燃气轮机燃烧室柔和燃烧机理与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔和燃烧具有排放低、燃烧稳定、烟气出口温度分布均匀、燃料适用范围广的特点,是燃气轮机燃烧技术的重要发展方向之一。本文针对燃气轮机燃烧室的运行条件,研究了柔和燃烧的热力学条件、化学动力学特性、流动条件以及模型燃烧室内柔和燃烧的实现与性能。论文具体工作如下:
     1.热力学条件和化学动力学特性研究
     建立了化学反应网络模型并进行了验证,研究了燃烧室运行条件变化对柔和燃烧热力学条件的影响,确定了B级、E+级、F级燃气轮机工况下实现柔和燃烧所需的烟气回流比例,分析了烟气回流比例对柔和燃烧点火延迟时间的影响,比较了柔和燃烧和传统燃烧的反应速率。结果表明,增加回流比例有利于柔和燃烧反应物初始温度的升高、反应温升的下降、反应速率的降低,导致柔和燃烧的点火延迟时间减少,因此提出了实现柔和燃烧应在热力学条件满足的基础上适当控制烟气回流比例、同时促进火焰抬升。
     2.流动条件研究
     建立了轴向分级概念燃烧室,针对CH4燃料,研究了掺混方式、烟气回流比例影响,针对10MJ/Nm3合成气燃料,分析了燃料射流速度影响。CH4柔和燃烧的研究表明,空气、燃料先分别和主流高温烟气掺混再接触有利于柔和燃烧的实现;回流比例的增加会延缓掺混区空气、燃料的直接掺混,有利于降低柔和燃烧区的OH*峰值、提高柔和燃烧区的OH*分布均匀性、抑制柔和燃烧区NO的生成,但回流比例过高会导致燃烧稳定性下降。10MJ/Nm3合成气柔和燃烧的研究表明,增加燃料射流速度有利于燃料和“高温低氧”氧化剂的快速混合,促进火焰的抬升、反应区的分散以及NOx排放的下降,但过高的燃料射流速度也会带来压损和CO排放升高的问题;燃料速度在199-299m/s之间有利于柔和燃烧的实现。
     3.模型燃烧室设计
     开展了冷态和热态计算,研究了燃烧室长宽比、喷嘴相对位置、喷嘴间距、空燃动量比对掺混和燃烧性能的影响。结果表明,燃烧室长宽比主要影响空气速度在燃烧室长度方向上的衰减,长宽比为1.1的模型燃烧室能充分利用燃烧室空间来组织流场,其空气射流速度在燃烧室长度方向上恰好完全衰减。燃料喷嘴远离燃烧室中心线有利于燃料在燃烧室内部的充分燃烧。增加空气、燃料喷嘴间距可推迟空气和燃料的汇合,但考虑到反应物的充分燃烧,增加喷嘴间距的同时也应保证空气喷嘴偏离燃烧室中心线一定距离。降低空燃动量比会推迟空气和燃料的汇合、促进反应区的分散、降低峰值火焰温度和CO排放。总体上,降低空燃动量比有利于柔和燃烧的实现。
     4.模型燃烧室性能
     加工模型燃烧室,开展实验研究了空燃动量比、当量比、空气预热温度、燃料种类对合成气柔和燃烧性能的影响。结果表明,降低空燃动量比有利于主反应区向燃烧室下游移动,促进CO排放降低。当量比影响方面,增加当量比有利于着火时间推迟、反应温度降低和反应区体积增大,贫燃条件下实现了合成气的柔和燃烧。空气预热温度升高会导致NOx排放升高、CO排放降低,但即使空气预热了,燃烧室内部的热力学条件、化学动力学特性和流动条件仍然是满足的,所以合成气在空气预热条件下也能实现柔和燃烧。柔和燃烧室应用于不同热值合成气时,随着热负荷的增加,反应区体积增大,NOx排放保持在低水平,所以综合来看,柔和燃烧适用于不同热值的合成气。
Moderate or Intense Low-oxygen Dilution (MILD) combustion, characterized by low pollutant emissions, enhanced combustion stability, improved pattern factor and high fuel flexibility, is a suitable choice for the future gas turbine combustion technologies. This paper aims to study the thermodynamics, chemical kinetics and fluid mechanics of MILD combustion under gas turbine relevant conditions and to evaluate the combustion behavior in a MILD combustor. The main work is drawn as follows:
     1. Thermodynamics and chemical kinetics
     A chemical reactor network model was established, and the model was verified by the the experimental results. The effects of exhaust gas temperature, air preheat, pressure and fuel type on the thermodynamics of MILD combustion were probed into. The critical gas recirculation ratio needed for the realization of MILD combustion were obtained for the B, E+and F class gas turbine operating conditions. The effect of gas recirculation ratio on the ignition delay time of MILD combustion was also examined. The reaction rates of MILD combustion and traditional diffusion flame were compared. It is demonstrated that elevated gas recirculation ratio benefits the increase of MILD mixture tempearture, the decrease of temperatrure increment during the combustion process and the drop of reaction rate, however, resulting in the suppression of ignition delay time. It is thus proposed that the gas recirculation ratio should be controlled and the flame should be lifted from the burner in the case of the thermodynamics of MILD combustion is fulfilled.
