高速直喷柴油机混合气形成动态特性及其对燃烧过程的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现对高速直喷式高压共轨柴油机混合气形成过程及放热率的主动控制。寻找出理想的放热规律和浓度场分布,以及浓度分布特性和放热规律对性能和排放的影响规律。
     利用GT-suit软件研究了高压共轨喷射系统中的电磁控制系统、液压力控制系统、喷油器针阀和喷孔参数对喷油规律的影响;对燃烧室结构进行了参数化,利用FIRE软件研究了缩口燃烧室的缩口比、径深比和中以凸台对缸内气流运动强度及气流运动强度保持性的影响;并在前述研究的基础之上研究了喷油器流量特性、喷孔参数、喷雾位置、喷射压力和喷射正时与缩口燃烧室匹配时缸内浓度场及燃烧过程的变化。结果表明,通过对缩口燃烧室结构的优化并与高压共轨喷射系统进行合理匹配可以控制混合气形成过程,从而实现对混合气浓度场分布特性和放热规律的控制。
     提出了通过控制目标放热率来控制柴油机的燃烧过程的方法,并给出了以燃烧噪声、经济性和排放来确定目标放热率的思路。
     采用在计算网格中设置虚拟采样点的方法对缸内浓度、温度和各排放物的生成速度进行了量化。由此研究了反应区域内的浓度、温度、浓度梯度和温度梯度对soot和NOX的影响规律,并绘制了快速NO生成速率的Φ-T图。
As the internal combustion engine provides people more convenience it also brings about serious energy crisis and environment pollution. At the circumstance of whole word advocate low carbon economy trend, the energy crisis and environment protection becomes the hot topic. Current diesel engine already has high thermal efficiency, high power, high torque, low specific fuel consumption, low exhaust emission and low noise et al. excellent properties. Compare with identical capacity gasoline engine the diesel can save 15%~ 30% fuels, decrease 35% CO2 emission and exhaust little CO and THC. And so, the green house gas decreased at least 45% totally. For the diesel engine has aforementioned advantage, more and more people willing to accept diesel engine. Along with the enhancement of environmental concern and comfort the entire researcher should make further effort to reduce NOX emission, smoke emission, noise and brake specific fuel consumption (BSFC).
     In recent years, Homogenous Charge Compression Ignition (HCCI) and Premixed Charge Compression Ignition (PCCI) were been given much attention for its high thermal efficiency and low emission. Meanwhile, both of the new combustion modules have the problem of narrow load rang and hard to control. Whether HCCI, PCCI or improved traditional combustion mode, the final purpose is high efficiency and low emission combustion. The crux of achieve high efficiency low emission is complete combustion and control the maximum temperature and heat release rate(HRR) and, moreover, control the in-cylinder equivalence ratio distribution to avoid particulate matter(PM) and Prompt NO production. Therefore, this dissertation proposed the diesel engine combustion process active control method base on the control of target heat release rate and combine with the high pressure common rail (HPCR) injection system matches in-cylinder airflow characteristic to control the HRR and equivalence ratio distribution, and finally achieve high efficiency and low emission combustion process.
     Because of the weak volatility of diesel oil, it must be injected into combustion chamber under high pressure to mix with the air and form combustive air-fuel mixture. The air-fuel mixture can auto ignition under certain high pressure for the low auto ignition temperature of diesel oil. The key factors affect the diesel combustion process are injection system, airflow inside the combustion chamber and the optimization of matching between both. HPRC is a kind of ideal new type time-pressure electronic control injection system for vehicle diesel. The control of pump, pipe and injector of HPCR injection system are independent for each other, therefore the control degree of freedom greatly increased and can achieve injection rate flexibility control. In order to choose a suitable HPCR for a diesel engine to obtain ideal injection rate, this dissertation firstly investigated the effect of injection system parameters on injection rate and engine performance. The results as following: 1) anchor spring stiffness coefficient have little influence on injection rate; anchor spring preload have great influence on injection rate during needle opening process but little influence on closing process; the larger the electromagnetic force the needle open sooner, but the electromagnetic force nearly not influence the closing process. 2) If the control volume of injector is big, the needle may open slowly in the initial stage of the opening, accordingly resulting very slow initial injection rate and poor spray quality. If the control volume is small, the pressure fluctuation may cause the needle open twice in closing process, and so result in unexpected injection. The bigger the inlet orifice the pressure in control volume rise soon and the needle close more quickly. The bigger the outlet orifice the pressure in control volume drop soon and the needle open more quickly. The flow area difference between inlet and outlet orifice is the key factor that affects the injection rate.3) Needle mass mainly affect the injection rate during opening and closing process, but nearly have no influence on injection rate in injection duration. High injection pressure and small injector hole are efficiency way to improve the spray quality, and the injector hole diameter have greater influence on spray quality than injection pressure.
