煤拔头半焦燃烧反应特性的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤炭资源丰富,油、气资源有限,液体燃料短缺已成为制约我国经济发展的重要因素。煤拔头工艺在中低温快速热解条件下通过温和的转化方式从丰富的年轻煤中提取轻质燃料油和高值化学品,可部分缓解液体燃料的短缺。目前,煤拔头工艺已成功与循环流化床锅炉相结合,考虑到我国火力发电行业主要采用粉煤燃烧的方式,为进一步扩大煤拔头工艺应用范围,将煤拔头工艺与粉煤锅炉燃烧相结合的方案被提出,即煤先经过煤拔头的中低温快速热解工艺,获得一定的油气产品之后,剩余的固体残留物(半焦),再用作粉煤锅炉的燃料。在粉煤燃烧发电机组运行过程中,燃煤设备与燃料特性的相互适应非常重要,鉴于此,本文针对不同条件下所得的煤拔头半焦的燃烧反应特性进行了研究,对煤拔头半焦用作粉煤锅炉燃料的可行性进行试验验证,同时,探讨拔头工艺条件与拔头半焦物性之间以及拔头半焦物性与其燃烧反应特性之间的关系,并由此阐明拔头工艺条件与拔头半焦燃烧反应特性之间的关系及作用机理。
     利用喷动载流床模拟煤拔头工艺的快速热解条件,在不同热解温度下分别制备了不同粒径大同烟煤的拔头半焦,采用工业分析和元素分析对拔头半焦的化学组成进行测试,采用红外光谱分析和X射线衍射分析分别对拔头半焦的官能团和碳结构进行了测试。提出了原煤热解度(Dv)的定义,用于定量分析热解条件对拔头半焦组成和碳结构的影响。
     利用低温氮吸附法对拔头半焦的孔隙结构进行了测试,利用扫描电镜法对原煤和拔头半焦的表面形态进行观察。根据吸附数据,采用NLDFT理论对孔径分布、孔比表面积分布以及各种孔尺寸进行了求解,而不是前人最常使用的BJH方法;同时,求解了BET比表面积。根据孔隙结构测试结果,对煤拔头中低温快速热解条件下孔隙结构的发展变化及其原因进行了探讨。
     利用综合热分析仪,在慢加热速率条件下对原煤、拔头半焦及阳泉无烟煤的燃烧反应特性进行了研究,采用着火温度和整体平均表观活化能对样品的燃烧反应性进行评价,同时分析了样品的着火类型。根据试验结果,对煤拔头半焦的燃烧反应特性与原煤和阳泉无烟煤的燃烧反应特性之间的差异进行了对比,对影响样品燃烧反应性的主要因素,如物质组成、孔结构及碳结构,进行了分析。
     设计、搭建、调试完成一套沉降炉热态试验系统,利用此试验系统,在煤粉锅炉加热速率条件下,对原煤、DT80系列拔头半焦以及阳泉无烟煤的燃烧反应特性进行研究,利用FLUENT软件计算了颗粒在该系统条件下的沉降停留时间,根据固体样品的灰分和元素分析数据,计算得到了燃烧过程中整体可燃物转化率、整体可燃物比转化速率以及碳元素转化率随反应时间的变化曲线。根据试验结果,对原煤、DT80系列拔头半焦和阳泉无烟煤在高加热速率条件下的燃烧反应性进行了对比,对煤拔头半焦的燃烧过程以及燃烧过程中孔隙结构的发展变化进行了分析,讨论了样品挥发分含量以及孔比表面积对其可燃物比转化速率的影响,并将沉降炉试验结果与热分析试验结果进行了对比。
     本文结果表明,煤拔头半焦的燃烧反应性都高于阳泉无烟煤的燃烧反应性,这说明煤拔头半焦用作粉煤锅炉的燃料是可行的;在煤拔头中低温快速热解条件下存在热失活现象,即煤拔头半焦的燃烧反应性都低于原煤的,热解过程中物质组成和孔隙结构的变化对本文涉及的所有热解温度下的热失活现象都有贡献,而碳结构的有序化仅在原煤热解度达到一定程度(大于0.55)时才对热失活有贡献;煤拔头半焦的燃烧反应性由物质组成、孔隙结构以及碳结构等因素共同决定;煤拔头半焦的燃烧反应性有随挥发分含量的降低和燃料比的升高而降低的趋势,但不是线性变化;热分析试验所得结果与沉降炉试验所得结果基本一致。
China is rich in coal and the resources of natural gas and petroleum are limited. A lack of transportation liquid fuel hampers the fast development of China. A so called“Coal-topping process”applies abundant low rank coal resources to extract liquid products by flash pryolysis under mild conditions for further obtaining light fuel oil and valuable chemicals, through which the problem of liquid fuel shortage may be partly relieved. Up to now, coal-topping process has been applied in circulating fluidized bed system. By considering the fact that pulverized-coal combustion is the main way for power generation in China, the idea of combining coal-topping process with a pulverized coal boiler was proposed to expand its application, i.e. the pulverized coal is pyrolized firstly to obtain liquid and gaseous products, and then the remaining char will be burned in the pulverized coal furnace. The combustion behavior of the char determines the performance of the pulverized burner and furnace, and the pulverized coal combustion is more sensitive to the type of coal. Herein, the combustion characteristics of the char obtained under different coal-topping conditions were studied to test the feasibility of the char as the fuel for pulverized coal boiler. By evaluation of the relation between the pyrolytic conditions and the char’s physical properties, as well as the influence of the char with different physical properties on its combustion characteristics, the effect and the mechanism of the coal-topping conditions on the char’s combustion characteristics were studied.
