疏水阻燃聚氨酯弹性体的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯弹性体具有优异的耐磨、耐油、耐撕裂、耐化学腐蚀等特性,广泛应用于工农业生产、国防建设和我们的日常生活当中,但普通的聚氨酯材料容易燃烧、阻燃性能差:另外,聚酯型的聚氨酯还容易水解,不耐水、表面性能差,限制了聚氨酯材料在实际中的应用,因此,提高聚氨酯材料的阻燃性和耐水性具有重大的意义。
     在文献查阅的基础上,本文主要从二个方面着手,对聚氨酯弹性体进行改性,以提高它的阻燃、疏水的性能:(1)从聚氨酯的硬段出发,利用分子设计,合成四种新型的二胺类扩链剂,把功能性的元素F、P、S、Br等引入到聚氨酯弹性体中,合成出在本质上具有疏水阻燃特性的聚氨酯弹性体;(2)合成一种含氟含磷含氮的低聚物膨胀型阻燃剂,并将其应用到热塑性聚氨酯弹性体中。利用红外光谱和核磁共振谱仪对合成的化合物结构进行表征,利用热失重分析仪、微型燃烧量热仪、接触角仪、扫描电镜等对聚氨酯弹性体的性能进行了一系列研究,另外,对聚氨酯的固化反应和热降解反应动力学进行了研究。通过研究,揭示了合成的聚氨酯弹性体结构和性能之间的关系,在理论和实践方面都具有创新意义。主要的研究内容和结果如下:
     1.通过FT-IR、1HNMR、19F NMR、31PNMR的研究结果,分析表明,合成的四种二元胺:2,2-二[4-(4-氨基-2-三氟甲基苯氧基)苯基]六氟丙烷(BAFPF6P)、10-[2,5-二(2-三氟甲基-4-氨基苯氧基)苯基]-9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPQ-NH2)、1,4-二[(4-氨基-2-三氟甲基苯氧基)-3,5-二溴苯基]丙烷(BAFBP)、4,4’-二(4-氨基-2-三氟甲基苯氧基)二苯基砜(BAFPPS),化学结构与预期设计的一致。
     2.用合成的四种二元胺代替3,3’-二氯-4,4’-二氨基二苯基甲烷(MOCA)作为扩链剂,并通过改变异氰酸酯指数、聚酯二元醇的分子量等,分别成功地制备出含氟、含氟含磷、含氟含硫、含氟含溴的聚氨酯弹性体。
     3.通过接触角测试结果表明,由于氟元素的引入,新制备的四种聚氨酯弹性体与普通的聚氨酯弹性体相比表面张力都有所下降,但下降的程度有所不同,以2,2-二[4-(4-氨基-2-三氟甲基苯氧基)苯基]六氟丙烷(BAFPF6P)为扩链剂制备的含氟聚氨酯弹性体与水的接触角最大,达到105.5。,表面张力下降幅度达到近50%,效果明显;同时吸水率实验也进一步证实,含氟聚氨酯的疏水性提高、吸水率降低。
     4.MCC的试验结果表明,新制备的四种聚氨酯弹性体与普通的聚氨酯弹性体相比热释放速率和总的热释放量都下降,由于所引入的元素不一样,起阻燃作用的机理是不同的,效果也不一样。含氟含磷聚氨酯弹性体的残碳量最高,最大达到27.7%;含氟含溴聚氨酯弹性体的最大热释放速率、热释放总量最小,最大热释放速率最小的只有102W/g,热释放总量最小的仅为5.9J/g,远远低于普通聚氨酯弹性体。
     5.TGA的测试结果表明,合成的四种含氟聚氨酯弹性体耐热性能表现不同,以2,2-二[4-(4-氨基-2-三氟甲基苯氧基)苯基]六氟丙烷(BAFPF6P)为扩链剂制备的弹性体耐热性能要高于普通的聚氨酯弹性体,但以10-[2,5-二(2-三氟甲基-4-氨基苯氧基)苯基]9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPQ-NH2)为扩链剂制备的聚氨酯弹性体耐热性能要低于普通的聚氨酯弹性体,这主要可能是由于其中含有易于断裂的P-O键的缘故。
     6.通过二氯磷酸苯酯(PDCP)与含氟二胺反应成功地合成了一种含氟含磷含氮的低聚物膨胀型阻燃剂,并在热塑性聚氨酯弹性体中(TPU)进行了应用研究,结果表明其效果优于常用的阻燃剂聚磷酸胺(APP),在TPU中添加30份时,氧指数达到30%,按照ASTM UL94标准测试能达到V0级,同时,易于成型,具有良好的加工性能。
     7.用橡胶硫化/树脂固化仪对聚氨酯的固化动力学进行研究,结果表明含氟聚氨酯固化时的表观活化达到71.6KJ/mol,而以MOCA为固化剂的聚氨酯固化时的表观活化能仅为41.6KJ/mol。分析认为,可能是由于BAFPF6P分子中-CF3基团的影响,使得-NH2与-NCO基团亲核加成反应活性降低。热降解动力学研究表明,含氟含磷聚氨酯弹性体的热降解活化能要高于普通氨酯弹性体的热降解活化能,从而也从另一方面说明了为什么含氟含磷聚氨酯弹性体的阻燃性要好于普通的聚氨酯弹性体。
Due to their excellent resistance to abrasion, oil, tear, chemical corrosion and other properties, polyurethane elastomers (PUEs) have been widely applied in industrial and agricultural production, national defense construction and people's daily life. However, ordinary polyurethane material is combustible and its flame retarding performance is poor. In addition, polyester PUEs are easy to hydrolyze. Its water resistance property and surface property are poor, which has limited the practical application of PUEs. Therefore, it is of great significance to improve the performance of PUEs regarding to flame retarding and water resistance.