     The airflow characteristic directly influences the air-fuel mixture distribution in combustion chamber. The airflow mainly affected by the structure of the chamber after intake valve closing. High speed direct injection diesel engine requires fast mixture formation. So that, it should take advantage of the airflow intensity and its maintenance of reentrant combustion chamber to find out the way to promote high speed diesel engine air-fuel mixture formation. To further exploit the advantages of reentrant combustion chamber, this dissertation investigated the effect of structure parameters on airflow characteristic and put forward the evaluating indicator for airflow characteristic. The results as following: 1) smaller throat chamber have better squish flow intensity and maintenance, but have no influence on swirl flow. 2) Deeper chamber have better airflow intensity and maintenance, include squish flow and swirl flow. 3) The central boss height nearly has no influence on airflow characteristic, but it can improve dead area.
     Good airflow characteristic and injection characteristic just the two of prerequisite for high efficiency low emission combustion. What is more important is to optimize the matching between the airflow characteristic and injection parameters. If the airflow not matches the injection suitably, the spray might interpose each other or impact on unexpected position of the chamber, and so have a bad effect on the air-fuel equivalence ratio distribution, temperature filed distribution, finally aggravate the engine economy and emission. As mentioned above, optimization of the matching between the airflow characteristic and injection parameters is the real way to achieve high efficiency low emission combustion for HPCR direct injection diesel engine. As the engine matches different specification injector, the test results show that as the normalized flow rate difference 100cm3/min, the external characteristics BSFC maximum difference up to 10%, smoke emission maximum difference up to 10%. As the engine matches same specification injector but different install position, the test results show that as the injector gasket height changes 1mm, the external characteristics BSFC maximum difference up to 10%, smoke emission maximum difference up to 50%, exhaust temperature maximum difference up to 15%.
     For a specific engine, every operating points corresponding to an optimal HRR curve that can achieve high efficiency low emission combustion process. The optimal HRR curve constrained by combustion noise, exhaust emission and fuel economy. Combustion noise depends on the maximum in-cylinder pressure, rate of pressure rise and the coincidence degree of both. In order to reduce combustion noise level, it should control the maximum in-cylinder pressure, rate of pressure rise and the coincidence of both by control the optimal HRR. At light duty operating points, using sigal HRR can achieve perfect combustion process. The start of optimal HRR should fix by temperature, high temperature duration, BSFC, and mixture formation control difficult degree. At heavy duty operating points, using sigal HRR will postpone the start of optimal HRR and makes mixture formation control become more difficult. So it commonly uses multiple HRR at heavy duty operating points.
     For reduce emissions of diesel engine in the premise of ensuring efficiency. This dissertation focused on the effect of air-fuel mixture formation characteristic of direct injection diesel engine on NO produce rule that under the high injection pressure condition. It must produce some prompt NO in diesel oil unhomogenous charge combustion process and the produce mechanism of prompt NO is different from thermal NO. Prompt NO mainly produce in the rich mixture that the equivalence ratio equals about 1.5, the prompt NO depend on temperature less than thermal NO that it can produce less than 2100K, and the reaction rate quicker than thermal NO. Prompt NO produce mainly due to the intermediate such as O,OH, HCN、CN and NH et al. Prompt NO reaction activation energy is low, reaction rate is quick, less depend on temperature, directly relate to equivalence ratio and the produce of prompt NO can promote the produce of thermal NO. With the increasingly stringent emission regulations, control the produce of prompt NO become more important for reduce total NOX in diesel engine. This dissertation use in-cylinder virtual sampling method to study the transient equivalence ration distribution and the mixture process of the crucial parts in the chamber. And moreover, analyzed the effect of equivalence ration distribution and temperature field distribution on prompt NO, thermal NO and soot and also constructed the prompt NO reaction rateΦ-T diagram. Aforementioned study proposed a theoretical basis for NO reduction; it is significant for control the diesel engine emission and achieves high efficiency combustion process.