     Datong Bituminous coal with different particle size group were pyrolyzed for obtaining chars at different pyrolytic temperatures in a spout entrained reactor. The chemical compositions of the chars were characterized by proximate and ultimate analysis. The change of functional group and carbon structure of the parent coal and the obtained chars were analyzed by a flourier transform infrared spectrometer and an X-ray diffraction. Pyrolysis degree of coal (Dv) was defined to reveal quantatively the effects of the pyrolytic conditions on the char composition and carbon structure.
     Pore structures of the parent coal and the chars were characterized by nitrogen adsorption analysis. The morphology of the coal and chars was observed under scanning electron microscopy. The NLDFT method was applied to calculate the pore size and the pore surface area distributions, instead of the commonly used BJH method, based on the adsorption data. The BET area was obtained similarly. Pore structure evolution and its reasons during the pyrolysis process were analyzed.
     The combustion characteristics of Datong bituminous coal, chars and Yangquan anthracite were studied via simultaneous thermal analysis (STA) under experimental conditions of low heating rates. The ignition temperature and the weight average apparent activation energy were obtained and used to evaluate the reactivity of the chars, the parent coal, and the Yangquan anthracite. The ignition type of the chars, the parent coal, and the Yangquan anthracite was also analyzed. Based on the thermogravimetric analysis, the ignition behavior and combustion reactivity under low heating rate of the chars and the parent coal, as well as those of Yangquan anthracite were compared. The major influencing factors to combustion characteristics of the chars, such as material compositions, pore structures, and carbon structure, were analyzed.
     A drop tube furnace (DTF) was designed, constructed and commissioninged for testing the char combustion characteristics under simulated conditions relavent to pulverized coal boilers. The combustion tests on Datong bituminous coal, chars and Yangquan anthracite were carried out in the drop tube furnace. The particle resident time in the DTF was estimated by the Computational Fluid Dynamics (CFD) software FLUENT. The conversion of combustibles and carbon, as well as the specific reaction rate of combustibles as a function of reaction time were calculated based on the experimental data of different fuels applied. The combustion reactivity under high heating rate of the parent coal, derived char sand Yangquan anthracite is compared. The pore structure evolution during combustion process of chars pyrolyzed were analyzed. The influence of volatile matter content and pore specific surface area on the specific reaction rate of combustibles was discussed. Results obtained from DTF were also compared with those obtained by thermogravimetric analysis.