     On the basis of related literature, this work studied the modification of PUEs mainly in two aspects to improve its flame retarding performance and hydrophobic nature:(1) four new types of diamine chain extenders were synthesized by changing the hard segments of polyurethane through molecular design. Then a kind of polyurethane elastomer that is flame retarding and hydrophobic naturally was synthesized by introducing functional elements like F, P, S, and Br into the material with the help of the diamine chain extenders.(2) A kind of oligomer expansion retardant that contains fluorine, phosphorus and nitrogen was synthesized and applied to thermoplastic polyurethane elastomers. The group characterized the structure of the synthesized compounds using FT-IR (Fourier Transform infrared spectroscopy) and NMR (nuclear magnetic resonance spectrometer). Besides, a series of investigations were conducted on the performance, curing reaction and thermal degradation reaction kinetics of the PUEs with the help of a thermo-gravimetric analyzer, a contact angle meter, a micro combustion calorimeter and SEM (scanning electron microscopy). The research revealed the relationship between the structure and properties of PUEs, which has significance for innovation in both theory and practice. The main work and results of the study are as follows:
     1. The results of of the analysis of FT-IR,1H NMR,19F NMR and31P NMR, the structures of the four synthetic diamines, including2,2-bis [4-(4-amino-2-trifluoromethyl phenoxy) phenyl] hexafluoropropane (BAFPF6P),10-[2,5-bis (2-trifluoromethyl-4-aminophenoxy)phenyl]-9,10-dihydro-9-oxa-10-phosphaphenanthre ne-10-oxide (DOPQ-NH2),1,4-bis [(4-amino-2-trifluoromethyl-phenoxy)-3,5-dibromo-phenyl]propane(BAFBP), and4,4'-bis (4-amino-2-trifluoromethyl-phenoxy) diphenyl sulfone (BAFPPS), were consistent with the design.
     2. Using the four kinds of synthetic diamines as chain extender instead of MOCA, through changing the isocyanate index and molecular weight of polyester glycol, etc., four kinds of PUEs--respectively fluorinated, fluorinated and phosphorous, fluorinated and sulphureous, fluorinated and bromie were synthesized successfully.
     3. Contact angle test results showed that compared with conventional ones, surface tensions of the four new kinds of PUEs decreased due to the introduction of fluorine element, but the degrees were different. The contact angle between the fluorinated PUEs with BAFPF6P as chain extender and water was the biggest, up to105.5°. The effect was obvious with the surface tension decreasing by nearly50%. Meanwhile, the water absorption test further proved that the fluorinated PUEs were more hydrophobic and had lower water absorption.