引文
[1]郝丽莎.能源流的空间结构与形成机理研究-以我国石油资源流为例[D].南京:南京师范大学地理科学学院,2006.
    [2]李亚芬.我国石油供求现状、问题及改善对策[J].国际金融研究,2005.
    [3]柳荫成.可持续发展背景下中国石油资源战略研究[D].南京:南京师范大学公共管理学院,2007.
    [4]刘林森.汽车尾气正让蓝天失色[N].新民晚报,2007-01-31
    [5]新华社.每年有53万亚洲人死于空气污染[N].中国青年报,2006-12-18
    [6]明日汽车新能源.世界汽车.2004(12):78-81
    [7]田农.柴油车走进家庭—试乘试驾宝来TDI.世界汽车,2004(6):43-45
    [8]七0研究所科研五室.国内外90mm~105mm缸径柴油机技术现状与发展趋势, 1999
    [9]中国汽车工程学会.车用柴油机发展面临的形势及对策建议.中国柴油车.2001(8):11-12
    [10]崔潇旭.柴油机节能优势明显-国内柴油SUV发展情况[EN/OL].[2008-10-16]. http://auto.china.com/zh_cn/mill/changcheng/car/11063671/20081016/15137888.html
    [11]郭锋,资新运,姜大海等.车用柴油机排放控制技术进展[J].环境保护科学,2005(31):1-3
    [12]张立花.柴油机排气污染物的形成与控制[J].农机化研究,2004(6):268-270
    [13]兰琳.柴油机排气污染及其控制技术[J].农机化研究,2008(5):200-203
    [14]吴小江.降低柴油机污染物排放的措施[J].农机化研究,2006(5):204-205
    [15]张少靖,李俄收,俞长利.车用柴油机有害排放物及控制技术[J].交通标准化,2006(4):108-112
    [16]林学东.车用柴油机燃烧系统参数优化及其流动分析[D].长春:吉林大学汽车工程学院,2004
    [17]岑可法,姚强,骆仲泱等.燃烧理论与污染控制[M].北京:机械工业出版社,2004
    [18] GB 17691-2005,车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)(S)
    [19] Tie gang Fang, Robert E. Coverdill, Chia-fon F. Lee et al. Combustion and Soot Visualization of Low Temperature Combustion within an HSDI Diesel Engine Using Multiple Injection Strategy[C].SAE paper 2006-01-0078
    [20] Kiyoshi Suginuma,et al. "Hino J-Series Diesel Engines Developed for the U.S.2004 Regulations with Superior Fuel Economy"[C].SAE paper 2004-01-1314
    [21]奥圭一など,―デイーゼル機関の燃焼と排出ガス特性に及ぼす多段噴射の効果とそのメカニム‖自動車技術論文集,Vol.38, No.4, 91~96, 2007
    [22]神谷憲太郎など,―多段噴射による大型デイーゼルの排出ガス低減‖,自動車技術論文集,Vol.38, No.2,161~166, 2007
    [23]村田豊など,―低圧縮高膨張比によるデイーぜル燃焼の排出ガス低減効果‖,日本機械学会論文集(B編),Vol.73, No.731, 18~23, 2007-7
    [24] Tetsuo Ohhmura, et al, A study on Combustion Control by Using Internal and External EGR for HCCI Engines Fuelled with DME [C]. SAE paper 2006-32-0045
    [25] Arjan Helmantel and Ingemar Denbratt. HCCI Operation of a Passenger Car DI Diesel Engine with an Adjustable Valve Train [C]. SAE paper 2006-01-0029
    [26] W. L. Hardy and R. D. Reitz. A Study of the Effects of High EGR, High Equivalence Ratio, and Mixing Time on Emissions Levels in a Heavy-Duty Diesel Engine for PCCI Combustion [C]. SAE paper 2006-01-0026
    [27] Achuth Munnannur, Neerav Abani and Rolf D. Reitz. Use of a Pressure Reactive Piston to Control Diesel PCCI Operation - A Modeling Study [C]. SAE paper 2006-01-0921
    [28] Nicholas J. Boyarski and Rolf D. Reitz. Premixed Compression Ignition (PCI) Combustion with Modeling-Generated Piston Bowl Geometry in a Diesel Engine[C]. SAE paper 2006-01-0198
    [29] Malin Alriksson Ingemar Denbratt. Low Temperature Combustion in a Heavy Duty Diesel Engine Using High Levels of EGR[C]. SAE paper 2006-01-0075