     Results from this work show that, reactivities of all derived chars are higher than that of Yangquan anthracite, indicating that it may be feasible to use coal-topping char as fuel of pulverized coal boiler. Thermal deactivation was observed under the pyrolysis conditions in this work. The reactivity of all chars is lower than that of the parent coal. Changes in material composition and pore structure affect the reactivity for chars derived at temperatures applied. Carbon structure ordering contributes to thermal deactivation only when coal pyrolysis degree reaches to a certain level. Combustion reactivity of the chars is determined by their composition, pore structure and carbon structure. The reactivity of chars shows a trend of decreasing as the volatile matter decreases and the fuel ratio increases. Results obtained by thermogravimetric analysis are basically consistent with those obtained from DTF .
引文
1中华人民共和国国务院新闻办公室.中国的能源状况与政策.甘肃能源. 2008,1:11-22
    2许红星.我国能源利用现状与对策.中外能源. 2010,15(1):3-14
    3姜克隽,胡秀莲,庄辛,等.中国2050年低碳情景和低碳发展之路.中外能源. 2009,14(6):1-7
    4姚国欣.世界炼化一体化的新进展及其对我国的启示.国际石油经济. 2009,17(5):11-19
    5“十五”国家技术发展计划能源技术领域专家委员会.能源发展战略研究.化学工业出版社,2004
    6王杰广.下行循环流化床煤拔头工艺研究.中科科学院过程工程研究所,博士,2004
    7郭慕孙.煤拔头工艺.中国科学院第九次院士大会,北京,1998.北京,科学出版社,1998:202-204
    8 L. J. Cui,W. L. Song,J. Y. Zhang,et al. Influence of the Gas and particle residence time on fast pyrolysis of lignite. Transactions of the ASME. 2007,129:152-158
    9 L. J. Cui,J. Z. Yao,W. G. Lin,et al. Product distribution from flash pyrolysis of coal in a fast fluidized bed. Proceedings of the 17th International Conference on Fluidized Bed Combustion,Jacksonville, Florid, USA,2003 of Conference. Jacksonville, Florid, USA,2003 of Conference:Pages
    10 J. G. Wang,X. S. Lu,J. Z. Yao,et al. Experimental Study of Coal Topping Process in a Downer Reactor. Ind. Eng. Che. Res. 2005,44(3):463-470
    11 J. G. Wang,X. Q. Wang,J. Z. Yao,et al. Coal Topping Process and its Prelimiminary Experiments. Proceedings of the 7th China-Japan Symposium on Coal and C1 Chemistry,Haikou,2001. Haikou,2001:185-188
    12 J. Z. Yao,X. Q. Wang,W. G. Lin,et al. Coal Topping in a Fluidized Bed System. 16th International Conference on Fluidized Bed Combustion,Reno, NV, USA,2001. Reno, NV, USA,2001:10-14
    13崔丽杰.煤热解过程中产物组成和官能团转化的研究.中国科学院过程工程研究所,博士,2005
    14林雪彬.煤拔头工艺中下行段煤灰快速混合行为的实验研究.哈尔滨工业大学,硕士,2006
    15王靓.煤拔头工艺系统计算方法研究.哈尔滨工业大学,硕士,2005
    16王永瑞.煤拔头中试实验台急冷系统的设计和计算方法的研究.哈尔滨工业大学,硕士,2006
    17熊方勋.煤拔头工艺中烟煤快速热解产物分布的实验研究.哈尔滨工业大学,硕士,2006
    18 L. J. Cui,W. G. Lin,J. Z. Yao. Influences of Temperature and Coal Particle Size on the Flash Pyrolysis of Coal in a Fast-entrained Bed. Chemical Research in Chinese Universities. 2006,22(1):103-110
    19王泽,林伟刚,宋文立,等.生物质热化学转化制备生物燃料及化学品.化学进展. 2007,19(7):1190-1197
    20鲁长波,杨昌炎,林伟刚,等.生物质催化热解的TG-FTIR研究.太阳能学报. 2007,28(6):638-643
