of Electromagnetic Actuators for Variable Valve Train[C]. SAE Paper 2000-01-1225.
    [119]. P. Wolters, W. Salber, J. Geiger et al. Controlled Auto Ignition Combustion Process with an Electromechanical Valve Train[C]. SAE Paper 2003-01-0032.
    [120]. Woo Sok Chang, Tushar Parlikar, John G. Kassakian et al. An Electromechanical Valve Drive Incorporating a Nonlinear Mechanical Transformer[C]. SAE Paper 2003-01-0036.
    [121].Yasuhiro Urata, Moriyoshi Awasaka, Junichi Takanashi, et al. A Study of Gasoline-Fuelled HCCI Engine Equipped with an Electromagnetic Valve Train[C]. SAE Paper 2004-01-1898.
    [122].璩轶飞,赵雨东,吴亚楠.采用传统闭环方法控制电磁气门驱动的可行性分析,内燃机工程,2005年10月,第26卷第5期,p59-61.
    [123].付雨民,赵雨东.采用磁场分割法进行的发动机电磁气门驱动(EVA)仿真计算,内燃机工程,地24卷(2003)第1期,p1-5.
    [124].赵雨东,李红艳,陆际清.电磁气门驱动设计及其电磁铁静吸力特性试验。内燃机工程,第20卷(2002)第4期,p340-344.
    [125]. Rongwei Huang and Yudong Zhao. A Control Strategy Based on Exact Linearization for Electromagnetic Valve Actuation[C]. SAE Paper 2007-01-1596.
    [126]. Michael M. Schechter, Michael B. Levin. Camless engine[C], SAE paper, 960581.
    [127]. Jeff Allen and Don Law. Production Electro-Hydraulic Variable Valve-Train for a New Generation of I.C. Engines [C]. SAE Paper 2002-01-1109.
    [128]. J. W. G. Turner, M. D. Bassett, R. J. Pearson, et al. Douglas. New Operating Strategies Afforded by Fully Variable Valve Trains[C]. SAE Paper 2004-01-1386.
    [129]. Jamie Turner, Nebojsa Milovanovic and Rui Chen. Influence of the Variable Valve Timing Strategy on the Control of a Homogeneous Charge Compression (HCCI) Engine[C]. SAE Paper 2004-01-1899.
    [130].Jussi Aaltonen, Kalevi Huhtala and Matti Vilenius. Electrohydraulic Valvetrain for Extreme Value Diesel Engine[C]. SAE Paper.2002-01-1282.
    [131]. Zheng (David) Lou. Camless Variable Valve Actuation Designs with Two-Spring Pendulum and Electrohydraulic Latching[C]. SAE Paper 2007-01-1295.
    [132]. Raghav H. V. and A. Ramesh. A New Hydraulic Servo Variable Valve Actuation Concept-Simulation Studies[C]. SAE Paper.2007-01-1298.
    [133]. Battistoni M., Mariani F., Postrioti L., et al. Numerical Analysis of a New Concept Variable Valve Actuation System. SAE paper 2006-01-3008.
    [134]. Michele Battistoni, Luigi Foschini and Lucio Postrioti, et al. Development of an Electro-Hydraulic Camless VVA System[C]. SAE paper2007-24-0088.
    [135]. Lucio Postrioti, Luigi Foschini and Michele Battistoniet et al. Experimental and Numerical Study of an Electro-Hydraulic Camless VVA System[C]. SAE paper2008-01-1355.
    [136].Lucio Postrioti, Michele Battistoni, Luigi Foschini, et al. Application of a Fully Flexible Electro-Hydraulic Camless System to a Research SI Engine[C]. SAE paper2009-24-0076.
    [137].苏炎玲.内燃机无凸轮电液驱动配气机构的设计与控制研究[D].天津大学,2004,01.
    [138].许回江.柴油机电-液驱动可变气门系统研究[D].武汉理工大学,2007,04.
    [139].周云龙,洪文鹏.工程流体力学[M].中国电力出版社.2006年.
    [140].方昌林.液压、气压传动与控制[M].机械工业出版社,2001年.
    [141].李壮云.液压元件与系统设计[M].机械工业出版社,2005年.
    [142].王遂双.桑塔纳轿车点火系的结构、工作和使用汽车运用[J],02期,1994
    [143].李想.电控汽油机标定系统设计及试验研究[D].吉林大学,2007,05
    [144].周龙保,刘忠长.内燃机学[M].机械工业出版社,2011年.
    [145].杨嘉林.车用汽油发动机燃烧系统的开发.机械工业出版社,2010年.
    [146].刘发发.缸内EGR策略对汽油机CAI燃烧影响研究[D].吉林大学,2010,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700