    [30] Hideyuki Ogawa, Tie Li and Noboru Miyamoto et al. Dependence of Ultra-High EGR and Low Temperature Diesel Combustion on Fuel Injection Conditions and Compression Ratio [C]. SAE paper 2006-01-3386
    [31] Onishi, S., S. Hong Jo, K. Shoda, P. Do Jo, and S.Kato, Active Thermo-Atmosphere Combustion (ATAC) ----- A new combustion process for internal combustion engines[C].SAE paper 790501
    [32] Noguchi, M., Y. Tanaka, T. Tanaka, and Y. Takeuchi, A study on gasoline engine combustion by observation of intermediate reactive products during combustion[C].SAE paper 790840
    [33] Dimitris Panousakis, Andreas Gazis, Jill Patterson. Using Ion-current Sensing to Interpret Gasoline HCCI Combustion Processes[C].2006-01-0024
    [34] R. Schie?l, et al. Temperature Fluctuations in the Unburned Mixture: Indirect Visualization Based on LIF and Numerical Simulations[C].SAE 2006-01-3338
    [35] M. Weinrotter, et al. Optical Diagnostics of Laser-Induced and Spark Plug-Assisted HCCI Combustion[C].SAE 2005-01-0129
    [36] Mori, et al. Type Analysis of EGR-Strategies for Controlled Auto Ignition (CAI) by Using Numerical Simulations and Optical Measurements [C]. SAE 2006-01-0630
    [37] Gen shibata,et al. The Interaction between Fuel Chemicals and HCCI Combustion Characteristics under Heated Intake Air Conditions[C]. SAE 2006-01-0207
    [38] Nebojsa Milovanovic, et al. SI-HCCI-SI Mode Transition at Different Engine Operating Conditions[C]. SAE-2005-01-0156
    [39] Kushal Narayanaswamy, et al. A Modeling Investigation of Combustion Control Variables DuringDI-Diesel HCCI Engine Transients[C]. SAE 2006-01-0108
    [40] Daniel L. Flowers,Salvador M. Aceves and Aristotelis Babajimopoulos. Effect of Charge Non-uniformity on Heat Release and Emissions in PCCI Engine Combustion[C]. SAE 2006-01-1363
    [41] Gary D. Neely, Shizuo Sasaki and Jeffrey A. Leet. Experimental Investigation of PCCI-DI Combustion on Emissions in a Light-Duty Diesel Engine[C]. SAE 2006-01-0121
    [42] Michael Y. Au, James W. Girard and Robert Dibble. 1.9-Liter Four-Cylinder HCCI Engine Operation with Exhaust Gas Recirculation[C]. SAE Paper 2001-01-1894
    [43] Zhijun Peng, Hua Zhao and Nicos Ladommatos. Effects of Air/Fuel Ratios and EGR rates on HCCI Combustion of n-heptane, a Diesel Type Fuel[C].SAE Paper 2003-01-0747
    [44] Jan-Ola Olsson, Per Tunestal, Jonas Ulfvik and Bengt Johansson. The Effect of Cooled EGR on Emissions and Performance of a Turbocharged HCCI Engine[C]. SAE 2003-01-0743
    [45] Boyarski, N. J. Experimental Investigation of the effects of Piston Bowl Geometry, Nozzle Spray Angle, and Engine Control Parameters on Early Injection Premixed Compression Ignition (PCI) Combustion in a HSDI Diesel Engine [D], M. S. Thesis, University of Wisconsin– Madison, 2004.