     2. Fluid mechanics
     An axially staged MILD combustor was built to study the effects of mixing approach and gas recirculation ratio on the MILD combustion of CH4and to evaluate the effect of fuel injection velocity on the MILD combustion of10MJ/Nm3syngas. The results acquired from CH4MILD combustion reveales that the secondary air and fuel mixing with the hot flue gas from the gas generation zone separately before air/fuel direct interaction promotes the establishment of MILD scheme. Increased gas recirculation ratio causes the delayed air/fuel interaction, resulting in the decrease of maximum OH*intensity, the widespread of OH*distribution and the suppression of NO production from the MILD combustion zone. However, excessively high gas recirculation ratio vitiates combustion stability. For the10MJ/Nm3syngas MILD combustion, it is reflected that increased secondary fuel injection velocity favors the rapid mixing between the secondary fuel and the high temperature and low oxygen concentration oxidizer, resulting in the increase of flame lift-off distance, the spatially distribution of reaction zone and the elimination of NOX production. However, extremely high secondary fuel injection velocity causes the growth of pressure drop and CO emissions. The secondary fuel injection velocity limited to199-299m/s facilitates the establishment of MILD scheme.
     3. Design of MILD combustor
     The non-reactive and reactive simulations were performed to investigate the effecs of combustor length-to-width ratio, burner arrangement and air-to-fuel-momentum flux ratio on the mixing behavior and combustion performance. It is shown that the decay of air injection is mainly affected by the combustor length-to-width ratio and, the decay length of air injection is almost the same as combustor length at combustor length-to-width ratio of1.1, which is the best choice for the organization of flow field in the full use of limited combustor volume. The fuel injectors positioned away from the combustor axis is beneficial for the complete oxidation of fuel species. Increased distance between air and fuel injectors can postpone the confluence of air and fuel stream. However, in consideration of the complete combustion, the centerline of air injector should be somewhat offset from the combustor axis. Decreased air-to-fuel-momentum flux ratio benefits the delay of air/fuel confluence, the distribution of reaction zone and reduction of reaction temperature and CO emissions. In general, lower air-to-fuel-momentum flux ratio facilitates the realization of MILD combustion.
     4. Combustion performance of MILD combustor
     Experiments were conducted on the MILD combustor to study the effecs of air-to-fuel-momentum flux ratio, equivalence ratio, air preheat and fuel type on the MILD combustion of syngas. It is revealed that lower air-to-fuel-momentum flux ratio causes the downstream movement of main reaction zone and the suppression of CO emissions. On the other hand, increased euiqvalence ratio benefits the delay of ignition, the reduction of reaction temperature and the growth of reaction zone volume. The MILD scheme can be established for syngas under lean operating conditions. In addition, air preheat promotes the rise of NOx production and mitigation of CO generation. The MILD combustion can be achived for syngas even under air preheating condition since the thermodynamics, chemical kinetics and fluid mechanics of MILD combustion was fulfilled. In the application of MILD combutor to syngas fuels with various calorific values, it is observed that the increased fuel thermal input causes the increase of reaction zone volume whilst the NOx emissions maintaines at a low level. Basically, the MILD combustor is fuel flexible.