    21崔永君.基于CFB技术的煤/生物质快速热解实验平台的设计和建立.中国科学院过程工程研究所博士后出站报告,2008
    22熊友灰,孙学信.动力用煤及燃烧特性的研究手段和方法.煤质技术. 1998(5):27-31
    23孙学信.燃煤锅炉燃烧试验技术与方法.中国电力出版社,2002
    24向银花,房倚天,黄戒介.煤焦的燃烧特性和动力学模型研究.煤炭转化. 2002,23(1):10-15
    25刘辉.元宝山褐煤煤粉再燃降低氮氧化物特性及工程应用研究.哈尔滨工业大学,博士,2006
    26陈镜鸿,李传儒.热分析及应用.科学出版社,1985
    27 S. K. Janikowski,V. I. Stenberg. Thermal Analysis of Coals Using Different Scanning Calorimetry and Thermogravimetry. Fuel. 1998,68(1):95-99
    28 M. V. Kok,M. R. Pamir. Pyrolysis and Combustion Studies of Fossil-Fuels by Thermal-Analysis Methods. Journal of Analvtical and Applied Pyrolysis,. 1995,35(2):145-156
    29于陶然,李成之,战志刚.热分析法研究煤的燃烧特性.冶金能源. 1989,8(5):41-44
    30朱文魁.煤炭拔头-气化工艺集成的基础研究.中国科学院过程工程研究所,博士,2008
    31刘典福,魏小林,盛宏至.煤及煤焦燃烧特性的研究现状与展望.江西能源. 2008(1):1-4
    32 Y. Chen,S. Mori,W. P. Pan. Studying the mechanisms of ignition of coalparticles by TG-DTA. Thermochimica Acta. 1996,275(1):149-158
    33 Y. Chen,S. Mori,W. P. Pan. Estimating the Combustibility of Various Coals by TG-DTA. Energy Fuels. 1995,9(1):71-74
    34 R. He,S. Junlchi,Q. Chen. Thermogravimetric Analysis of Char Combustion. Combustion Science and Technology. 2002,174(4):1-18
    35祝文杰,周永刚,杨建国.用热天平研究煤的燃烧特性.煤炭科学技术. 2004,32(3):8-11
    36朱群益,李瑞杨.煤粉燃烧反应动力学参数的试验研究.动力工程. 2002,20(3):703-706
    37肖三霞.煤的热天平反应动力学参数的试验研究.华中科技大学,硕士,2003
    38 P. R. Solomon,M. A. Serio,R. M. Carangelo. Very Rapid Coal Pyrolysis. Fuel. 1986,65:182-194
    39 T. H. Fleycher. Particle Temperature and Mass Loss Measurement of a Bituminous Coal During Devolatilization. Combustion and Flame. 1989,78:223-236
    40 H. T. Kim. Size Effects on Combustion Characteristic of Pulverized High-volatile Bituminous Coal. The Pennsylvania State University,Ph.D,1985
    41 C. Y. Tsai. Investigation of Initial Stage of Pulverized Bituminous Coal Combustion. The Pennsylvania State University,Ph.D,1985
    42 M. U. Ghani. Early Evolution of Coal Nitrogen Opposed Flow Combustion Configuration. The University of Arizona,Ph.D,1990
    43 G. J. Haussmann. Evolution and Reaction of Fuel Nitrogen during the Early Stages of Pulverized Coal Pyrolysis and Combustion. Stanford University,Ph.D,1990
    44茅建波.沉降炉中不同煤种NOx生成特性试验研究.浙江大学,硕士,2001
    45钟北京,施卫伟,傅维彪.煤再燃过程中燃料特性对NO还原的影响.燃烧科学与技术. 2001,7(2):115-119
    46吕建焱,李定凯.不同粒径煤粉燃烧后一次颗粒物的特性研究.热能与动力工程. 2005,20(5):513-516
    47金晶,张忠孝,李瑞杨,等.超细煤粉燃烧氮氧化物释放特性的研究.动力工程. 2004,24(5):716-720
    48王泉斌,徐厚明,于敦喜,等.煤与生物质混烧时可吸入颗粒物中的矿物质元素演变研究.中国电机工程学报. 2006,26(15):46-50
    49 A. Eghlimi,L. Lu,V. Sahajwalla. Computional Modelling of Char Combustion Based on the Structure of Char Particles Second International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia,1999. Melbourne, Australia,CSIRO,1999:141-144
    50 M. A. Field,D. W. Gill,e. al. Combustion of Pulverized Coal. The British Coal Utilisation Research Association: Leatherhead, 1967.