    [46] Keiichi Okude, Kazutoshi Mori, Shiroh Shiino et al. Premixed Compression Ignition (PCI) Combustion for Simultaneous Reduction of NOX and Soot in Diesel Engine[C]. SAE Paper 2004-01-1907
    [47] Stefan Simescu,cott B.Fiveland and Lee G. Dodge. An Experimental Investigation of PCCI-DI Combustion and Emissions in a Heavy-Duty Diesel Engine[C]. SAE 2003-01-0345
    [48] Ryo Hasegawa Hiromichi Yanagihara. HCCI Combustion in DI Diesel Engine[C]. SAE 2003-01-0745
    [49] Sanghoon Kook and Choongsik Bae. Combustion Control Using Two-Stage Diesel Fuel Injection in a Single-Cylinder PCCI Engine [C]. SAE 2004-01-0938
    [50] Mikiya Araki , Tatsuhito Umino , Tomio Obokata. Effects of Compression Ratio on Characteristics of PCCI Diesel Combustion with a Hollow Cone Spray[C]. SAE Paper 2005-01-2130
    [51] Bruno Walter and Bertrand Gaterllier. Development of the High Power NADITM Concept Using Dual Mode Diesel Combustion to Achieve Zero NOX and Particulate Emissions[C]. SAE Paper 2002-01-1744
    [52] Ryo Hasegawa, Hiromichi Yanagihara. HCCI Combustion in DI Diesel Engine[C].SAE Paper 2003- 01-0745
    [53] Johansson. Demonstrating the Multi Fuel Capability of a Homogeneous Charge CompressionIgnition Engine with Variable Compression Ratio[C]. SAE Paper 1999-01-3679
    [54] K. Koyanagi, H. ?ing, G. Renner and R. Maly. Optimising common rail-injection by optical diagnostics in a transparent production type diesel engine[C]. SAE Paper 1999-01-3646
    [55] Yutaka Murata, Jin Kusaka, Matsuo Odaka et al. Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing [C]. SAE Paper 2006-01-0203
    [56] M. Furutani, T.Isogai and Y.Ohta. Ignition Characteristics of Gaseous Fuels and Their Difference Elimination for SI and HCCI Gas Engines[C]. SAE Paper 2003-01-1857
    [57] Toshino Shudo and Takahiro Takahashi. Influence of Reforme Gas Composition on HCCI Combustion of Onboard Methanol-Reformed Gases[C]. SAE Paper 2004-01-1908
    [58] Zunqing Zheng, Mingfa Yao, Zheng Chen and Bo Zhang. Experimental Study on HCCI Combustion of Dimethyl Ether(DME)/Methanol Dual Fuel[C].SAE Paper 2004-01-2993
    [59] Kazuhisa Inagaki, Takayuki Fuyuto, Kazuaki Nishikawa et al. Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability[C]. SAE Paper 2006-01-0028
    [60] Takeyuki Kamimoto et al., "High Combustion Temperature for the Reduction of Particulate in Diesel Engines" SAE 1988-88-0423
    [61] Eiji Tomita, Nobuyuki Kawahara, Zhenyu Piao and Ryoichi Yamaguchi. Effects of EGR and Early Injection of Diesel Fuel on Combustion Characteristics and Exhaust Emissions in a Methane Dual Fuel Engine[C]. SAE Paper 2002-01-2723
    [62] Hideyuki Ogawa, Noboru Miyamoto, Chenyu Li, Satoshi Nakazawa and Keiichi Akao. Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel[C]. SAE Paper 2001-01-3502
    [63] Kengo Kumano and Norimasa Iida. Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement[C]. SAE Paper 2004-01-1902
    [64] Yasutaka Kitamura, Sung-Sub Kee, Ali Mohammadi et al. Study on NOx Control in Direct-Injection PCCI Combustion– Fundamental Investigation Using a Constant-Volume Vessel [C]. SAE Paper 2006-01-0919
    [65] Stefan Pischinger, Jürgen Schnitzler and Michael Rottmann et al. Future of Combustion Engines[C].SAE paper 2006-21-0024
    [66] Weber, V. J?rgl, J. Shutty, P. Keller, Future Breathing System Requirements for Clean Diesel Engines, 14. Aachener Kolloquium Fahrzeug und Motorentechnik 2005
    [67] S. Kampmann, U Dohle, J. Hammer, F. Boecking, Common Rail Systems to achieve oncoming EU Emission Standards, 26. Internationales Wiener Motorensymposium 2005
    [68] D. Schoeppe, P. Bercher, N. Guerrassi, P. Spadafora, Common Rail Technology for Future Low Emission Diesel Vehicles, 13. Aachener Kolloquium Fahrzeug und Motorentechnik 2004
    [69] Y. Nishijima, Common Rail Technology to meet Future Emission Regulation, Tagung EURO V Dieselantrieb 2005, Haus der Technik, Essen
    [70] Manfred Dürnholz. Forecast on diesel technology and market[C].7th advanced diesel engine technology Symposium, 2007.