引文
[1]孟勇.我国燃气轮机发电技术的发展现况与展望[DB/OL].
    [2]Maurstad O. An overview of coal based integrated gasification combined cycle (IGCC) technology [DB/OL].2005,9.
    [3]Thompson J. Integrated gasification combined cycle (IGCC)-environment performance [M]. Clean Air Task Force, Presentation at Platts IGCC symposium,2005.
    [4]Beer J M. High efficiency electric power generation:The environmental role [J]. Progress in Energy and Combustion Science, 2007,33:107-134.
    [5]SzegO G G, Dally B B, Nathan G J. Operational characteristics of a parallel jet MILD combustion burner system [J]. Combustion and Flame,2009,156:429-438.
    [6]Benini E, Pandolfo S, Zoppellari S. Reduction of NO emissions in a turbojet combustor by direct water/steam injection: Numerical and experimental assessment [J]. Applied Thermal Engineering,209,29:3506-3510.
    [7]Vandervort C L.9 ppm NOx CO Combustion System for F Class Industrial Gas Turbines [J]. Journal of Engineering for Gas Turbines and Power,2001,123:317-321.
    [8]Levy Y, Sherbaum V, Erenburg V. Fundamentals of low-nox gas turbine adiabatic combustor [C]. Proceedings of the ASME Turbo Expo, Reno-Tahoe, Nevada, USA,6-9 June,2005.
    [9]Gadde S, Wu J F, Gulati A, et al. Syngas capable combustion systems development for advanced gas turbines [C]. Proceedings of the ASME Turbo Expo, Barcelona, Spain,8-11 May,2006.
    [10]Lacy B, Ziminsky W, Lipinski J, et al. Low Emissions Combustion System Development for the GE Energy High Hydrogen Turbine Program [C]. Proceedings of the ASME Turbo Expo, Berlin Germany,9-13 June,2008.
    [11]Davis L B, Black S H. Dry low NOX combustion systems for GE heavy-duty gas turbines [R]. GE Power Systems GER-3568G,
    [12]Poloczek V, Hermsmeyer H. Modern gas turbines with high fuel flexibility [R]. power-GEN Asia,2008.
    [13]Arthur H. Lefebvre. Gas turbine combustion (secondary edition) [M]. Taylor and Francis; 1998.
    [14]Li P F, Mi J C, Dally B B, et al. Progress and recent trend in MILD combustion[J]. Science China Technological Sciences,2011, 54:255-269.
    [15]Abuelnuor A A A, Wahid M A, Hosseini S E, et al. Characteristics of biomass in flameless combustion:a review [J]. Renewable and Sustainable Energy Reviews,2014,33:363-370.
    [16]Hosseini S E, Bagheri G, Wahid M A. Numerical investigation of biogas flameless combustion [J]. Energy Conversion and Management,2014,81:41-50.
    [17]Arghode V K. Development of colorless distributed combustion for gas turbine application [D]. America:The University of Maryland,2011.
    [18]李鹏飞,米建春,Dally BB,等.当量比和反应物混合模式对无焰燃烧的影响[J].中国电机工程学报,2011,31(5):20-27.
    [19]Shudo T, Omori K, Hiyama O. NOx reduction and NO2 emission characteristics in rich-lean combustion of hydrogen [J]. International Journal of Hydrogen Energy,2008,33:4689-4693.
    [20]Kim H S, Arghode V K, Linck M B, et al. Hydrogen addition effects in a confined swirl-stabilized methane-air flame [J]. International Journal of Hydrogen Energy,2009,34:1054-1062
    [21]Tsuji H, Gupta A K, Hasegawa T, et al. High temperature air combustion:from energy conservation to pollution reduction. CRC Press; 2003 [3rd printing].
    [22]Cavaliere A, Joannon M D. Mild Combustion[J]. Progress in Energy and Combustion Science,2004,30:329-366.
    [23]Katsuki M, Hasegawa W. The science and technology of combustion in highly preheated air [C]. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute,1998,3135-3146.