    51 I. W. Smith. The combustion Rates of Coal Chars: A Review. 19th International Symposium on Combustion, Haifa, Israel , 1982. Haifa, Israel ,The Combustion Institute,1982:1045-1065
    52 I. W. Smith. Kinetics of Combustion of Pulverized Semi-Anthracite in Temperature Range 1400-2200 Degree K. Combustion and Flame,. 1971,17(3):421-428
    53 B. C. Young,I. W. Smith. The Kinetics of Combustion of Petroleum Coke Particles at 1000 to 1800K: The Reaction Order. 18th International Symposium on Combustion,Pittsburgh,1981. Pittsburgh,The Combustion Istitute,1981:1249-1255
    54 M. A. Field. Measurement of Effect of Rank on Combustion Rates of Pulverized Coal. Combustion and Flame. 1970,14(1-3):237-248
    55 G. J. Goetz,N. Y. Nsakala,R. L. Patel,et al. Proceeding of the Second Annual EPRI Contractors on Coal Gasification,EPRI, Palo Alto, CA,1982. EPRI, Palo Alto, CA,1982:1-39
    56 H. Lorenz,E. Carrea,M. Tamura. Role of Char Surface Structure Development in Pulverized Fuel Combustion. Fuel. 2000,79(10):1161-1172
    57 K. Zygourkis,M. W. Glass. Size Analysis Using Digital Image Processing and Stereological Model. Chem. Eng. Commun. 1988,70:39-55
    58 A. Matzakos,K. Zygourakis. Pyrolysis of Plastic Coals: Poer Structute Development and Char Reactivity. Amercan Chemical Society, Division of Fuel Chemistry. 1990,35(2):505-515
    59 F. Boissiere. Influence of Pyrolysis Conditions on Macropore Structure of Char Particles. Rice University,Ph.D,1993
    60 K. Zygourakis. Effect of Pyrolysis Conditions on the Macropore Structure of Coal-derived Chars. Energy and Fuels. 1993,7(1):33-41
    61 K. Zygourakis. The Effect of pyrolysis Conditions on the Macropore Structure of Coal Chars. American Chemical Society, Division of Fuel Chemistry. 1988,33(4):951-959
    62 T. Matsungaga,Y. Nishiyama,H. Sawabe,et al. Gasification oc Coals Treated with non-aqueous Solvents 3: Swelling Behaviour of a Single Coal Particle. Fuel. 1978,57(9):562-564
    63 J. F. Stubington , T. M. Linjewile. The Effects of Fragmentation on Devolatilization of Large Coal Particles. Fuel. 1989,68(2):155-160
    64 L. H. Hamilton. A preliminary account of char structures produced from Liddell vitrinite pyrolysed at various heating rates. Fuel. 1980,59(2):112-116
    65 A. J. Gay,R. F. Littlejohn,P. J. van Duin. Formation of carbonaceous cenospheres during fluidized-bed combustion of bituminous coals. Fuel. 1983,62(10):1224-1226
    66 M. W. Glass. Stereological Analysis of Macropore Structure of Chars Produced Under Various Pyrolysis Conditions and the Influence of Macropore Structute on Char Gasificantion Rates in the Presence of Strong Diffusional Limitations. ,Ph.D,1987
