内部EGR对乙醇HCCI燃烧影响的模拟计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
均质压燃(HCCI)燃烧方式具有高的热效率和极低的氮氧化物排放,因而受到内燃机界的广泛关注。但高辛烷值燃料HCCI燃烧面临着着火困难和燃烧速率控制困难的问题。采用内部EGR是解决这两个难题的有效方法。本文利用一维发动机循环模拟软件GT-Power和大型化学动力学软件CHEMKIN耦合,建立了HCCI燃烧发动机的循环模型。利用该模型研究了配气相位及气门升程对内部EGR率和缸内工质初始压缩温度的影响;研究了内部EGR对乙醇燃料HCCI燃烧过程的影响。结果表明:内部EGR率在40%-80%范围内时,乙醇燃料可以实现稳定的HCCI燃烧,并且获得了该发动机实现HCCI燃烧的转速和负荷范围,为该发动机的试验研究提供了理论指导和参数选择范围。
As the fast development of the national economy and the number of the automobile increasing, the question of oil shortage prominents day by day, the automobile emissions are polluting the atmospheric environment seriously day by day. Therefore it is important to enhance the efficiency of automobile energy and reduce the noxious emmissions, which can not only save the oil resource but also protect the atmospheric environment .
     As a result of the nature difference of gasoline and the diesel fuel, the traditional internal combustion engine divides into the spark ignition engine (gasoline engine) and compress ignition engine (diesel engine). Diesel engine belongs to atomization proliferation combustion. Because the formation time of the mixture is short, the non-uniformity forms the partial high temperature flame area and the high temperature excessively thick area.It is extremely easy to form NOx and the carbon smoke. But it has high compression ratio and high thermal efficiency . The traditional gasoline engine belongs to the isotropic mixture, flame-propagation combustion.It gets to light with the aid of the igniter plug. As a result of the engine knock limit, it only can use a lower compression ratio, and use the damper to control load. Therefore the efficiency of the fuel is lower than the diesel engine approximately 30%. Also it produces massive NOx and the incomplete combustion products. But there are no carbon smoke discharges.
     But in recently several years, Homogeneous Charge Compression Ignition (HCCI) synthesized the merit of the traditional gasoline engine and the diesel engine。It not only is equal to the diesel engine thermal efficiency but also has no carbon smoke discharge and there is extremely low NOx to discharge.So it has attracted widespread attention of the internal combustion engine field. But HCCI combustion of the high octane value fuel actually faces the fire difficulty and the difficult of combustion rate control. The earlier period research indicated that theuses of internal EGR solves these two questions effectively.
     1. This article has established the ethyl alcohol HCCI engine circulation model coupling unidimensional cycles of engine simulation software GT-Power and the large-scale chemical kinetics analysis software CHEMKIN
     2. The effect of fully flexible valve actuation system driven by the camless electro-hydraulic valve operating system is analyzed to find the effect of the different match factor to the in internal EGR rate and the compression initial period in-cylinder temperature.Simulated match plans includes: Change exhaust valve close timing, change exhaust valve open timing, change intake valve to open timing and change the exhaust valve lift. The results indicates : In the case of the maintenance of the exhaust valve open timing and intake valve close timing,changing the exhaust valve close timing can gain 56.2% internal EGR. In order to enhance internal EGR rate,it is possible to retard the intake valve open timing , retard exhaust valve open timing or reduce exhaust valve lift. All these method may enhance the internal EGR rate, and enable it to achieve 80%. Simultaneously the influence to the initial temperature of the different EGR rate is analyzed.
     3. Using this circulation model studis the influence of internal EGR rate to the ethyl alcohol HCCI combustion process.The results indicates that:
     (1) when EGR rate is smaller than 40%, cylinder internal pressure elevating rate is bigger than 0.6MPa/°CA .this can bring the knock. Therefore the ethyl alcohol HCCI load upper limit is equal to 40% definited by EGR rate. When EGR rate is bigger than 80%, it appears misfire. Therefore the ethyl alcohol fuel HCCI load lower limit is equal to 80% definited by EGR rate.
     (2) The internal EGR has the dual function to the HCCI , one function is to heat fresh air to make it easy to fire;the other function is the heat capacity and the dilution function,which may reduce the chemical reaction speed , postpone the fire, lengthen the burning duration and depressurize elevating rate. When EGR rate is smaller than 55% heat function performance to be remarkable. Along with EGRrate increasing, fire beginning spot is ahead of time; When EGR rate is bigger than55%, reducing the chemical reaction rate act to be remarkable role. Along with the EGR rate increasing, the fire beginning spot postpones.
     (3) This model is used to forecast the range of the speed and the load of theHCCI engine.
引文
[1]刘金山. 燃烧边界条件对乙醇燃料均质压燃的影响规律[D].吉林大学.博士学位论文.200603.
    [2]彭亚平.进气温度对醇类燃料均质压燃发动机燃烧过程影响的试验研究[D].吉林大学.硕士论文.200505.
    [3]朱驰.燃用二甲醚的均质充量压燃发动机的研究[D].西安交通大学.硕士论文.20040301.