    [24]Kumar S, Paul P J, Mukunda H S. Studies on a new high-intensity low-emission burner [C]. Proceedings o the Combustion Institute,2002,29(1):1131-1137.
    [25]Lammel O, SchUtz H, Schamitz G, et al. FLOX(?) Combustion at High Power Density and High Flame Temperatures [J]. Journal of Engineering for Gas Turbines and Power,2010,132:1215031-12150310.
    [26]Joannon M D, Saponaro A, Cavaliere A. Zero-dimensional analysis of diluted oxidation of methane in rich conditions [J]. Proceedings of the Combustion Institute,2000,28:1639-1646.
    [27]Wunning J G. Flameless combustion in the thermal process technology [C]. Second International Seminar on High Temperature Combustion.
    [28]Yu Y, Wang G F, Lin Q Z, et al. Flameless combustion for hydrogen containing fuels [J]. International Journal of Hydrogen Energy,2010,35:2694-2697.
    [29]Wunning J A, Wiinning J G. Flameless oxidation to reduce thermal NO-formation [J]. Progress in Energy Combustion Science, 1997,23:81-94.
    [30]Galbiati M A, Cavigiolo A, Effuggi A, et al. MILD combustion for fuel-NOx reduction [J]. Combustion Science and Technology, 2004,176(7):1035-1054.
    [31]Ayoub M, Rottier C, Carpentier S, et al., An experimental study of mild flameless combustion of methane/hydrogen mixtures [J]. International Journal of Hydrogen Energy,2012,37:6912-6921.
    [32]Hasegawa T. Environmentally compatible regenerative combustion heating system [C]. Proceedings of the second International Seminar on High Temperature Air Combustion, Stockholm Sweden,2000.
    [33]Gupta A K, Bolz S, Hasegawa T. Effect of air preheat temperature and oxygen concentration on flame structure and emission [J]. Journal of Energy Resources Technology,1999,121:209-216.
    [34]Lille S, Blasiak W, Jewartowski M. Experimental study of the fuel jet combustion in high temperature and low oxygen content exhaust gases [J]. Energy 2005,30:373-384.
    [35]Dally B B, Karpetis A N, Barlow R S. Structure of turbulent non-premixed jet flames in a diluted hot coflow [J]. Proceedings of the Combustion Institute,2002,29:1147-1154.
    [36]Gupta A K. Flame characteristics and challenges with high temperature air combustion [C]. Proceedings of 2000 International Joint Power Generation Conference, IJPGC2000-15087, Miami Beach, Florida,23-26 July; 2000.
    [37]Arghode V K, Gupta A K. Hydrogen addition effects on methane-air colorless distributed combustion flames [J]. International Journal of Hydrogen Energy,2011,36:6292-6302.
    [38]Joannon M D, Cavaliere A, Donnarumma R, et al. Dependence of autoignition delay on oxygen concentration in mild combustion of high molecular weight paraffin [J]. Proceedings of the Combustion Institute,2002,29:1139-1146.
    [39]Verissimo A S, Rocha A M A, Costa M. Importance of the inlet air velocity on the establishment of flameless combustion in a laboratory combustor [J]. Experimental Thermal and Fluid Science,2013,44:75-81.
    [40]Dally B B, Riesmeier E, Peters N. Effect of fuel mixture on moderate and intense low oxygen dilution combustion [J]. Combustion and Flame,2004,137:418-431.
    [41]Khoshhal A, Rahimi M, Abdulaziz A, et al. CFD study on influence of fuel temperature on NOx emission in a HiTAC furnace [J]. International Communications in Heat and Mass Transfer,2011,38:1421-1427.
    [42]Roediger T, Lammel O, Aigner M, et al. Part-load operation of a piloted flox(?) combustion system [C]. Proceedings of ASME Turbo Expo, Copenhagen, Denmark,11-15 June,2012.
    [43]Adachi S, Iwamoto A, Hayashi S, et al. Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in a multi-stage gas turbine combustor [J]. Proceedings of the Combustion Institute,2007,31: 3131-3138.
    [44]Hayashi S, Yamada H, Makida M. Extending low-NOx operating range of a lean premixed-prevaporized gas turbine combustor by reaction of secondary mixtures injected into primary stage burned gas [J]. Proceedings of the Combustion Institute,2005,30: 2903-2911.
