钨簇多酸盐与钴酸镧纳米材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探索具有新型结构和潜在的高催化活性的功能纳米材料,本论文进行了两方面的研究工作,一是重点探索了钨簇多酸盐新结构的合成和结构表征,二是着重进行钴酸镧纳米材料的制备及电化学性能研究。
     论文第一部分以钨簇多酸作为研究对象,将有机物引入钨簇骨架,同时将稀土与钨簇通过适当的形式连接起来,通过溶液法成功合成了3个结构新颖的钨簇多酸盐化合物。化合物(I)[Na_2(C_8H_(12)N_2O_3)_4(C_2H_6SO)_4(W_6O_(19))]_n是罕见的有机-钨簇结构,化合物(II)[(H_2O)Na(-DMSO)_3La(DMSO)_4(W_(10)O_(32))]_n是首例(W_(10)O_(32))_4单元的多维结构,又是首例W簇单元与稀土金属连成的2维结构,化合物(Ⅲ)[Na_(10)(H_2O)_(18)(H_2W_(12)O_(42))]_n是十二钨酸盐的新型堆积方式,具有相当复杂的3维结构。
     第二部分着重进行钴酸镧纳米材料以及多元稀土系列钴酸盐的制备和电化学性能研究。运用热力学原理,在分子水平上研究分析了钴离子在柠檬酸溶胶凝胶法体系中的存在方式、柠檬酸作为多齿配体的最佳配位环境与配位方式,提出利用氨水改进柠檬酸溶胶凝胶法的新工艺并成功合成了钴酸镧,获得工艺控制简单,重现性优良的钴酸镧制备方法。
     系统地研究了合成条件、焙烧温度、稀土掺杂比例等对钴酸镧纳米材料及二元稀土钴酸盐相结构与形貌的影响。结果表明,控制凝胶形成的最佳条件,在600℃焙烧可获得纯钙钛矿相的LaCoO3纳米粉末,平均粒径为25.8nm,属于菱形结构。在600-900℃处理均不改变晶型,但随焙烧温度的提高,晶体尺寸增大。系列镧钕钴酸盐(La1-xNdxCoO3,x=0~1)研究发现,钕以不同掺杂比例均能与镧元素形成具有钙钛矿结构的镧钕钴酸盐。当x较小时具有菱形结构(LaCoO3为主),当x超过0.4时,转化为具有更高对称性的立方结构(NdCoO3为主)。进而系统合成了系列二元稀土钴酸盐(La1-xAxCoO3,A=Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Er)。除Ce以外的镧系元素均能与镧元素以1:1配比形成单相固溶体,所形成的二元稀土钴酸盐都具有钙钛矿结构,La与Ce以1:1配比不能形成钙钛矿结构,仅当Ce掺杂量少于10%时,形成的二元稀土钴酸盐具有钙钛矿结构。
     采用玻碳为基底将钴酸镧等纳米材料制成催化电极。系统地研究了钴酸镧及二元稀土钴酸盐纳米材料在碱性介质中的电化学行为。研究发现,600℃焙烧获得的钙钛矿结构钴酸镧具有最大的阳极电流,电催化活性最好。系列二元稀土钴酸盐的电化学活性研究发现,轻稀土钴酸盐比重稀土钴酸盐的电化学活性高,镧镨钴酸盐活性最高,而重镧系元素与镧组成的二元钴酸盐和镧铈二元钴酸盐基本没有催化活性。更进一步地,采用乙二醇还原法制备了载铂20%的复合材料Pt-LCO/C,并与Pt/C进行对比试验。发现铂在钴酸镧中的分散性比在纯纳米碳中好,获得铂金属颗粒仅2nm,且颗粒大小均匀。在碱性介质中对甲醇的电化学氧化行为测试中,Pt-LCO/C电极比Pt/C电极的扩散性更优,具有优良的电催化氧化甲醇的性能。
     采用微波辅助湿化学法也成功获得钙钛矿钴酸镧纳米材料,与溶胶凝胶法钴酸镧相比,微波法获得的纳米粒子粒径更小,比表面更大,电化学活性更高,但纯度不及溶胶凝胶法。
In this dissertation, the synthesis and structures of Ployoxometalates (POMs) basedon tungsten-clusters, as well as the preparation and electrochemical properties oflanthanum cobaltite nano-particles were systematically investigated, for the purpose toexplore functional nanomaterials with a novel structure or potential catalytic activities.
     In the first part of the dissertation, POMs based on tungsten-clusters were chosen asresearch objects. Three POMs compounds based on tungsten-clusters with novel structureswere successfully achieved by traditional aqueous solution method, in which organicligands were introduced into framework of tungsten-clusters, and rare earth elements wereused as linkage. It should be noted here that, Compound (I)[Na_2(C_8H_(12)N_2O_3)_4(C_2H_6SO)_4(W_6O_(19))]_nis a unusual2D organic-polyoxotungstate and a new example ofhexapolyoxotungstate units with a2-D structure. Compound (II)[(H_2O)Na(-DMSO)_3La(DMSO)_4(W_(10)O_(32))]_nis the first example that the basic decapolyoxotungstates buildingblock linked up into multi-dimensional structure and the first polyoxotungsten compoundincorporating both rare transition metals and organic ligands with multi-dimension.Compound (Ⅲ)[Na_(10)(H_2O)_(18)(H_2W_(12)O_(42))]_nis a new packing example of paradodeca-tungstate salt with simple composing but complicated3-D structure.