    67 K. Zygourakis. Pyrolysis and Gasification of Coal at High Temperature. D. O. E. Report, 1989.
    68 M. A. Serio,P. R. Solomon,R. Bassilakis. The Effect of Minerals and Pyrolysis Conditions on Char Gasification Rates. American Chemical Society, Division of Fuel Chemistry. 1989,34(1):9-21
    69 A. Matzakos,K. Zygourakis. Pyrolysis of Plastic Coals: Pore Structure Devolopment and Reactivity. Amercan Chemical Society, Division of Fuel Chemistry. 1990,35(1):505-515
    70丘纪华.煤粉在热分解过程中比表面积和孔隙结构的变化.燃料化学学报. 1994,22(3):316-320
    71 A. Matzakos. Fundamental Mechanism of Coal Pyrolysis and Char Combustion. Rice University,Ph.D,1982
    72 Y. W. Cai. The Effects of Process Conditions on the Char Reactivity: the Experimental Studies and the Mathematical Modeling. ,Ph.D,2001
    73 D. S. Perkins. Ignition of Coal and Char Particles: Effects of Pore Structure and Process Conditions. Rice University,Ph.D,1998
    74 S. V. Sotirchos,B. Srinivas,N. R. Amundson. Modeling of the Combustion of Single Char Particles. Rev. Chem. Eng. 1984,2(3-4):175-236
    75 P. E. Best,P. R. Solomon,M. A. Serio,et al. The Relationship between CharReactivity and Physical Chemical Structural Features. Amercan Chemical Society, Division of Fuel Chemistry. 1987,32:44-51
    76 E. M. Suuberg. Fundamental Issues in Control of Carbon Gasification Reactivity. Kliwer: The Netherlands, 1991.
    77 H. Y. Cai,A. J. Guell,I. N. Chatzakis,et al. Combustion Reactivity and Morphological Change in Coal Chars: Effects of Pyrolysis Temperature, Heating Rate and Pressure. Fuel. 1996,75(1):15-24
    78 L. R. Radovis,L. W. Philip. Importance of Carbon Active Sites in the Gasification of Coal Chars. Fuel. 1983,62(7):849-856
    79 K. H. V. Heek,H. J. Muhlen. Aspects of Coal Properties and Combustion Important for Gasification. Fuel. 1985,64(10):1405-1411
    80 L. R. Radovic,L. W. Philip. Importance of Carbon Active Sites in the Gasification of Coal Chars. Fuel. 1983,62(7):849-856
    81陈建原.煤粉着火过程与着火模型的研究.华中理工大学,博士,1989
    82 K. A. Davis,R. H. Hurt,Y. Yangn,et al. Evolution of Char Chemistry, Crystallinity and Ultrafine Structure During Pulverized Coal Combustion. Coambustion and Flame. 1995,100(1):31-40
    83 K. Miura,P. L. Silveston. Factors Affecting the Reactivity of Coal Chars During Gasification and Indices Representing Reactivity. Fuel. 1989,68(11):1461-1475
    84 R. H. Hurt , K. A. Davis , Y. Yangn , et al. Residual Carbon From Pulverized-Coal-Fired Boilers 2. Morphology and Physicochemical Properties. Fuel. 1995,74(9):1297-1306
    85 S. Kasaoka,Y. Sakata,M. Shimada. Effect of Coal Carbonization Conditions on Rate of Steam Gasification of Char. Fuel. 1987,66(5):697-701
    86 J. N. Rouzaud,B. Duval,Y. J. Lero. Coke Microtexture: One Key for Coke Reactivity. Dordrecht,1991