    [45]Medwell P R, Dally B B. Effect of fuel composition on jet flames in a heated and diluted oxidant stream [J]. Combustion and Flame,2012,159:3138-3145.
    [46]Arghode V K, Gupta A K. Role of thermal intensity on operational characteristics of ultra-low emission colorless distributed combustion [J]. Applied Energy,2013,111:930-956.
    [47]Arghode V K, Gupta A K. Investigation of forward flow distributed combustion for gas turbine application [J]. Applied Energy, 2011,88:29-40.
    [48]Khalil A E E, Arhode V K, Gupta A K, et al. Low calorific value fuelled distributed combustion with swirl for gas turbine applications [J]. Applied Energy,2012,98:69-78.
    [49]Arghode V K, Gupta A K. Investigation of reverse flow distributed combustion for gas turbine application [J]. Applied Energy, 2011,88:1096-1104.
    [50]Arghode V K, Gupta A K. Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion [J]. Applied Energy,2010,87:1631-1640.
    [51]Mi J C, Wang F F, Li P F, et al. Modified vitiation in a moderate or intense low-oxygen dilution (MILD) combustion furnace [J]. Energy and Fuels,2012,26:265-277.
    [52]Mi J C, Li P F, Zheng C G. Numerical Simulation of Flameless Premixed Combustion with an Annular Nozzle in a Recuperative Furnace [J]. Fluid Flow and Transport Phenomena,2010,18(1):10-17.
    [53]Li P F, Dally B B, Mi J C, et al. MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace [J]. Combustion and Flame,2013,160:933-946.
    [54]Rebola A, Costa M, Coelho P J. Experimental evaluation of the performance of a flameless combustor [J]. Applied Thermal Engineering,2013,50:805-815.
    [55]Colorado A F, Herrera B A, Amell A A. Performance of a Flameless combustion furnace using biogas and natural gas [J]. Bioresource Technology,2010,101:2443-2449.
    [56]Chen L, Yong S Z, Ghoniem A F. Oxy-fuel combustion of pulverized coal:Chracterization, fundamentals, stabilization and CFD modeling [J]. Progress in Energy Combustion and Science,2012,38(2):156-214.
    [57]Mardani A, Tabejamaat S. Effect of hydrogen on hydrogen-methane turbulent non-premixed flame under MILD condition [J]. International Journal of Hydrogen Energy,2010,35:11324-11331.
    [58]Derudi M, Villani A, Rota A. Sustianability of mild combustion of hydrogen-containing hybrid fuels [J]. Proceedings of the Combustion Institute,2007,29:3393-3400.
    [59]Tabacco D, Innarella C, Bruno C. Theoretical and numerical investigation on flameless combustion [J], Combustion Science and Technology,2012,174(7):1-35.
    [60]Plessing T, Peters N, Wiinning J G. Lseroptical investigation of highly preheated combustion with strong exhaust gas recirculation [C]. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute,1998,3197-3204.
    [61]Mardani A, Tabejamaat S, Hassanpour S. Numerical study of CO and CO2 formation in CH4/H2 blended flame under MILD condition [J]. Combustion and Flame,2013,160(9):1636-1649.
    [62]Sabia P, Joannon M D, Fierro S, et al. Hydrogen-enriched methane Mild Combustion in a well stirred reactor [J]. Experimental Thermal and Fluid Science,2007,31:469-475.
    [63]Joannon M D, Sabia P, Sorrentino G, et al. Numerical study of mild combustion in hot diluted diffusion ignition (HDDI) regime [J]. Proceedings of the Combustion Institute,2009,32:3147-3154.
    [64]Joannon M D, Matarazzo A, Sabia P, et al. Mild Combustion in Homogeneous Charge Diffusion Ignition (HCDI) regime [J]. Proceedings of the Combustion Institute,2007,31:3409-3416.
    [65]Flamme M. New combustion systems for gas turbines (NGT) [J]. Applied Thermal Engineering,2004,24:1551-1559.
    [66]Davis S G, Joshi A V, Wang H, et al. An optimized kinetic model of H2/CO combustion [J]. Proceedings of the Combustion Institute,2005,30:1283-1292.