     In the second part of the dissertation, the preparation and electrochemical propertiesof lanthanum cobaltite nano-materials and rare transition metal cobaltites were studied.The existing types of Co ion and citric acid in the sol were analysed at molecule levelbased on thermodynamic principle. The coordination modes and the optimal coordinationenvironment of citric acid were also discussed. A new technological process, i.e. anammonium hydroxide improved citric acid sol-gel method, was drawn out and thenlanthanum cobaltites were successfully prepared. This process was stable with goodreproducibility for preparing cobaltite nano-particle.
     The effects of preparing condition, the calcination temperature and the rare transitionmetals doping on the phase structure and topography of lanthanum cobaltites and raretransition metal cobaltites were systematically studied. It comes to a conclusion that calcination temperature at600℃, using the new sol-gel technological process, gives outpure perfect perovskite structure LaCoO3nanomaterial with particle size25.8nm inrhombohedra symmetry. The LaCoO3particles are in perovskite structure when thecalcination temperature between600℃and900℃, but the particle size grows as thecalcination temperature rises. Then, a series of La and Nd cobaltites (La1-xNdxCoO3, x=0~1) were studied. The results show that perovskite phase can be formed at any ratio of Laand Nd, and rhombohedra structure (mainly LaCoO3) can be transformed into the cubicstructure (mainly NdCoO3) when x0.4. Further, the cobaltites La1-xAxCoO3(A=Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Er) were studied. The results show that La1-xAxCoO3cobaltitesalso possess a perovskite structure when x=0.5except La1-xCexCoO3, and theLa1-xCexCoO3has a perovskite structure only when x0.1.
     The cobaltites catalytic electrodes were fabricated with Nafion ion-exchange resin,and the electrochemical properties in alkaline solution were studied. It is found that thecatalytic electrode made by LaCoO3particles calcined at600℃has the highest anodecurrent, and the highest catalytic activities. Moreover, the electrochemical properties forseries of binary rare transition metals cobaltites La0.5A0.5CoO3were studies. It is found thatthe light rare earth lanthanum cobaltites show higher catalytic activities than heavy rareearth lanthanum cobaltites, and that the lanthanum cerium cobaltites or heavy raretransition metals lanthanum cobaltites show catalytic inactivities. Furthermore, thePt-LaCoO3/C and Pt/C catalyst (20wt.%Pt) were prepared by glycol reduction process.The results show that the catalyst of Pt-LaCoO3/C has advantageous of large surface area,excellent dispersion of Pt with particle size of ac.2nm, and finally show goodelectrocatalytic properties for alcohol electro-oxidation. The potential at anode currentpeak for methanol electro-oxidation on Pt-LaCoO3/C is lower than that on Pt/C electrode atthe same Pt loadings due to the higher dispersion Pt particles on LaCoO3/C.
     The perovskite lanthanum cobaltite was also successfully prepared by coprecipitationwith microwave irradiation to compare with the above research results. It has a smalleraverage particle size, higher BET surface area, higher electro-catalytic activities but lesspure in comparison with that prepared by sol-gel route.
引文
[1] Pope M T. Heteropoly and isopoly oxometalates. Springer-Verlag: Berlin.1983
    [2] Muller A, Roy S, En route from the mystery of molybdenum blue via related manipulatable buildingblocks to aspects of materials science, Coord. Chem. Rev.,245(2003):153-166
    [3] Gouzerh P, Proust A. Main-group element, organic, and organo-metallic derivatives ofpolyoxometalates. Chem Rev.,1998,98(1):77-111
    [4] Muller A, Peters F, Pope M T, et al. Ployoxometalates: very large clusters nanoscale magnets. Chem.Rev.,1998,98(1):239-271
    [5]王恩波,胡长文,许林著.多酸化学导论.北京:化学工业出版社,1998
    [6] Kin K C, Pope M T. Cation-directed structure changes in ployoxometalate chemistry equilibriabetween isomers of bis(9-tungstophosphatodioxouranate(VI)) complexes. J. Am. Chem. Soc.,1999,121:8512-8513
    [7] Honma N, Kusaka K, Ozeki T. Self-assembly of a lacunary-Keggin undecatungs to phosphate into athree-dimensional network linked by s-block cations. Chem. Comun.,2002,2896
    [8] Keggin J F, Structure of the crystals of12-phosphotungstic acid, Nature,1933,131:351-351
    [9] Baker L C W, Figgis J S A. New fundamental type of inorganic complex: hybrid betweenheteropoly and conventional coordination complexes. Possibilities for geometrical isomerisms in11-,12-,17-, and18-heteropoly derivatives. J. Am. Chem. Soc.,1970,92:3794-3797
    [10] Dawson B. The structure of the9(18)-heteropoly anion in potassium9(18)-Tungstophosphate,K6(P2W18O62)14H2O. Acta Crystallogr.,1953,6:113-126
    [11] Anderson J S. Constitution of the poly-acids. Nature,1937,140:850-850.