     4. MCC test results indicated that the heat release rate and THR (total heat release) of the four new kinds of PUEs decreased compared with conventional PUEs. Since the elements introduced were different, the mechanism of flame retarding varied, and the effect was also different. The carbon residue of the fluorinated and phosphorous PUEs was the largest, with a maximum of27.7%. The PHRR (peak heat release rate) and THR of fluorinated and bromie PUEs were the minimum, and the values were respectively102W/g and5.9J/g, far below the ordinary PUEs.
     5. Through TGA test, it was found that the heat resistant performance of the four kinds of fluorinated PUEs was different. The heat resistance of PUEs synthesized with BAFPF6P was higher than ordinary PUEs, while that of PUEs synthesized with DOPQ-NH2was lower. The main reason may be the existence of the easy-to-break bond of P-O.
     6. A kind of oligomer expansion type flame retardant containing fluorine, phosphorus and nitrogen was successfully synthesized through Phenyl dichlorophosphate (PDCP) reacting with fluorinated diamine. And the research of the retardant in thermoplastic polyurethane elastomer(TPU) showed that the performance was better than commonly used flame retardant polyphosphate amine(APP). When adding30parts of the oligomer expansion type flame retardant into the TPU, the oxygen index was up to30%, reaching the V0level when tested in accordance with the ASTM UL94standard. What's more, the retardant was easy to mold and had good processing performance.
     7. Research on the curing kinetics of the PUEs by using rubber vulcanization /resin curing apparatus showed that the apparent activation energy of fluorinated polyurethane reached71.6KJ/mol during the curing reaction, while the value was only41.6KJ/mol when MOCA was used as curing agent. The analysis indicated that the-CF3group in the BAFPF6P molecule might result in the decrease of nucleophilic addition reaction activity of-NH2and-NCO groups. Thermal degradation kinetics studies showed that the thermal degradation activation energy of the fluorinated and phosphorus PUEs was higher than that of ordinary PUEs, which on the other hand explains why the fluorinated and phosphorous PUEs performed better in flame retarding compared with ordinary PUEs.
引文
1.刘益军.2012.聚氨酯树脂及其应用[M].北京:化学工业出版社.
    2.傅明源,孙酣经.1998.聚氨酯弹性体及其应用[M].第2版.北京:化学工业出版社.
    3.黄茂松,贾润萍.2011.后金融危机下我国聚氨酯弹性体发展之路探讨[J].化学推进剂与高分子材料,9(1):10-17.
    4.山西省化工研究所.1985.聚氨酯弹性体[M].北京:化学工业出版社.
    5.许弟,崔正,赵欣等.2012.国外聚氨酯材料无卤阻燃技术现状与发展趋势[J].聚氨酯工业,27(4):1-4.
    6.刘国胜,冯捷,郝建薇等.2011.硬质聚氨酯泡沫塑料的阻燃、应用与研究进展[J].中国塑料,25(11):5-9.
    7. Chen L, Wang YZ.2009. A review on flame retardant technology in China. Part I: development of flame retardants[J]. Polymers for Advanced Technologies,21:1-26.
    8. Morgan AB, Gilman JW.2013. An overview of flame retardancy of polymeric materials: application, technology, and future directions[J]. Fire and Materials,37:259-279.
    9. Dasari A, Yu ZZ. Cai GP, et al.2013. Recent developments in the fire retardancy of polymericmaterials[J]. Progress in Polymer Science,38:1357-1387.
    10.胡源,宋磊,尤飞,等.2007.火灾化学导论[M].北京:化学工业出版社.
    11.王改敬.2012.聚氨酯阻燃改性技术[J].塑料科技,40(9):99-101.
    12.陈勇军,李斌,刘岚.2012.阻燃型硬质聚氨酯泡沫塑料研究进展[J].塑料科技,40(3):103-107.
    13. Bourbigot S, Turf T, Bellayer S,et al.2009. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane[J]. Polymer Degradation and Stability,94:1230-1237.