    [67]Walton S M, He X, Zigler B T, et al. An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications [J]. Proceedings of the Combustion Institute,2007,31:3147-3154.
    [68]You X Q, Packard A, Frenklach M. Process informatics tools for predictive modeling:Hydrogen combustion [J]. International Journal of Chemical Kinetics,2012,44:101-116.
    [69]Sun H Y, Yang S I, Jomaas G, et al. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion [J]. Proceedings of the Combustion Institute,2007,31:439-446.
    [70]Hong Z K, Davidson D F, Hanson R K. An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements [J]. Combustion and Flame,2011,158(4):633-644.
    [71]Burke M P, Chaos M, Ju Y G, et al. Comprehensive H2/O2 kinetic model for high-pressure combustion [J]. International Journal of Chemical Kinetics,2011,44(7):444-474.
    [72]Lee M C, Seo S B, Chung J H, et al. Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas [J]. Fuel,2010,89:1485-1491.
    [73]Arghode V K, Gupta A K, Bryden K M. High intensity colorless distributed combustion for ultra low emissions and enhanced performance [J]. Applied Energy,2012,92:8228-830.
    [74]Ahmed E. E. Khalil, Ashwani K. Gupta. Distributed swirl combustion for gas turbine application [J]. Applied Energy,2011,88: 4898-4907.
    [75]Khoshhal A, Rahimi M, Abdulaziz A, et al. CFD study on influence of fuel temperature on NOx emission in a HiTAC furnace [J]. International Communications in Heat and Mass Transfer,2011,38:1421-1427.
    [76]Khalil A E E, Gupta A K. Hydroxyl radical distribution in distributed reaction combustion condition [J]. Fuel,2014,122:28-35.
    [77]Khalil A E E, Gupta A K. Swirling flowfield for colorless distributed combustion [J]. Applied Energy,2014,113:208-218.
    [78]Weiland N T, Strakey P A. NOx reduction by air-side versus fuel-side dilution in hydrogen diffusion flame combustors [J]. Journal of Engineering for Gas Turbines and Power,2010,132:0715041-07150149.
    [79]Markides C N, Mastorakos E. An experimental study of hydrogen autoignition in a turbulent co-flow of heated air [J]. Proceedings of the Combustion Institute,2005,30:883-891.
    [80]Patwardhan S S, Lakshmisha K N. Autoignition of turbulent hydrogen jet in a coflow of heated air [J]. International Journal of Hydrogen Energy,2008,33:7265-7273.
    [81]黄明明,邵卫卫,刘艳,等.交叉射流分级燃烧器中CH4柔和燃烧特性分析[J].中国电机工程学报,2013,33(8):22-29.
    [82]黄明明,邵卫卫,张哲巅,等.基于交叉射流与切向旋流的CH4柔和燃烧特性对比[J].航空动力学报,2014,29(1):31-41.
    [83]Dandy D S, Vosen S R. Numerical and experimental studies of hydroxyl radical chemiluminescence in methane air flames [J]. Combustion Science and Technology,1992,82(1):131-150.
    [84]Duwig C, Li B, Li Z S, et al. High resolution imaging of flameless and distributed turbulent combustion [J]. Combustion and Flame,2012,159:306-316.
    [85]Panne T, Widenhorn A, Aigner M. Comparison of combustion models and reaction mechanisms for FLOX(?) combustion [C]. Proceedings of ASME Turbo Expo 2009:Power for Land, Sea and Air, Orlando, Florida, USA,8-12 June.
    [86]Fluent 6.1 user's guide[DB/OL]. http://www.doc88.com/p-542678638729.html.
    [87]Correa S M. A review of NOx formation under gas-turbine combustion conditions [J]. Combustion Science and Technology, 1992,87(1):329-362.
    [88]姚强,李永清,王宇.燃烧学导论[M].北京:清华大学出版社,2009.
    [89]Kuo, K K. Principles of Combustion, Second Edition [M]. John Wiley and Sons,2005.
    [90]陈钦.燃气轮机燃烧室柔和燃烧条件与特征的研究[D].北京:中国科学院工程热物理研究所,2010.