    [12] Evans H T. Molecular-structure of hexamolybdotellurate ion in crystal complex with telluric acid,(NH4)6[TeMo6O24] Te(OH)67H2O. Acta Crystallogr., Sect. B: Struct. Sci.,1974, B30:2095-2100
    [13] Waugh J L T, Shoemaker D P, Pauling L. On the structure of the heteropoly anion in ammonium9-molybdomanganate,(NH4)6MnMo9O328H2O Acta Crystallogr.,1954,7:438-441
    [14] Tsay Y H, Silverto J V. Crystal-structure of magnesium paratungstate, Mg5H2W12O4238H2O. Z.Krist.,1973,137:256-279
    [15] Lindqvist I, A crystal structure investigation of the paramolybdate ion. Arkiv Kemi,1950,2(4):325-341
    [16] Mal SS, Nsouli NH, Kortz U, et al. Organoruthenium derivative of the cyclic [H33–7P8W48O184]anion:[{K(H2O)}3{Ru(p-cymene)(H2O)}4P8W49O186(H2O)2]27–. Dalton transactions,2007,(25):2627-2630
    [17] Mohammad S, Alam M M, Muller P, et al. STM/STS observation of polyoxoanions on HOPGsurfaces: the wheel-Shaped [Cu20Cl(OH)24(H2O)12(P8W48O184)]25-and the ball-shaped[{Sn(CH36-3)2(H2O)}24{Sn(CH3)2}12(A-PW9O34)12]. Inorg. Chem.,2006,45:2866-2872
    [18] Zhang J Y, Qin C, Wang E B, et al. A novel1arge heteropolytungstate constructed from two typesof1acunary Keggin anions: K7Na13[(PW11O39)2(PW9O34)2(W2O3)2]·25H2O. Inorganica. Chimica.Acta.2008,361:359-364.
    [19] Nathalie L L, Haouas M, Herv G, et al. Step-by-Step Assembly of Trivacant Tungstosilicates:Synthesis and Characterization of Tetrameric Anions. Angew. Chem. Int. Ed.,2006,45:139-142
    [20] Long D L, Abbas H, Cronin L, et al. A High-Nuclearity “Celtic-Ring” Isopolyoxotungstate,[H12W36O120]12, That Captures Trace Potassium Ions. J. Am. Chem. Soc.,2004,126:13880-13881
    [21] Wassermann K, Dickman M H, Pope M T. Self-assembly of supramolecular polyoxometalates:The compact, water-soluble heteropolytungstate anion [(AsIII712Ce16)CeIII(H2O)36W148O524]6-.Angew. Chem. Int. Ed.,1997,36:1445-1448
    [22] Kortz U, Hussain F, Reicke M. The ball-shaped heteropolytungstates[{Sn(CH3)2(H2O)}24{Sn(CH3)2}12(A-XW9O334)12]6-. Angew. Chem. Int. Ed.,2005,44:3773-3777
    [23] Bassil B S, Dickman M H, Isabella R, Kammer B V D, Kortz U, Tungstogermanate[Ce20Ge10W100O376(OH)4(H2O)30]56: A Polyoxometalate Containing20Cerium(III) Atoms. Angew.Chem. Int. Ed.,2007,46,6192-6195
    [24]萨如拉,鲁晓明,顾新波,等.[Na(DB18C6)(CH3CN)]2W6O19(CH3CN)2的合成、晶体结构及谱学表征.无机化学学报,2007,23:1051-1054
    [25] Sha J Q, Peng J, Tian A, et al. Assembly of multitrack Cu-N coordination polymericchain-modified polyoxometalates influenced by polyoxoanion cluster and ligand. Cryst. GrowthDes.,2007,7(12):2535-2541
    [26] Zhang L J, Wei Y, Wang C C, et al. Hexatungstate subunit as building block in the hydrothermalsynthesis of organic–inorganic hybrid materials: synthesis, structure and optical properties ofCo2(4,4’-bpy)6(W6O19)2(bpy=4,40-bipyridine). J. Solid State Chem.,2004,177:3433-3438
    [27] Li Y G, Wang E B, Wang S T, et al. Synthesis, characterization and crystal structures ofdibenzo-18-crown-6sodium isopolytungstates J.Mol.Struct.,2002,607(2-3):133-141
    [28] Devi R N, Burkholder E, Zubieta J. Hydrothermal synthesis of polyoxotungstate clusters,surface-modified with M(II)-organonitrogen subunits. Inorg.Chim.Acta,2003,348:150-156
    [29] Lisnard L, Dolbecq A, Mialane P, et al. Hydrothermal syntheses and characterizations of0D to3Dpolyoxotungstates linked by copper ions. Inorg. Chim. Acta,2004,357:845-852
    [30] Chambers, R.; Hill, C. Comparative study of polyoxometalates and semiconductor metal oxides ascatalysts. Photochemical oxidative degradation of thioethers. Inorg. Chem.,1991,30,2776-2781
    [31] Androulaki E, Hiskia A, Dimotikali D, Minero C, et al. Papaconstantinou, E. Light inducedelimination of mono-and polychlorinated phenols from aqueous solutions by PW12O403-. The caseof2,4,6-trichlorophenol. Environ. Sci. Technol.,2000,34,2024-2028
    [32] Ozer R, Ferry J. Photocatalytic oxidation of aqueous1,2-dichlorobenzene by polyoxometalatessupported on the NaY zeolite. J. Phys. Chem. B.,2002,106,43364342
    [33] Yue B, Zhou Y, Xu J, et al. Photocatalytic degradation of aqueous4-chlorophenol by silica-immobilized polyoxometalates. Environ. Sci. Technol.,2002,36,13251329
    [34] Yoon M, Chang J, Kim Y, et al. Heteropoly acid-incorporated TiO2colloids as novelphotocatalytic systems resembling the photo-synthetic reaction center. J. Phys. Chem. B.,2001,105,2539-2545
    [35] Troupis A, Hiskia A, Papaconstantinou E. Photocatalytic reduction and recovery of copper bypolyoxometalates. Environ. Sci. Technol.,2002,36,5355-5362
    [36] Troupis A, Hiskia A, Papaconstantinou E. Synthesis ofmetal nanoparticles by usingpolyoxometalates as photocatalysts and stabilizers. Angew. Chem. Int. Ed.,2002,41,1911-1914
    [37] Mandal S, Selvakannan P, Pasricha R, et al. Keggin ions as UV-switchable reducing agents in thesynthesis of Au core Ag shell nanoparticles. J. Am. Chem. Soc.,2003,125,8440-8441
    [38] Hiskia, A.; Mylonas, A.; Papaconstantinou, E. Comparison of the photoredox properties ofpolyoxometalates and semi-conducting particles. Chem. Soc. Rev.,2001,30,62-69.