    [4]段峰.柴油/甲醇组合燃烧方式在增压柴油机上的应用研究[D].天津大学.硕士论文.20040701.
    [5]David L. Hilden and Fred B. Parks. Single-Cylinder Engine Study of Methanol Fuel-Emphasis on Organic Emissions [C]. SAE Paper 760378.
    [6]郑尊清,尧命发.废气再循环对二甲醚/天然气双燃料均质压燃燃烧过程和排放特性的研究[J].燃料科学与技术.第 10 卷 第 3 期 2004 年 6 月。
    [7]尧命发,郑尊清,秦静等.二甲基醚/天然气双燃料均质压燃的燃烧特性[J]. 燃料科学与技术,第 10 卷 第 1 期 2004 年 2 月.
    [8]N.P. Komninos, D.T. Hountalas and D.A. Kouremenos. Description of in-Cylinder Combustion Processes in HCCI Engines Using a Multi-Zone Model[C].SAE 2005-01-0171.2005.
    [9]秦静.可控自燃汽油机燃烧放热率模型及稳态运行控制策略的研究[D].天津大学.硕士论文.200601.
    [10]孙巍.废气再循环系统的研究[D].南京林业大学.硕士论文.20030601.
    [11]常国峰.HCCI 内燃机燃烧机理测试与实验系统的开发[D].吉林大学.硕士论文.2201310.
    [12]Norimasa lida.A Study of Autoignition and Combustion in Two-Stroke ATAC Engine—Compression Ignition Characteristics of Low Carbon AlternativeFuels[C].SAE 1999-01-3274.1999.
    [13]章炜.基于 KIVA-3V 的柴油机缸内流动和燃料过程的数值仿真研究[D].合肥工业大学.硕士论文.20041201.
    [14]吕兴才.燃料设计控制发动机燃烧与排放的试验研究[D].上海交通大学.博士论文.20050201.
    [15]杨立平.乙醇燃料均质压燃的试验研究[D].吉林大学.硕士论文.200505.
    [16]苏岩,李理光,肖敏,曾朝阳.国外发动机可变配气相位研究进展——机构篇[J].汽车技术.1999 年第 6 期.
    [17]李彩芬等.柴油机废气再循环技术的应用研究[J].北京交通大学.北京100044.
    [18]李志锐,舒歌群.无凸轮电液驱动气门配气机构技术的发展[J].拖拉机与农用运输车.2005年2月 第1期.
    [19]王韬,秦德,郝志勇.发动机可变气门正时技术的研究[J].小型内燃机与摩托车.No.3(Vol.32).2003.
    [20]张春化,边耀璋,解亚利.汽车发动机可变气门驱动机构[J].陕西汽车.1996 年第 1 期.
    [21]李理光,苏岩,王云开,陶建武.液压张紧式可变配气相位机构的设计与试验[J].内燃机学报. 2002(Vol.20)No.4.
    [22]苏岩,李理光,肖敏,曾朝阳.可变配气相位对发动机性能的影响[J].汽车技术.2000 年第 10 期.
    [23]李理光,苏岩,王云开,陶建武,肖敏.车用高速汽油机电控可变配气相位系统[J].汽车工程.2001(Vol.23)No.4.
    [24]Thomas Dresner and Phillp Barkan. A Review and Classification of Variable Valve Timing Mechanism[C].SAE paper 890674,1989.
    [25]苏岩.可变配气相位的研究[D].硕士论文.吉林工业大学 1999 U469.75.
    [26]Goldste R J. Variables of Electromagnetic Valve Actuator Performance[J]. Engine Technology International,1997(11):84-88.
    [27]Klein F, Kuhn M, Weimann H J, et al. The Influence of the Valve Stroke Design in Variable Valve Timing Systems on Load Cycle, Mixture Formation and the Combustion Process in Conjunction with Throttle-Free Load Governing[C]. SAE paper 981030,1998.
    [28]Schechter M M, Levin Michael B. Camless Engine[C]. SAE paper 960581,1996.
    [29]Mardell J E. An Integrated, Full Authority, Eletrohy draulic Engine Valve and Diesel Fuel Injection System[C]. SAE paper 880602,1988.
    [30]田新民.无需凸轮轴的电动液压气门定时机构[J].国外内燃机.2000(1):62-63.
    [31]解茂昭.内燃机计算燃烧学[M].大连理工大学出版社.
    [32]Gottschalk M. Electromagnetic Valve Actuator Drives Variable Valvetrain[J]. Design News,1993(1):123-125.
    [33]Kreuter P, Heuser P, Schebitsz Michael. Strategies to Improve SI-Engine Performance by Means of Variable Intake Lift, Timing and Duration[C].SAE paper 920449,1992.
    [34]Mark A Theobald, Lequesne B, Henry R. Control of Engine Load via Electromagnetic Valve Actuators[C].SAE paper 940816,1994.
    [35]Schulz V F, Seitz W E. Gently Does It. Engine Technology International. 1998(annual review):116-119.
    [36]Richman R M, Reynolds W C. A Computer Controlled Poppet Valve Actuation System for Application to Turbocharged Diesel Engine[C].SAE paper 880340,1988.