    14.欧育湘,金译平.2011.聚氨酯泡沫塑料用阻燃剂新进展[J].塑料助剂,86(2):10-13.
    15.周亮.2012.聚氨酯硬质泡沫塑料/可膨胀石墨复合材料的阻燃研究进展[J].中国塑料,26(5):7-16.
    16. Thirumal M, Khastgir D, Singha NK, et al.2008. Effect of expandable graphite on the properties of intumescent flame-retardant polyurethane foam[J]. Journal of Applied Polymer Science,110:2586-2594.
    17.石磊,田春蓉,周秋明等.2006.不同粒径可膨胀石墨无卤阻燃高密度硬质聚氨酯泡沫塑料应用[J].中国塑料,20:(4):25-30.
    18. Feng FF, Qian LJ.2014. The flame retardant behaviors and synergistic effect of expandable graphite and dimethyl methylphosphonate in rigid polyurethane foams[J]. Polymer Compoeites,35:301-309.11111
    19.9Bian XC, Tang JH, LilZM.2008. Flame retardancy of whisker silicon oxide/rigid polyurethane foam composites with expandable graphitel[J]. Journal of Applied Polymer Science,110:3871-3879.
    20. Wolska A, Gozdzikiewicz M, Ryszkowska J.2012. Influence of graphite and wood-based fillers on the flammability of flexible polyurethane foams[J]. Journal of Materials Science, 47:5693-5700.
    21. Shan XY, Zhang P,Song Lei, et al.2011. Compound of nickel phosphate with Ni(OH)(PO4)2- layers and synergistic application with intumescent flame retardants in thermoplastic polyurethane elastomer[J]. Industrial & Engineering Chemistry Research,50:7201-7209.
    22. Toldy A, Harakaly G, Szolnoki B, et al.2012. Flame retardancy of thermoplastics polyurethanes[J].lPolymer Degradation and Stability,97:2524-2530.
    23. Muller M, Bourbigot S, Duquesne S, et al.2013. Investigation of the synergy in intumescent polyurethane by 3D computed tomography[J]. Polymer Degradation and Stability,98: 1638-1647.
    24. Lin M, Li Bin, Li QF, et al.2011. Synergistic Effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes[J]. Journal of Applied Polymer Science,121:1951-1960.
    25. Ni JX, Tai QL, Lu HD, et al.2009. Microencapsulated ammonium polyphosphate with polyurethane shell:preparation, characterization, and its flame retardance in polyurethane[J]. Polymers for Advanced Technologies,20:392-400.
    26. Chen XL, Jiao CM, Zhang J.2011. Microencapsulation of ammonium polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane[J]. Journal of Thermal Analysis and Calorimetry,104:1037-1043.
    27.刘琳,朱云卿,陆涛等.2010.无卤阻燃PUR-T的制备及其力学性能的研究.工程塑料应用[J],38(8):9-12.
    28. Zhao KM, Xu WZ, SongLei, et al.2012.Synergistic effects between boron phosphate and microencapsulated ammonium polyphosphate in flame-retardant thermoplastic polyurethane composites[J]. Polymers for Advanced Technologies,23:894-900.
    29. Singh H, Jain AK, Sharma TP.2008. Effect of phosphorus-nitrogen additives on fire retardancy of rigid polyurethane foams[J]. Journal of Applied Polymer Science,109:2718-2728.
    30. Thirumal M, Khastgir D, Nando GB, et al.2010. Halogen-free flame retardant PUF: Effect of melamine compounds on mechanical, thermal and flame retardant properties[J]. Polymer Degradation and Stability,95:1138-1145.
    31. Chen MJ, Shao ZB, Wang XL, et al.2012. Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen-phosphorus flame retardant[J]. Industrial & Engineering Chemistry Research,51:9769-9776.
    32. Usta N.2012. Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter [J]. Journal of Applied Polymer Science,124:3372-3382.
    33. Liu W, Zheng YL, Li J, et al.2010. Novel polyurethane networks based on hybrid inorganic/organic phosphazene-containing nanotubes with surface active hydroxyl groups[J]. Polymers for Advanced Technologies,23:1-7.