    [39] Hsu-Yao T, Browne K P, Honesty N, et al. Polyoxometalate-stabilized Pt nanoparticles and theirelectrocatalytic Activities. Phys. Chem. Chem. Phys.,2011,13:7433-7438
    [40] R. Wlodarczyk, M. Chojak, K. Miecznikowski, et al. J. Power. Sources.,2006,159:802-809
    [41] Mizuno N, Misono M. Heterpolyanions in catalysis. J. Mol. Catal.,1994,86(l-3):319-342
    [42] Hill C L, Prosser-MeCar C M. Homogeneous catalysis by transition-metal oxygen anion elusters.Coord. Chem. Rev.,1995,143:407-455
    [43] Kuznetsova N I, Detusheva L G, Kuznetsova L I, et al. Oxidation of cyclohexene and decay ofhydrogen peroxide catalyzed by heteropoly complexes. Kinet. Catal.,1992,33(3):516-523
    [44] Venturello C, D’Aloisio R, Bart J C J, et al. A new peroxotungsten heteropoly anion with specialoxidizing properties: synthesis and strueture of tetrahexyl ammonium tetra (diperoxotungsto)phosPhate(3-). J. Mol. Catal.,1985,32(l):107-110
    [45] Venturello C, Alneri E, Rieci M. A new effective catalytic system for epoxidation of olifins byhydrogen peroxide under phasetransfer conditions. J. org. Chem.,1983,48(21):3831-3833
    [46] Venturello C, Gambaro M. A convenient catalytic method for the dihydroxylation of alkenes byhydrogen peroxide. Synthesis,1989,4:295-297
    [47] Ishii Y, Yamawaki Y, Ura T, etal. Hydrogen peroxide epoxidation catalyzed by heteropoly acidscombined with cetylpyridinium chloride. J. Org. Chem.,1988,53(15):3587-3593.
    [48] Ishii Y, Sakato Y. A novel oxidation of intemal alkynes with hydrogen peroxide catalyzed byperoxotungsten compounds. J. Org. hem.,1990,55(21):5545-5547.
    [49] Kamata K, Yonchara K, Sumida Y, et al. Efficient oxidation of olefins with9%selectivity anduse of hydrogen peroxide. Science,2003,300:964-966
    [50] Mizuno N, Yamaguchi K, Kamata K. Epoxidation of olefins with hydrogen peroxide catalyzed bypolyoxometalates. Coord. Chem. Rev.2005,249,1944-1956
    [51] Kozhevnikov I V. Catalysis by Polyoxometalates; John Wiley&Sons, Ltd: Chichester, U.K.,2002.