    [71] Nils Lindenkamp, Claude-Pascal St?ber-Schmidt and Peter Eilts. Strategies for Reducing NOX- and Particulate Matter Emissions in Diesel Hybrid Electric Vehicles[C]. SAE paper 2009-01-1305
    [72] Miles, P. C., Choi, D., Kook, S., Bergin, M. J., Reitz, R. D.,―The Influence of Flow Structures and Mixing on Low-Temperature Diesel Combustion,‖5th Symposium at Lund Institute of Technology,―Toward Clean Diesel Engine‖, June 2-3, 2005
    [73] Ming-fa Yao, Zhao-lei Zheng and Xia Liang. Numerical Study on the Chemical Reaction Kinetics of DME/Methanol for HCCI Combustion Process[C]. SAE Paper 2006-01-1521
    [74] Jumpei Ozaki and Norimasa Iida. Effect of Degree of Unmixedness on HCCI Combustion Based on Experiment and Numerical Analysis[C]. SAE Paper. 2006-32-0046
    [75] Nebojsa Milovanovic,et,all. SI-HCCI-SI Mode Transition at Different Engine Operating Conditions[C]. SAE Paper 2005-01-0156
    [76] Kushal Narayanaswamy,et al. "A Modeling Investigation of Combustion Control Variables During DI-Diesel HCCI Engine Transients"[C].SAE Paper. 2006-01-1084
    [77] Mamoru Oki, Shuichi Matsumoto and Yoshio Toyoshima et al. 180MPa Piezo Common Rail System[C].SAE Paper. 2006-01-0274
    [78] Arturo de Risi, Teresa Donateo et al. Optimization of the Combustion Chamber of Direct Injection Diesel Engines[C]. SAE Paper.2003-01-1064
    [79]谭丕强,陆家祥,邓康耀等.喷油提前角对柴油机排放影响的研究[J].内燃机工程,2004,25(2):9-11
    [80]王俊席,杨林,肖文雍,等. GD-1燃油喷射系统喷油参数对发动机性能的影响[J].内燃机工程,2004,25(2):28-31
    [81]村田豊など,―低圧縮高膨張比によるデイーぜル燃焼の排出ガス低減効果‖[C].日本機械学会論文集(B編). Vol.73, No.731, 18~23, 2007-7.
    [82] Yongsheng He, et al.Integrated Simulation of the Engine and Control System of a Turbocharged Diesel Engine [C]. SAE Paper 2006-01-0439
    [83] Magnus Christensen and Bengt Johansson. The Effect of Combustion Chamber Geometry on HCCI Operation[C].SAE Paper 2002-01-0425
    [84] Julian T. Kashdan, Nicolas Docquier and Gilles Bruneaux. Mixture Preparation and Combustion via LIEF and LIF of Combustion Radicals in a Direct-Injection, HCCI Diesel Engine[C]. SAE Paper 2004-01-2945
    [85] Arturo de Risi, Teresa Donateo and Domenico Laforgia. Optimization of the Combustion Chamber of Direct Injection Diesel Engines[C]. SAE Paper 2003-01-1064
    [86] Rahman M. Montajir, H. Tsunemoto and H. Ishitani. Fuel Spray Behavior in a Small DI Diesel Engine:Effect of Combustion Chamber Geometry[C]. SAE Paper 2000-01-0946
    [87] Caroline L. Genzale, Rolf D. Reitz and Mark P. B. Musculus. Effects of Piston Bowl Geometry on Mixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine[C]. SAE Paper 2008-01-1330