    34. Neisius M, Liang SY, Mispreuve H, et al.2013. Phosphoramidate-containing flame-retardant flexible polyurethane foams. [J] Industrial & Engineering Chemistry Research,52:9752-9762.
    35. Lorenzetti A, Modesti M, Gallo E, et al.2012. Synthesis of phosphinated polyurethane foams with improved fire behaviour, Polymer Degradation and Stability,97:2364-2369.
    36. Liang KW, Shi SQ.2011. Nanoclay Filled Soy-Based Polyurethane Foam[J]. Journal of Applied Polymer Science,119:1857-1863.
    37. Guo SZ, Zhang C, Peng HD, et al.2011. Structural characterization, thermal and mechanical properties of polyurethane/CoAl layered double hydroxide nanocomposites prepared via in situ polymerization[J]. Composites Science and Technology,71:791-796.
    38. Kim YS, Davis R, Cain AA, et al.2011. Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability[J]. Polymer,52:2847-2855.
    39. Liang SY, Neisius M, Mispreuve H. et al.2012. Flame retardancy and thermal decomposition of flexible polyurethane foams:Structural influence of organophosphorus compounds[J]. Polymer Degradation and Stability,97:2428-2440.
    40. Tirri T, Aubert M, Wilen CE, et al.2012. Novel tetrapotassium azo diphosphonate (INAZO) as flame retardant for polyurethane adhesives[J]. Polymer Degradation and Stability, 97:375-382.
    41. Benin V, Durganala S, Morgan AB.2012. Synthesis and flame retardant testing of new boronated and phosphonated aromatic compounds[J]. Journal of Materials Chemistry,22:1180-1190.
    42.李在辉,胡源,王鑫.2011.膨胀型阻燃聚氨酯弹性体/蒙脱土复合材料的制备与性能研究[J].聚氨酯,108(5):72-74.
    43. Huang GB, Gao JR, Li YJ, et al.2010. Functionalizing nano-montmorillonites by modified with intumescent flame retardant:Preparation and application in polyurethane. Polymer Degradation and Stability,95:245-253.
    44. Tabuani D, Bellucci F, Terenzi A, et al.2012. Flame retarded Thermoplastic Polyurethane (TPU) for cable jacketing application. Polymer Degradation and Stability,97:2594-2061.
    45. Berta M, Lindsay C, Pans G, et al.2006. Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polymer Degradation and Stability,91:1179-1191.
    46. Wu JM, Yan H, Wang JF, et al.2013. Flame retardant polyurethane elastomer nanocomposite applied to coal mines as air-Leak sealant[J]. Journal of Applied Polymer Science,123:3390-3395.
    47.史爱娟,王吉贵.2004.含磷阻燃剂在聚氨酯弹性体中的阻燃机理研究[J].火炸药学报,27(1):40-44.
    48. Wu DH, Zhao PH, Liu YQ.2013. Flame Retardant Property of Novel intumescent flame retardant rigid polyurethane foams[J]. polymer engineering and science,53:2479-2485.
    49. Chen H, Luo YJ, Chai CP, et al.2008. Synthesis and characterization of phosphorus-containing waterborne polyurethanes:effects of the organophosphonate content on the flame retardancy, morphology, and film properties[J].Journal of Applied Polymer Science,110: 3107-3115.
    50. Zhang LQ, Zhang M, Hu LH, et al.2014. Synthesis of rigid polyurethane foams with castor oil-based flameretardant polyols[J]. Industrial Crops and Products,52:380-382.
    51. Khatib WE, Youssef B, Bunel C, et al.2003. Fireproofing of polyurethane elastomers by reactive organophosphonates[J]. Polymer International,52:146-152.
    52.王萃萃,戴震,黄毅萍等.2010.有机磷阻燃改性水性聚氨酯[J].功能高分子学报,23(3):285-290.
    53. Chen MJ, Chen CR, Tan Yi, et al.2014. Inherently flame-retardant flexible polyurethane foam with low content of phosphorus-containing cross-linking agent[J]. Industrial & Engineering Chemistry Research,53:1160-1171.
    54.李兆星,段燕芳,刘小会.2011.阻燃聚合物聚醚多元醇的合成及其阻燃性能的研究.聚氨酯工业[J],26(4):21-24.