    [52] Canny J, Teze A, Thouvenot R, et al. Disubstituted tungstosilicates1. synthesis, stability, andstructure of the lacunary precursor polyanion-SiW10O368-. Inorg. Chem.,1986,25,2114-2119
    [53] Wassermann K, Lunk H J, Pope M T, et al. Polyoxoanions derived from[-SiO-4W10O32](8)-containing oxo-centered dinuclear chromium(III) carboxylato complexes:Synthesis and single-crystal structural determination of[-SiO4W10O32(OH)Cr2(OOCCH3)2(OH2)2]5-. Inorg. Chem.,1996,35:3273-3279
    [54] Botar B, Geletii Y V, Hill C L, et al. The true nature of the di-iron(III)-keggin structure in water:Catalytic aerobic oxidation and chemistry of an unsymmetrical trimer. J. Am. Chem. Soc.,2006,128(34):11268-11277
    [55] Kikukawa Y, Yamaguchi S, Tsuchida K, et al. Synthesis and Catalysis of Di-and TetranuclearMetal Sandwich-Type Silicotungstates [(γ-SiW10O36)2M2(μ-OH)2]10-and[(γ-SiW10O36)2M4(μ4-O)(μ-OH)6]8-(M=Zr or Hf). J. Am. Chem. Soc.,2008,130:5472-5478
    [56] Tanake H, Misono M. Advances in designing perovskite catalysis.Curr. Opin. Solid State Mater.Sci.,2001,5(5):381-387
    [57] Lichtenberg F, Hemberger A, Wiedenmann K. Synthesis, structural, magnetic and transportproperties of layered perovskite-related titanates, niobates and tantalates of the type AnBnO3n+2,A′Ak1BkO3k+1and AmBm1O3m. Prog. Solid. State. Ch.,2008,36(4):253-387
    [58] Dagotto E, Hotta T, Moreo A. Colossal magnetoresistant materials: The key role of phaseseparation, Physics Reports,2001,344(1-3):1-153
    [59] Bychkov G L, Shiryaev S V, Soldatov A G, et al. Crystal growth features and properties of layeredrare earth and barium cobaltates Cryst. Res. Technol.,2005,40(4-5):395-399
    [60]刘源.钙钛矿型LaCoO3和LaMnO3超细粒子的制备.内蒙古工业大学学报,2000.19(3):192-193
    [61] Libby W F. Promising catalyst for autoexhaust. Science,1971,171(3):499-505
    [62] Pedersen L A, Libby W F. Unseparated rare earth cobalt oxide as auto exhaust catalyst. Science,1972,176(7):1355-1366
    [63] Voorhoeve R J H, Remeika J P, Freeland P E. Rare earth oxide of manganese&cobalt rivalplatinum for the treatment of carbon monoxide in auto exhaust. Science,1972,177:353-354
    [64]王心葵.尖晶石的性质,制备及在催化中的应用.石油化工高等学校学报,1996,(4):11-14
    [65]李强,杜卫民.钴酸盐复合氧化物纳米材料的研究进展.化工新型材料,2009,37(8):12-14
    [66] Naghash R, Jim Y, Lee. Preparation of spinel lithium manganese oxide by aqueous co-precipitation.J. Power Sources,2000,85(2):284-293
    [67] Yanko M, Todrov Y H, Hideyuki N. Determination of theoretical capacity of metal ion-dopedLiMn2O4as the positive electrode in Li-ion batteries. J. Power Sources,1999,77(2):198-201
    [68] Bonino F, Panero S, Satolli D, et al. Synthesis and characterization of Li2MxMn4xO8(M=Co, Fe)as positive active materials for lithium-ion cells. J. Power Sources,2001,97-98:389-392
    [69] Thackeray M M, Johnson C S, Kahaian A J, et al Stabilization of insertion electrodes for lithiumbatteries. J. Power Sources.1999,81-82:60-66
    [70] Soiron S, Rougier A, Aymard L, et al. Mechanochemical synthesis of Li–Mn–O spinels: positiveelectrode for lithium batteries. J. Power Sources.2001,97-98:402-405
    [71] Masset AC, Michel C, Maignan A, et al. Misfit-layered co-baltite with an anisotropic giantmagnetoresistance:Ca3Co4O3. Physical Review B.2000,62:166-175
    [72] Lan J L, Lin Y H, Li G J, et al. High-temperature electrical transport behaviors of the layeredCa2Co2O5-based ceramics. Appl. Phys. Lett.,2010,96(19):192104
    [73] Popa M, Kakihana M. Synthesis of lanthanum cobaltite (LaCoO3) by the polymerizable complexroute. Solid State Ionics.2002,151(1-4):251-257
    [74] Bontempi E, Armelao L, Barreca D, et al. Structural characterization of sol-gel lanthanum cobaltitethin films. Cryst. Eng.,2002,5(3-4):291-298
    [75] Khalil M S. Sol-Gel Synthesis, X-Ray, infrared spectra and electrical conductivity oflanthanum/bariumcobaltite systems. Indian J. Chem. Sect A,2003,42(1):100-105
    [76] Baque L, Serquis A. Microstructuralcharacterization of La0.4Sr0.6Co0.8Fe0.2O3-δfilms deposited bydip coating. Appl. Surf. Sci.2007,254(1):213-218
    [77] Natile M M, Ugel E, Maccato C, et al. LaCoO3: Effect of synthesis conditions on properties andreactivity. Appl. Catal. B,2007,72(3-4):351-362
    [78] Krishnan V, Bottaro G, Gross S, et al. Structural evolution and effects of calcium doping onnanophasic LaCoO3powders prepared by non-alkoxidic sol-gel technique. J. Mater. Chem.,2005,15(20):2020-2027
    [79] Armelao L, Barreca D, Bottaro G. et al. Hybrid chemical vapor deposition/sol-gel route in thepreparation of nanophasic LaCoO3films. Chem. Mater.,2005,17(2):427-433