    87 L. R. Radovis,P. L. W. Jr,R. Jenkins. Importance of Catalyst Dispersion in the Gasification of Lignite Chars. Journal of Catalysis. 1983,82(3):382-394
    88黎永.循环流化床燃烧条件下焦炭燃烧反应特性试验研究.清华大学,博士,2002
    89 T. W. Hastings. The Effects of Thermal Processing on Lignite Coal Char Structure. Rice University,Ph.D,1984
    90 R. E. Mitchell. Experimental Determined Overal Burning Rates of Coal Chars.Combustion Sdience Technology. 1987,53(2-3):165-186
    91 O. Senneca,P. Russo,P. Salatino,et al. The Relevance of Thermal Annealing to the Evolution of Coal Char Gasification Reactivity. Carbon. 1997,35(1):141-151
    92 A. Ismail. The Effect of Process Conditions on Coal Pyrolysis and Char Reactivity. Rice University,Ph.D,1993
    93骆仲泱,王勤辉,方梦祥,等.煤的热电气多联产技术及工程应用实例.化学工业出版社,2004
    94孙晨亮,章名耀.压力下各种因素对煤粒着火温度的影响.燃烧科学与技术. 1999,5(3):313-318
    95李文,沙兴中.加压下煤的着火特性的研究:Ⅱ.煤及煤焦性质的影响.燃料化学学报. 1991,19(4):373-379
    96李文,沙兴中.加压下煤的着火特性的研究:I.着火特性的影响.燃料化学学报. 1991,19(4):366-372
    97韩洪樵,傅维标.压力对煤粒燃烬时间影响的研究.工程热物理学报. 1991,12(3):328-332
    98谷小兵.半焦加压燃烧特性的研究.东南大学,硕士,2003
    99陈晓平,谷小兵,段钰锋,等.气化半焦加压着火特性及燃烧稳定性研究.热能动力工程. 2005,20(2):153-157
    100陈晓平,谷小兵,段钰锋,等.半焦加压燃烧特性研究.工程热物理学报. 2004,25(2):345-347
    101段钰锋,周毅.半焦加压燃烧特性的试验研究.燃烧科学与技术. 2006,12(4):353-357
    102熊源泉,郑守忠,章明耀.加压条件下半焦燃烧特性的试验研究.锅炉技术. 2001,32(11):12-14
    103周毅,段钰锋,陈晓平,等.压力下半焦燃烧特性的研究综述.锅炉技术. 2005,36(1):33-37
    104 C. R. Monson,G. J. Germane,A. V. Blackham,et al. Char Oxidation at Elevated Pressure. Combustion and Flame. 1995,100(4):669-683
    105 J. R. Richard,M. A. Majthoub,M. J. Aho,et al. Separate Effects of Pressure and Some Other Variables on Char Combustion under Fixed Bed Conditions. Fuel. 1994,73(7):1034-1038
    106 S. MacNeil,P. Basu. Effect of Pressure on Char Combustion in a Pressureed Circulating Fluidized Bed Boiler. Fuel. 1998,77(4):269-275
    107 S. Y. Lin,Y. Suzuki,H. Hatano,et al. Pressure Effect on Char Combustion in Different Rate-control Zones: Initial Rate Expression. Chemical Engineering Science. 2000,55(1):43-50
    108沈胜强,李素芬,石英.半焦粒子着火与燃烧过程实验研究.燃烧科学与技术. 2000,6(1):66-69
    109向银花,汪洋,张建民.部分气化煤焦燃烧特性的研究.煤炭转化. 2002,25(4):35-38
    110向银花,汪洋,张建民,等.部分气化煤焦燃烧动力学的活化能分布模型.燃烧科学与技术. 2003,9(6):566-570
    111盛宏至,刘典福,魏小林,等.煤部分气化后生成半焦的特性.燃烧科学与技术. 2004,10(2):187-191
    112刘艳霞,吕俊复,黎永,等.中温下热解对半焦燃烧反应性的影响.热能动力工程. 2005,20(5):509-512
    113陶著.煤化学.冶金工业出版社,1984
    114 H. Grigoriew. Different studies of coal structure. Fuel. 1990,69(7):840-845
    115解强.红外光谱技术在煤及转化研究中的应用.煤炭分析及利用. 1995(3):18-21
    116 H. A. Vanvucht,B. J. Rietveld,D. W. Vankrevelen. Chemical Structure and Properties of Coal. 8. Infra-Red Absorption Spectra. Fuel. 1955,34(1):50-59
    117 S. Su,J. H. Pohl,D. Holcombe,et al. Techniques to determine ignition, flame stability and burnout of blended coals in p.f. power station boilers. Progress in Energy and Combustion Science. 2001,27(1):75-98
    118傅维镳.煤燃烧理论及其宏观通用规律.清华大学出版社,2003
    119严继民,张启元,高敬琮.吸附与凝聚.科学出版社,1986