    55.唐敏锋,范晓东,刘涛等.2007.含氟丙烯酸酯核壳乳液的合成与性能[J].高分子材料科学与程,23(2):23-26.
    56. Hollander J,Trischiler FD, Gosnell RB.1967. Synthesis of polyurethanesfrom fluorinated diisocyanates[J]. Journal of Polymer Science,5(11):2757-2767.
    57. Wang LF, Wei YH.2005. Effect of soft segment length on properties of fluorinated polyurethanes. Colloids and Surfaces B:Biointerfaces,41:249-255.
    58. Liu T, Ye L.2010. Synthesis and properties of fluorinated thermoplastic polyurethane elastomer[J]. Journal of Fluorine Chemistry,131:36-41.
    59. Zhao XW, Ding JJ, Ye L.2014. Structure and solvent-resistant property of fluorinated polyurethane elastomer[J], Journal of Fluorine Chemistry,159:38-47.
    60. Ge Z, Zhang XY, Dai JB, et al.2009. Synthesis, characterization and properties of a novel fluorinated polyurethane[J]. Journal of Fluorine Chemistry,45:530-536.
    61. Jiang GC, Tuo XL, Wang DR, et al.2009. Preparation, characterization, and properties of fluorinated polyurethanes[J]. Journal of Polymer Science:Part A:Polymer Chemistry,47:3248-3256.
    62.刘望,梅来宝.2008.有机硅改性聚氨酯的最新进展[J].精细石油化工进展,9(7):49-52.
    63. Askari F, Barikani M, Barmar M.2013. Siloxane-based segmented poly(urethane-urea) elastomer:synthesis and characterization[J]. Journal of Applied Polymer Science,123:1743-1751.
    64. Ge Z, Luo YJ.2013. Synthesis and characterization of siloxane-modified two-component waterborne polyurethane[J]. Progress in Organic Coatings,76:1522-1526.
    65. Meera KMS, Sankar RM, Jaisankar SN, et al.2013. Physicochemical studies on polyurethane/siloxane cross-linked films for hydrophobic surfaces by the sol-gel Process[J]. The Journal of physical Chemistry,117,2682-2694.
    66. Wu ZF, Wang H, Tian XY.2014. Surface and mechanical properties of hydrophobic silica contained hybrid films of waterborne polyurethane and fluorinated polymethacrylate[J]. Polymer, 55:187-194.
    67. Rengasamy S, Mannari V.2013. Hydrophobic and oil-resistant coatings based on advanced green polyurethane dispersions [J]. Journal of Applied Polymer Science,123:3874-3884.
    68. Shi ZD.2013. Preparation and characterization of crosslinked polyurethane-blockpoly( trifluoropropylmethyl) siloxane elastomers with potential biomedical applications[J]. Polymer International,62:1351-1357.
    1. LEO A.1977.氟聚合物[M].北京:化学工业出版社.
    2. Jeong HY, Lee MH, Kim BK.2006. Surface modification of waterborne polyurethane[J]. Colloids and Surfaces A,290:178-185.
    3. Castellano M, Tonelli C,Turturro A, et al.2014. Fluoro-modified elastomeric polyurethanes: effects of synthesis procedure on properties and morphology[J]. Journal of Materials Science,49: 2519-2533.
    4. Wu D, Ming W, Benthem RA, et al.2008. Superhydrophobic Fluorinated Polyurethane Films[J]. Journal of Adhesion Science and Technology,22:1869-1881.
    5.吴人洁.1998.高聚物的表面与界面[M].北京:科学出版社.
    1.钱立军.2010.磷杂菲DOPO及其化合物的制备与性能[M].北京:化学工业出版社.
    2. Neisius NM,Lutz M,Rentsch D.2014. Synthesis of DOPO-based phosphonamidates and their thermal properties[J]. Industrial & Engineering Chemistry Research,53:2889-2896.
    3. K(o|")nig A, Kroke E.2011. Methyl-DOPO-a new flame retardant for flexible polyurethane foam[J]. Polymers for Advanced Technologies,22:5-13.