    [80] Yu H C, Fung K Z, Guo T C, et al. Syntheses of perovskite oxides nanoparticles La1-xSrxMO3-δ(M=Co and Cu) as anode electrocatalyst for direct methanol fuel cell. Electrochim. Acta,2004,50(2-3):811-816
    [81] Merino N A, Barbero B P, Cellier C, et al Effect of the calcium on the textural, structural andcatalytic properties of La1-xCaxCo1-yFeyO3perovskites. Catal. Lett.,2007,113(3-4):130-140
    [82] Kirchnerova J, Klvana D, Vaillancourt J, et al. Evaluation of some cobalt and nickel-basedperovskites prepared by freeze-drying as combustion catalysts. Catal. Lett.,1993,21(1-2):77-87
    [83] Kirchnerova J, Klvana D. Synthesis and characterization of perovskite catalysts. Solid State Ionics,1999123(1-4):307-317
    [84] Kingsley J J, Patil K C. A novel combustion proccss for the synthesis of fine particle aluminum andrelated oxide materials. Mater. Lett.,1998,6:427-432
    [85]刘伟,罗来涛,闵雯雯.有机燃料与氧化剂的化学计量比对La0.8Sr0.2CoO3催化剂性能的影响.石油化工,2007,36(11):1093-1098
    [86] Aruna S T, Muthuraman M, Patil K C. Studies on combustion synthesized LaMnO3-LaCoO3solidsolutions. Mater. Res. Bull.,2000,35(2):289-296
    [87] Armelao L, Bandoli G, Barreca D, et al. Synthesis and characterization of nanophasic LaCoO3powders. Surf. Interface Anal.,2002,34(1):112-115
    [88]林生岭,吴家建,印厚飞,等.复合氧化物LaxSr1-xFe1-yCoyO3的合成与表征.合成化学.2008,16(5):508-511
    [89]吴跃辉,罗来涛,刘伟.燃烧法合成大比表面钙钛矿复合氧化物研究.石油与天然气化工.2004,36(4):269-274
    [90] Berger D, van Landschoot N, Ionica C, et al. Synthesis of pure and doped lanthanum cobaltite bythe combustion method. J. Optoelectron. Adv. Mater.,2003,5(3):719-724
    [91] Kumar M, Srikanth S, Ravikumar B, et al. Synthesis of pure and Sr-doped LaGaO3, LaFeO3andLaCoO3and SrMg-doped LaGaO3for ITSOFC application using different wet chemical routes.Mater. Chem. Phys.,2009,113(2-3):803-815
    [92]黄海凤,唐伟,陈银飞,等. LaMO3(M=Co,Mn)钙钛矿型催化剂上VOCs催化燃烧的研究.中国稀土学报,2004,22:85-86
    [93]程继贵,石平,仲洪海,等.缓冲溶液法制备钴酸锶钐阴极材料及其性能.硅酸盐学报,2006,34(2):255-260
    [94] Czakkel O, Marthi K, Geissler E, et al.Influence of drying on the morphologyofresorcinolformaldehyde-based arbongels. Microporous Mesoporous Mater.,2005,86:124-133
    [95]赵志海,刘耀芳.铂锡重整催化剂再生干燥过程的研究.催化重整通讯,2000,4:34-36
    [96] Choudhary V R, Banerjee S, Uphade B S. Activation by hydrothermal treatment of low surfacearea ABO3-type perovskite oxide catalysts. Appl. Catal. A.,2000,197:183-186
    [97] Gedye R, Smith F, Westaway K, et al. The Use Of Microwave-Ovens For Rapid Organic-Synthesis.Tetrahedron Lett.,1986,27(3):279-282
    [98]高建峰刘亚飞刘杏芹,等.微波固相反应合成La1-xSrxCoO3阴极材料的研究.硅酸盐学报.2002,30:75-78
    [99] Farhadi S, Sepahvand S. Microwave-assisted solid-state decomposition of La[Co(CN)6]·5H2Oprecursor: A simple and fast route for the synthesis of single-phase perovskite-type LaCoO3nanoparticles. J. Alloys Compd.,2010,489:586-591
    [100] Prado-Gonjal J, Arevalo-Lopez A M, Moran E. Microwave-assisted synthesis: A fast and efficientroute to produce LaMO3(M=Al, Cr, Mn, Fe, Co) perovskite materials. Mater. Res. Bull.,2011,46:222-230
    [101] Martinez-Ortega F, Batiot-Dupeyrat C, Valderrama G, et al. Methane catalytic combustion onLa-based perovskite catalysts. C. R. Acad. Sci. Paris. Serie II C.,2001,4(1):49-55
    [102] Choudhary V R, Uphade B S, Pataskar S G. Low temperature complete combustion of methaneover Ag-doped LaFeO3and LaFe0.5Co0.5O3perovskite oxide catalysts. Fuel,1999,78:919-921
    [103] Merino N A, Barbero B P, Grange P. La1-xCaxCoO3perovskite-type oxides: preparation,characterization, stability, and catalytic potentiality for the total oxidation of propane, J. Catal.,2005,231:232-244
    [104] Tu HY, Takeda Y, Imanishi N, et al. Ln0.4Sr0.6Co0.8Fe0.2O3-)(Ln=La, Pr, Nd, Sm, Gd) for theelectrode in solid oxide fuel cells. Solid State Ionics,1999,117(3-4):277-281
    [105]陈永红,魏亦军,仲洪海,等. La0.5RE0.3Sr0.2FeO3-(RE=Nd, Ce, Sm)体系双稀土阴极材料的制备与电性能.物理化学学报,2005,21(12):1357-1362
    [106] Nakamura T, Misono M, Yoneda Y. Reduction-oxidation and catalytic properties ofperovskite-type mixed oxide catalysts (La1-XSrxCoO3). Chem. Lett.,1981,10(11):1589-1592
    [107] Seiyama T. Total oxidation of hydrocarbons on perovskite oxides. Catal. Rev-Sci. Eng.,1992,34:281-292
    [108] Taguchi H, Yamada S, Tabata K, et al. Surface characterization of LaCoO3synthesized usingcitric acid. Mater. Res. Bull.,2002,37(1):69-76
    [109] Fabbrini L, Rossetti I, Forni L. Effect of honeycomb supporting on activity of LaBO3-δperovskite-like catalysts for methane flameless combustion. Appl. Catal. B,2006,63:131-136