    [88] Youngmin Woo ,Youngjae Lee,Yunyoung Kim et al. Effects of Spray Characteristics with Different Geometries on the Performance of a DI Diesel Engine[C]. SAE Paper 2008-01-2468
    [89] S. Merkel, P. Eckert, U. Wagner, A. Velji and U. Spicher. Investigation of a New Injection Strategy for Simultaneous Soot and NOx Reduction in a Diesel Engine with Direct Injection[C]. SAE Paper 2008-01-1790
    [90] Caroline L. Genzale, Rolf D. Reitz and David D. Wickman. A Computational Investigation into the Effects of Spray Targeting, Bowl Geometry and Swirl Ratio for Low-Temperature Combustion in a Heavy-Duty Diesel Engine[C].SAE Paper 2007-01-0119
    [91] Keiya NISHIDA, Wu ZHANG and Tetsuya MANABE. Effects of Micro-Hole and Ultra-High Injection Pressure on Mixture Properties of D.I. Diesel Spray[C].SAE Paper 2007-01-1890
    [92] Youngmin Woo, Youngjae Lee and Yunyoung Kim et al. Effects of Spray Characteristics with Different Geometrieson the Performance of a DI Diesel Engine[C]. SAE Paper 2008-01-2468
    [93] Jian Gao, Yuhei Matsumoto and Makoto Namba et al. Group-Hole Nozzle Effects on Mixture Formation and In-cylinder Combustion Processes in Direct-Injection Diesel Engines[C]. SAE Paper 2007-01-4050
    [94]张晓宇,苏万华,裴毅强. Bump环强化柴油混合过程的数值模拟研究[J].内燃机学报,2005,23(1):1-9
    [95]赵昌普,苏万华,汪洋等.―BUMP燃烧室‖内混合气形成的多维数值研究[J].内燃机学报,2003,21(6):389-394
    [96]赵昌普,苏万华,汪洋等.―Bump燃烧室‖内新概念稀扩散燃烧混合气形成机理的研究[J].燃烧科学与技术,2004,10(4):327-335
    [97]裴毅强,苏万华,张晓宇等. BUMP燃烧室的稀扩散燃烧机理[J].燃烧科学与技术,2006,12(1):41-45
    [98]杨德胜,高希彦.柴油机TR燃烧系统的设计与试验研究[J].燃烧科学与技术,2005,11(1):82-86
    [99]杨德胜,高希彦.柴油机TR燃烧系统的试验优化[J].燃烧科学与技术,2005,11(2):168-170
    [100]何旭,刘卫国,商希彦等.柴油机TR燃烧系统的数值模拟[J].内燃机工程,2006,27(4):4-7
    [101]杨德胜,高希彦,周文彬.柴油机TR燃烧系统的性能研究[J].内燃机学报,2005,23(1):28-31
    [102] YANG De-sheng, GAO Xi-yan, ZHANG Song-tao et al. Realization of Low-Temperature Premixed Combustion with Diesel TR Combustion System[J]. Transactions of CSICE,2005,23(4):313-321
    [103]林铁坚,苏万华,裴毅强等.喷射参数对柴油HCCI复合燃烧过程燃烧效率及散热损失影响的研究[J].燃烧科学与技术,2004,22(4):325-331
    [104]朱坚,黄晨,尧命发.燃烧室几何形状对柴油机燃烧过程影响的数值模拟研究[J].内燃机工程,2007,28(2):14-18
    [105]林学东,钱耀义,李红洲,等.车用柴油机缩口型燃烧系统参数优化试验研究[J].农业机械学[100]报,2004,35(1):41-43
    [106]裴毅强,苏万华,林铁坚等.油嘴喷射锥角对柴油可控预混压燃燃烧特性的影响[J].燃烧科学与技术,2006,12(6):529-534
    [107]周龙保,刘巽俊,高宗英等.内燃机学(第2版)[M].北京:机械工业出版社,2009
    [108]林学东.发动机原理[M].北京:机械工业出版社,2008
    [109]林学东,王霆.车用发动机电子控制技术[M].北京:机械工业出版社,2008
    [110]黄茂杨.柴油机高压共轨燃油喷射系统—高速电磁阀结构与控制参数优化及其特性测试系统的研制[D].南京:东南大学博士学位论文,2005