    4. K(o|")nig A, Kroke E.2012. Flame retardancy working mechanism of methyl-DOPO and MPPP in flexible polyurethane foam[J]. Fire and Materials,36:1-15.
    1.欧育湘,赵毅,韩廷解等.2007.含硫化合物阻燃聚碳酸酯及其阻燃机理[J].塑料科技,35(10):42-45.
    2.任元林,程博闻,张金树.2008.新型膨胀型阻燃剂阻燃聚丙烯的应用研究[J].高分子材料科学与工程,24(1):116-119.
    3. Kultys A, Puszka A.2013. New thermoplastic polyurethane elastomers based on sulfur-containing chain extenders [J]. Polish Journal of Chemical Technology,15 (4):65-70.
    4. Kausar A, Zulfiqar Sonia, Ahmad Z, et al.2010. Studies on novel thermally stable segmented polyurethanes based on thiourea-derivative diols[J]. Polymer Degradation and Stability,95:2281-2288.
    5. Kultys A, Rogulska M, Ghuchowska H.2011. The effect of soft-segment structure on the properties of novel thermoplastic polyurethane elastomers based on an unconventional chain extender[J]. polymer international,60:652-659.
    1. Morgan AB, Gilman JW.2013. An overview of flame retardancy of polymeric materials: application, technology, and future directions[J]. Fire and Materials,37:259-279.
    2. Amrollahi M, Sadeghi GM.2008. Evaluation of adhesion strength, flammability, and degradation of HBCD-containing polyurethane adhesives[J] Journal of Applied Polymer Science, 110:3538-3543.
    3.何明,罗振扬,史以俊等.2011.溴化蓖麻油多元醇合成及其制备的阻燃聚氨酯硬泡性能[J].聚氨酯工业,26(1):26-28.
    4.石晓.2006.阻燃聚酯多元醇的合成及应用[J].聚氨酯工业,21(1):31-33.
    1. Wu DH, Zhao PH, Liu YQ.2013. Flame Retardant Property of Novel Intumescent Flame Retardant Rigid Polyurethane Foams[J]. Polymer Engineering and Science,53:2479-2485.
    2. Wang X, Hu Y, Song L, et al.2010.Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer[J]. Polymer,51:2435-2445.
    3. Zhan J, Song L Nie SB, et al.2009. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant[J]. Polymer Degradation and Stability,94:291-296.
    4. Singh H, Jain AK, Sharma TP.2008. Effect of phosphorus-nitrogen additives on fire retardancy of rigid polyurethane foams[J]. Journal of Applied Polymer Science,109:2718-2728.
    5. Ma HY, Tong LF, Xu ZB, et al.2007. A novel intumescent flame retardant:Synthesis and application in ABS copolymer[J]. Polymer Degradation and Stability,92:720-726.
    6.荆煦瑛,陈式棣,么恩云.1992.红外光谱实用指南[M].天津:天津科学技术出版社.
    7.吴其晔,巫静安.2002.高分子材料流变学[M].北京:高等教育出版社.
    1.何平笙,金邦坤,李春娥.2011.热固性树脂及树脂基复合材料的固化:动态扭振法及其应用[M].合肥:中国科学技术大学出版社.
    2.胡荣祖,高胜利,赵凤起.2008.热分析动力学[M].北京:科学出版社.
    3. HuYH, Chen CY, Wang C.2004. Thermal degradation kinetics of poly(n-butyl acrylate) initiated by lactams and thiols[J]. Polymer Degradation and Stability 84:505-514.
    4. Lu CH, Su YC, Wang CF, et al.2008. Thermal properties and surface energy characteristics of interpenetrating polyacrylate and polybenzoxazine networks[J]. Polymer,49: 4852-4860.
    5. Rosu D, Rosu L, Varganici CD.2013. The thermal stability of some semi-interpenetrated polymer networks based on epoxy resin and aromatic polyurethane[J]. Journal of Analytical and Applied Pyrolysis.100:103-110.
    6. Byczynski L, Dutkiewicz M, Maciejewski H.2013. Thermal degradation kinetics of semi-interpenetrating polymer network based on polyurethane and siloxane[J].Thermochimica Acta 560:55-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700