    [110] Takeda Y, Kanno R, Noda M, et al. Cathodic polarization phenomena of perovskite oxideelectrodes with stabilized zirconia. J. Electrochem. Soc.,1987,134(11):2656-2660
    [111] O’Connell M, Norman A K, Htittermann C F, et al. Catalytic oxidation overlanthanum—transition metal perovskite materials. Catal. Today,1999,47:123-132
    [112] Batis N H, Delichere P, Batis H. Physicochemical and catalytic properties in methane combustionof La1-xCaxMnO3-y(0    [113] Alifanti M, Auer R, Kirchnerova J, et al. Activity in methane combustion and sensitivity to sulfurpoisoning of La1-XCexMnl-yCoyO3perovskite oxides. Appl. Catal. B,2000,41:71-81
    [114] Cimino S, Lisi L, De Rossi S, et al. Methane combustion and CO oxidation on LaAL1-XMnxO3perovskite-type oxide solid solutions. Appl. Catal. B,2003,43(4):397-403
    [115] Gil A, Gandia L M, Korili S A. Effect of the temperature of calcination on the catalyticperformance of manganese-and samadum-manganese-based oxides in the complete oxidation ofacetone. Appl. Catal. A,2004,274:229-235
    [116] Seiyama T, Yamazoe N, Eguchi K. Characterization and activity of some mixed metal oxidecatalysts. Ind, Eng. Chem. Prod. Res. Dev.,1985,24:19-27
    [117] Arai H, Yamada T, Eguchi K, et al.Catalytic combustion of methane over various perovskite-typeoxides. Appl. Catal. B,1986,26(1-2):265-276
    [118] Lee S H, Lee J Y, Park Y M, et al. Complete oxidation of methane and CO at low temperatureover LaCoO3prepared by spray-freezing/freeze-drying method. Catal. Today,2006,117:376-381
    [119]宋崇林,沈美庆,王军,等.稀土钙钛矿型催化剂LaBO3对NOx催化性能及反应机理的研究(1)—催化剂的合成工艺及催化性能.燃烧科学与技术.1999,5(1):91-95
    [120] Shu J, Kaliaguine S. Well-dispersed perovskite-type oxidation catalysts. Appl. Catal. B.,1998,16(4): L303-L308
    [121]侯红霞,蒋政,康守方,等.天然气高温催化燃烧用催化剂失活的研究进展.精细石油化工进展.2004,5(4):14-20
    [122] Zarur A J, Hwu H H, Ying J Y. Reverse microemulsion-mediated synthesis and structuralevolution of barium hexaaluminate nanoparticles. Langmuir,2000,16(7):3042-3049
    [123] Nakamura T, Petzow G. Stability of the perovskite phase LaBO3(B=Cr, Mn, Fe, Co, Yi) in areducing atmosphere. Mater. Res. Bull.,1979,14(5):649-653
    [124] Baruwati B, Varma R S. Synthesis of N-Doped Nano TiO2Using Guanidine Nitrate: An ExcellentVisible Light Photocatalyst. J. Nanosci. Nanotechno.,2011,11(3):2036-2041
    [125] Selvin R, Hsu HL, Arul NS, et al. Comparison of Photo-Catalytic Efficiency of Various MetalOxide Photo-Catalysts for the Degradation of Methyl Orange. Sci. Adv. Mater.,2010,2(1):58-63
    [126] Voorhoeve R J H, Remeika J P, Johnson D W. Rare earth manganites: Catalysts with lowammonia yield in the reduction of nitrogen oxide. Science,1973,180(4081):62-64
    [127] Hughes M D, Xu Y J, Jenkins P, et al. Tunable gold catalysts for selective hydrocarbon oxidationunder mild conditions. Nature,2005,437(7062):1132-1135
    [128]王新葵,张万生,王爱琴. Au/Fe2O3/Al2O3催化剂上丙烯选择催化还原NO.催化学报,2008,29(6):503-505
    [129] Wang YD, Zhang HJ, He DN. Selective Catalytic Reduction of NO with Propylene overPd-ZrO2/Al2O3Catalysts. J. Inorg. Mater.,2011,26(3):311-316
    [130] Ley K L, Liu R X, Pu C. Methanol Oxidation on Single-Phase Pt-Ru-Os Ternary Alloys. J.Electrochem. Soc.1997,144(5):1543-1548
    [131]王文进,方奕文,郭锐华.纳米粒度金属氧化物催化剂制备方法的研究进展.工业催化,2006,14(5):1-8
    [132] Li Y B, Liu S B, Wang X G, et al. Activity Stability of Pt-Ru/C Doped with Eu for MethanolElectro-Catalytic Oxidation. Rare Metal Mater. Eng.,2011,40(3):466-469
    [133] Yajima T, Wakabayashi N, Uchida H, et al. Adsorbed water for the electro-oxidation of methanolat Pt-Ru alloy. Chem. Commun.,2003,828-829
    [134] Park K W, Ahn K S, Nah Y C, et al. Electrocatalytic enhancement of methanol oxidation atPt-WOxnanophase electrodes and in-situ observation of hydrogen spillover using electrochromism.J. Phys. Chem. B,2003,107:4352-4355
    [135] Okada T, Suzuki Y, Hirose T, et al. Electro-oxidation of methanol on platinum–organic metalcomplex mixed catalysts in acidic media. Chem. Commun.2001,2492-2493
    [136] Taraszewska J, Roslonek G. Electrocatalytic oxidation of methanol on a glassy carbon electrodemodified by nickel hydroxide formed by ex situ chemical precipitation. J. Electroanal. Chem.,1994,364:209-213
    [137] Van Effen R M, Evans D H. A study of aldehyde oxidation at glassy carbon, mercury, copper,silver, gold and nickel anodes. J. Electroanal. Chem.,1979,103:383-397
    [138] Abdel Rahim M A, Abdel Hameed R M, Khalil M W. Nickel as a catalyst for theelectro-oxidation of methanol in alkaline medium. J. Power Source,2004,134:160-169.