    [111]彭毅刚,唐航波,龚元明等.高压共轨电控柴油机试验台架系统的设计[J].内燃机工程.2005,(3):49-52
    [112]马富康,董小瑞,文武红.高压共轨式电控喷油系统在柴油机上的应用[J].机械管理开发.2005(5):50-51
    [113]谢田峰,金国栋,钟绍华.GT-POWER在内燃机排气消声器设计中的应用[J].内燃机2003.1:12-14
    [114]刘金玉,郑广勇,李康. GT-POWER在发动机开发中的应用[S].第一汽车集团公司技术中心.2002
    [115]陈海娥,刘金玉《空气滤清器对发动机性能的影响及亥姆赫兹谐振器的使用》汽车技术2003.5
    [116]王忠恕.边界条件对柴油机瞬态工况下燃烧的影响及数值模拟[D].长春:吉林大学博士学位论文,2006
    [117] Shankar Mukherjee. Thermal design of high pressure ratio turbocharger compressor wheels[C]. SAE Paper 2002-01-0162
    [118] Okude, K., K. Mori, S. Shiino, and T. Moriya. Premixed Compression Ignition (PCI) Combustion for Simultaneous Reduction of NOx and Soot in Diesel Engine [C]. SAE Paper 2004-01-1907
    [119]李云清,张静,吕匡等.燃烧室几何尺寸对喷雾碰壁过程的影响[J].江苏大学学报(自然科学版),2006,27 (4):314-319
    [120]段树林,武占华,王迎新.燃烧室几何形状对柴油机缸内气体流动和性能的影响[J].大连海事大学学报,2003,29(增刊):95-99
    [121]王锡斌,马志豪,蒋德明.燃烧室几何形状对缸内气体流动和发动机性能的影响[J].内燃机工程,2002,23(2):6-11
    [122] Shahrokh Hajireza, Gerhard Regner and Anthony Christie et al. Application of CFD Modeling in Combustion Bowl Assessment of Diesel Engines Using DoE Methodology [C].SAE 2006-01-3330
    [123] Arturo de Risi, Teresa Donateo and Domenico Laforgia. Optimization of the Combustion Chamberof Direct Injection Diesel Engines [C]. SAE 2003-01-1064
    [124]张晓宇,苏万华,裴毅强等. Bump环强化柴油混合过程的数值模拟研究[J].内燃机学报,2005,23(1):1-8
    [125]赵昌普,苏万华,汪洋等“.BUMP燃烧室”内混合气形成的多维数值研究[J].内燃机学报,2003,21(6):389-394
    [126]何旭,刘卫国,高希彦等. TR燃烧系统混合气形成过程的数值模拟[J].燃烧科学与技术,2006,12(3):263-268
    [127] G. Cantore, S. Fontanesi, V. Gagliardi and S. Malaguti. CFD Optimisation of the In-Cylinder Flow Patterns in a Small Unit Displacement HSDI Diesel Engine for Off-Highway Applications [C]. SAE 2003-32-0001
    [128] J. Ling and L. T. Y. Tun. CFD Analysis of Non-Symmetrical Intake Manifold for Formula SAE Car[C]. SAE 2006-01-1976
    [129] AVL FIRE Manual, Fire_v8.3_CFD_Solver
    [130]何学良,李疏松.内燃机燃烧学[M].北京:机械工业出版社,1990
    [131]林学东,张多军,朱二欣.大型车用柴油机缩口燃烧室的结构特点及其对排放特性的影响[J]内燃机2004年10月:27-29
    [132]林学东,丛春梅,陈雪梅等.浅形缩口直喷式柴油机燃烧室结构特点及其对排放特性的影响[J]吉林大学学报(工学报)2005年1月:18-22
    [133]林学东.车用柴油机燃烧系统参数优化及其流动分析[D].长春:吉林大学博士学位论文,2004.
    [134]韩永强,赵佳佳,张亮等.放热率对效率的影响及对HCCI燃烧负荷限值评测[J].内燃机学报,2008(2):121-127
    [135] Zhong B.J. Roslyakov P.V. Study on Prompt NOx Emission in Boilers [J]. J. of Thermal Science Vol.5, No.2,1996
    [136] JAMES A. MILLER, STEPHEN P. WALCH. Prompt NO: Theoretical Prediction of the High-Temperature Rate Coef?cient for CH + N2?HCN+N [C]. CCC 0538-8066/97/040253-07
    [137]周龙保刘巽俊高宗英.内燃机学(第2版).北京:机械工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700