    [91]黄明明,张哲巅,邵卫卫,等.低排放分级燃烧器中CH4燃烧特性[J].燃气轮机技术,2013,26(1):33-39.
    [92]Huang M M, Zhang Z D, Shao W W, et al. Comparative study of syngas MILD combustion characteristics in swirl diffusion and coflow diffusion staged combustor [C]. Proceedings of the ASME Turbo Expo, America,2013, 1B.
    [93]Weidmann M, Verbaere V, Boutin G, et al. Detailed investigation of flameless oxidation of pulverized coal at pilot-scale (230 kWth) [J]. Applied Thermal Engineering,2014,66:1-6.
    [94]Medwell P R, Kalt P A M, Dally B B. Simultaneous imaging of OH, formaldehyde, and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow [J]. Combustion and Flame,2007,148:48-61.
    [95]Sun H Y, Yang S I, Jomaas G, et al. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion [J]. Proceedings of the Combustion Institute,2007,31:439-446.
    [96]Lin Y C, Daniele S, Jansohm P. combustion characteristics and nox emission of hydrogen-rich fuel gases at gas turbine relevant conditions [C]. Proceedings of ASME Turbo Expo, GT2012-69080.
    [97]Harrington J E, Smith G P, Berg P A, et al. Evidence for a New NO Production Mechanism in Flames,1996,26(2):2133-2138.
    [98]Dean A M, Bozzelli J W. Combustion Chemistyr of Nitrogen,2000,125-341.
    [99]York W D, Ziminsky W S. Development and testing of a low nox hydrogen combustion system for heavy duty gas turbines[C]. Proceedings of ASME Turbo Expo, GT2012-69913.
    [100]Roper F G. The prediction of laminar jet diffusion flame sizes:Part one. Theoretical Model [J]. Combustion and Flame,1977, 29:219-226.
    [101]Huang M M, Shao W W, Xiong Y, et al. Effect of fuel injection velocity on MILD combustion of syngas in axially-staged combustor. Appllied Thermal Engineering,2014,66:485-492.
    [102]Sabia P, Romeo F, Joannon M D, et al. VOC destruction by water diluted hydrogen mild combustion [J]. Chemosphere,2007, 68:330-337.
    [103]Li S C, Williams F A. Reaction mechanism for methane ignition [J]. Journal of Engineering for Gas Turbines and Power,2002, 124:472-480.
    [104]Castela M, Verissimo A S, Rocha A M A, et al. Experimental Study of the Combustion Regimes Occurring in a Laboratory Combustor [J]. Combustion Science and Technology,2012,184(2):243-258.
    [105]Nicolle A, Dagaut P. Occurrence of NO-reburning in MILD combustion evidenced via chemical kinetic modeling [J]. Fuel, 2006,85:2469-2478.
    [106]Kumar S, Paul P J, Mukunda H S. Investigations of the scaling criteria for a mild combustion burner [J]. Proceedings of the Combustion Institute,2005,30:2613-2621.
    [107]Arghode V K, Gupta A K. Development of high intensity CDC combustor for gas turbine engines [J]. Applied Energy,2011,88: 963-973.
    [108]Verissimo A S, Rocha A M A, Costa M. Importance of the inlet air velocity on the establishment of flameless combustion in a laboratory combustor [J]. Experimental Thermal and Fluid Science,2013,44:75-81.
    [109]Mi J C, Li P F, Zheng C G. Impact of injection conditions on flame characteristics from a parallel multi-jet burner [J]. Energy, 2011,36:6583-6595.
    [110]Christo F C, Dally B B. Modeling turbulent reacting jets issuing into a hot and diluted coflow [J]. Combustion and Flame,2005, 142:117-129.
    [111]Shabanian S R, Medwell P R, Rahimi M, et al. Kinetic and fluid dynac modeling of ethylene jet flames in diluted and heated oxidant stream combustion conditions [J]. Appllied Thermal Engineering,2013,52:538-554.
    [112]Galletti C, Parente A, Tognotti L. Numerical and experimental investigation of a mild combustion burner [J]. Combustion and Flame,2007,151:649-664.