    120近藤精一.吸附科学.李国希.化学工业出版社,2006
    121周军,张海,吕俊复,等.高温下热解温度对煤焦孔隙结构的影响.燃料化学学报. 2007,35(2):155-159
    122刘辉,吴少华,孙锐,等.快速热解褐煤焦的比表面积及孔隙结构.中国电机工程学报. 2005,25(12):86-90
    123段钰锋,周毅,陈晓平,等.煤气化半焦的孔隙结构.东南大学学报:自然科学版. 2005,35(1):135-139
    124 A. V. Peter I. Ravikovitch, Ron Russo, Alexander V. Neimark. Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2 Adsorption Isotherms. Langmuir. 2000,16:2311-2320
    125 P. I. Ravikovitch,A. Vishnyakov,A. V. Neimark. Density Functional Theories and Molecular Simulations of Adsorption and Phase Transitions in Nanopores. Physical Review E. 2001,64:0116021-01160220
    126 P. I. Ravikovitch,A. V. Neimark. Density Functional Theory Model of Adsorption Deformation. Langmuir. 2006,22:10864-10868
    127 M. S. Kidena K, Nomura M. Investigation on Coal Plasticity: Correlation of the Plasticity and a TGA-derived Paremeter. Energy & Fuels. 1998 ,12:782-787
    128 K. K. Nomura M, Hiro M, Murata S. Mechanistic study on the plastic phenomena of coal. Energy & Fuels. 2000,14:904-909
    129 J. Yu,J. A. Lucas,T. F. Wall. Formation of the Structure of Chars During Devolatilization of Pulverized Coal and its Thermoproperties: A Review. Progress in Energy and Combustion Science. 2007,33(2):135-170
    130周英彪,范杜平,段权鹏.基于热天平着火温度的新方法.电站系统工程. 2007(3):29-31
    131喻秋梅,庞亚军.煤燃烧试验中着火点确定方法的探讨.华北电力技术. 2001(7):9-10,50
    132 L. Tognotti,A. Malotti,L. Petarca,et al. Measurement of ignition temperature of coal particles using a thermogravimetric technique. Combustion Science and Technology. 1985,44:15-28
    133 R. H. Essenhigh,M. K. Misra,D. W. Shaw. Ignition of coal particles: A review. Combustion and Flame. 1989,77(1):3-30
    134胡荣祖,史启祯.热分析动力学.科学出版社,2001
    135 S. E. Smith,R. C. Neavel,E. J. Hippo,et al. DTGA combustion of coals in the Exxon coal library. Fuel. 1981,60(6):458-462
    136 J. W. Cumming. Reactivity assessment of coals via a weighted mean activation energy. Fuel. 1983,63:1436-1440
    137姜秀民,杨海平,刘辉,等.粉煤颗粒粒度对燃烧特性影响热分析.中国电机工程学报. 2002,22(12):142-145
    138 E. Furimsky. Effect of H/C ratio on coal ignition. Fuel Processing Technology. 1988,19(2):203-210
    139陈鸿.煤粉孔隙结构及燃尽动力学的研究.华中理工大学,硕士,1994
    140王志强.地下气化煤气再燃还原NOx的研究.哈尔滨工业大学,博士,2007
    141 M. C. Mayoral,M. T. Izquierdo,J. M. Andres,et al. Different approaches to proximate analysis by thermogravimetry analysis. Thermochimica Acta. 2001,370(1-2):91-97
    142 J. R. Arthur. Reactions Between Carbon and Oxygen. Trans. Faraday Soc. 1951,47:164-178
    143 P. Davini,P. Ghetti,L. Bonfanti,et al. Investigation of the combustion of particles of coal. Fuel. 1996,75(9):1083-1088
    144 P. Ghetti,U. D. Roberties,S. D'Antone,et al. Coal Combustion:Correlation between Surface Area and Thermogravimetric Analysis Data. Fuel. 1985,64:950-955
    145谢克昌.煤的结构与反应性.科学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700