    [37]Griffiths P J, Mistry K N. An Electro-hydraulic Valve Operating System for Engine Research and Development, Experimental Methods in Engine Research and Development[J]. IMechE Seminar. 1988:846-862.
    [38]Henry R P, Lequesne B. A Novel , Fully Flexible, Electro-Mechanical Engine Valve Actuation System[C]. SAE paper 970249,1997.
    [39]Fitsos P, Harralson J. Valve Timing by Means of a Rotary Actuator[C].SAE paper 1999-01-0330,1999.
    [40]Cross P C. A Rotary Valve Combustion System with Throttleless Inlet Charge Control[C]. SAE paper 940813,1994.
    [41]李红艳,赵雨东.发动机无凸轮轴气门驱动的研究与进展[J].车用发动机. 2001(4).
    [42]孟祥慧.DME(二甲醚)发动机的准维多区燃烧和 NOx 排放模型[D].西安交通大学.硕士论文.20020304.
    [43]刘建霞.TY295D 发动机柴油乙醇双燃料电控乙醇喷射正时的优化[D].广西大学.硕士论文.20040501.
    [44]NICK M. MARINOV,A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation; Lawrence Livermore National Laboratory, P.O. Box 808, Livermore,CA 94550 ;Received 20 August 1998;accepted 15 October 1998.
    [45]Hui Xie, Zhipeng Wei, Bangquan He and Hua Zhao. Comparison of HCCI Combustion Respectively Fueled with Gasoline,Ethanol and Methanol through the Trapped Residual Gas Strategy[C].SAE 2006-01-0635.
    [46]周奇.车用发动机 EGR 系统的研究开发[D].同济大学.硕士论文.20020301.
    [47]秦静.二甲基醚/天燃气双燃料 HCCI 燃烧反应动力学研究[D].天津大学,硕士论文.20021201.
    [48]谢辉,秦静,张岩,朱红国,赵华.汽油机均质压燃燃烧模型及其在CAI发动机模拟中的应用[J].燃烧科学与技术.2004.Vol.10 No.6.
    [49]张波.燃料辛烷值对均质压燃燃烧特性和排放特性影响的试验研究[D].广西大学.硕士论文.20040501.
    [50]罗马吉.二甲醚纯燃料与二甲醚液化石油气混合燃料均质压燃燃烧模拟研究[D].上海交通大学.博士后学位论文.20041101.
    [51]Yan Zhang, Bang-Quan He, Hui Xie and Hua Zhao. The Combustion and Emission Characteristics of Ethanol on a Port Fuel Injection HCCI Engine[C].SAE 2006-01-0631.
    [52]Ryan,T. W.,and Callahan,T.J.. Homogeneous Charge Compression Ignition of Diesel Fuel[M]. Conference:Part 1 Automotive Technology.San FrancisCo,1995.
    [53]A.W.Gray III,T.W.Ryan III. Homogeneous Charge Compression Ignition of Diesel Fuel[C].SAE971676.
    [54]Noguchi, M.,Tanaka,Y., Tanaka,T.and Takeuchi,Y.. A study on gasoline engine Combustion by observation of intermedia reactive products during Combustion[C].SAE paper 790840.
    [55]lida,N.,Ichikura,T.,Kase,L.and Takeuchi,Y.A.Study on gasoline engine Combustion stability in a methanol fuelled low heat rejection ceramic ATAC engine –analysis of cyclic variation at high wall temperatures and lean burn oparation[C].SAE review 18,pp233-240,1997
    [56]Oakley A., Zhao, H. et al.Experimental Studies on Controlled Auto-ignition Combustion in a 4-Stroke Engine [C]. SAE Paper 2001-01-1030,2001.
    [57]Oakley,A.,Zhao H.,Ladommatos,N.and Ma,T.Experimental syudies on Controlled auto-ignition (CAI)Combustion in a 4-stroke gasoline engine,international Conference on 21st century emissions technology[J].C588/019/2000,Imech,2001.
    [58]H.Suzki,N.Koike,M.Odaka.Combustion Control Method of Homogenous Diesel Engines[C].SAE980509.
    [59]Magnus Christensen and Bengt JoHansson.Influence of Mixture Quality on Homogeneous Charge Compression Ignition [C]. SAE Paper 982454.
    [60]朱驰,刘圣华.二甲醚均质压燃燃烧过程的试验研究[J]. 燃料科学与技术,第 22 卷 第 1 期 2004 年.
    [61]R.Takatsuto,T.Igarashi.N.Lida.Auto Ignition and Combustion of DME and n-Butane/Air Mixtures in Homogeneous Charge Compression Ignition Engine[M]. Comodia98,Kyoto,Japan.
    [62]Chen,Z.,Konno,M.,Oguma,M.and Yanai,T.Experimental study of CI natural gas /DME homogeneous charge engine[C].SAE paper 2000-01-0329.2000.
    [63]Shadi Gharahbaghi, Trevor S. Wilson, Hongming Xu,Simon Cryan and Steve Richardson. Modelling and Experimental Investigations of Supercharged HCCI Engines.SAE 2006-01-0634.2006.
    [64]周龙保等.内燃机学[M].机械工业出版社.1996.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700