    [113]Vascellari M, Cau G. Influence of turbulence-chemical interaction on CFD pulverized coal MILD combustion modeling [J]. Fuel,2012,101:90-101.
    [114]Parente A, Galletti C, Tognotti L. Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels [J]. International Journal of Hydrogen Energy,2008,33:7553-7564.
    [115]Galletti C, Parente A, Derudi A, et al. Numerical and experimental analysis of NO emissions from a lab-scale burner fed with hydrogen-enriched fuels and operating in MILD combustion [J]. International Journal of Hydrogen Energy,2009,34: 8339-8351.
    [116]Gao X, Duan F, Lim S C, et al. NOx formation in hydrogen-methane turbulent diffusion flame under the moderate or intense low-oxygen dilution conditions [J]. Energy,2013,59:559-569.
    [117]Frassoldati A, Sharma P, Cuoci A, et al. Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow [J]. Applied Thermal Engineering,2010,30:376-383.
    [118]Aminian J, Galletti C, Shahhosseini S, et al. Key modeling issues in prediction of minor species in diluted-preheated combustion conditions [J]. Applied Thermal Engineering,2011,31:3287-3300.
    [119]Rottier C, Lacour C, Godard G, et al. On the effect of air temperature on mild flameless combustion ragime of high temperature furnace [C]. Proceedings of the European Combustion Meeting, Vienna, Austria,2009.
    [120]Dong C, Zhou Q, Zhao Q, et al. Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures [J]. Fuel,2009,88:1858-1863.
    [121]Natarajan J, Kochar Y, Lieuwen T, et al. Pressure and preheat dependence of laminar flame speeds of H2/CO/CO2/O2/He mixtures [J]. Proceedings of the Combustion Institute,2009,32:1261-1268.
    [122]Felder R M, Rousseau R W. Elementary prinples on chemical processes. The third edition. New York:John Wiley and Sons,
    [123]Verissimo A S, Rocha A M A, Costa M. Experimental study on the influence of the thermal input on the reaction zone under flameless oxidation conditions [J]. Fuel Processing Technology,2013,106:423-428.
    [124]Verissimo A S, Rocha A M A, Costa M. Flow, Combustion and Emission Characteristics of a Laboratory Combustor [C].16th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal,09-12 July,2012.
    [125]Rottier C, Lacour C, Godard G, et al. An aerodynamics way to reach mild combustion regime in a lab-scale furnace [C]. In: Proceedings of the European Combustion Meeting. Chania, Crete,2007.
    [126]Sanchez M, Cadavid F, Amell A. Experimental evaluation of a 20 kW oxygen enhanced self-regenerative burner operated in flameless combustion mode [J]. Applied Energy,2013,111:240-246.
    [127]Hosseini S E, Wahid M A. Biogas utilization Experimental investigation on biogas flameless combustion in lab-scale furnace [J]. Energy Conversion and Management,2013,74:426-432.
    [128]Abtahizadeh E, Sepman A, Perez F H, et al. Numerical and experimental investigations on the influence of preheating and dilution on transition of laminar coflow diffusion flames to Mild combustion regime [J]. Combustion and Flame,2013,160: 2359-2374.
    [129]Choi G M, Katsuki M. Advanced low NOx combustion using highly preheated air [J]. Energy Conversion and Management, 2001,42:639-652.
    [130]C. Rottier, C. Lacour, G. Godard, B. Taupin, A.M. Boukhalfa, D. Honore, L. Porcheron, R. Hauguel, An aerodynamic way to reach mild combustion regime in a laboratory-scale furnace, Proceedings of the European Combustion Meeting,2007.
    [131]Grandmaison E W, Yimer I, Becher H A, et al. The strong-jet/weak-jet problem and aerodynamic modeling of the CGRI burner [J]. Combustion and Flame,1998,114:381-396.
    [132]Mancini M, Schwoppe P, Weber R, et al. On mathematical modeling of flameless combustion [J]. Combustion and Flame,2007, 150(1):54-59.
    [133]Singh D, Nishiie T, Tanvir S, et al. An experimental and kinetic study of syngasair combustion at elevated temperatures and the effect of water addition. Fuel,2012,94:448-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700