    [139] Kumar K S, Haridoss P, Seshadri S K. Synthesis and characterization of electrodeposited Ni-Pdalloy electrodes for methanol oxidation. Surf. Coat. Tech.,2008,202:1764-1770
    [140] Yu E H, Krewer U, Scott K. Principles and Materials Aspects of Direct Alkaline Alcohol FuelCells. Energies.,2010,3(8):1499-1528
    [141] Raghuveer V, Ravindimnathan K, Xanthopoulosc N, et a1. A rare earth cuprates aselectrocatalysts for methanol oxidation. Solid State Ionics,2001,140(3-4):263-274
    [142] Raghuveer V, Viswanathan B. Can La2-xSrxCuO4be used as anodes for direct methanol fuel cells?Fuel,2002,81:2191-2197
    [143] Mukundan R, Brosha E L, Garzon F H. Sulfur tolerant anodes for SOFCs. Electrochem.Solid-State Lett.,2004,7(1): A5-A7
    [144] Wendt H, Plzak V. Electrocatalytic and thermal-activation of anodic oxygen and cathodichydrogen evolution in alkaline water electrolysis. Electrochim. Acta,1983,28(1):27-34
    [145][9] Rigaku (2002). CrystalClear. Version1.35. Rigaku Corporation, Tokyo, Japan.
    [146][10] Sheldrick, G. M.(1997). SHELXL97and SHELXS97. University of G ttingen, Germany.
    [147]陈小明,蔡继文编著.单晶结构分析原理与实践.科学出版社,北京,2003
    [148]周玉,武高辉编.材料分析测试技术.哈尔滨工业大学出版社,1998
    [149] Lide D R. CRC Handbook of Chemistry and Physics,71sted., CRC Press, Inc.,1990~1991: P8-37
    [150] Hudson T A, Berry K J, Moubaraki B, et al. Citrate, in Collaboration with a Guanidinium Ion, asa Generator of Cubane-like Complexes with a Range of Metal Cations: Synthesis, Structures, andMagnetic Properties of [C(NHII2)3]8[(M)4(cit)4]8H2O. Inorg. Chem.,2006,45:3549-3556
    [151]蒋晓瑜,陈文哲.二维含镧链异核金属化合物的合成、结构和磁性研究.无机化学学报,2008,24(10):1650-1656
    [152] Murrie M, Teat S J, Stoeckli-Evans H, et al. Synthesis and characterization of a cobalt(II)single-molecule magnet. Angew Chem Int Ed.,2003,42:4653-4656
    [153] Kotsakis N, Raptopoulou C P, Tangoulis V, et al. Correlations of synthetic, spectroscopic,structural, and speciation studies in the biologically relevant cobalt(II)-citrate system: The tale ofthe first aqueous dinuclear cobalt(II)-citrate complex. Inorg. Chem.,2003,42:22-31
    [154] Chroma M, Pinkas J, Pakutinskiene I, et al. Processing and characterization of sol–gel fabricatedmixed metal aluminates. Ceram. Int.,2005,31:1123–1130.
    [155] Castro-Garcia S, Sanchez-Andujar M, Rey-Cabezudo C, et al. IR characterization of Ln2-xSrxCoO4(x1; Ln=La, Nd) oxides. J. Alloys Compd.,2001,323-324:710-713
    [156] Islam M S, Cherry M, Catlow C R A. Oxygen diffusion in LaMnO3and LaCoO3perovskite-typeoxides: A molecular dynamics Study. J. Solid State Chem.,1996,124(2):230-237
    [157] Berger D, Matei C, Papa F, et al. Pure and doped lanthanum cobaltites obtained by combustionmethod. Prog. Solid State Chem.,2007,35:183-191
    [158] Saines PJ, Kennedy BJ, Elcombe MM. Structural phase transitions and crystal chemistry of theseries Ba2LnB’O6(Ln=lanthanide and B’=Nb5+or Sb5+). J. Solid State Chem.,2007,180:401-409
    [159] Berger D, Fruth V, Jitaru I, et al. Synthesis and characterisation of Ln1-xSrxCoO3with largesurface area. Mater. Lett.,2004,58:2418-2422.
    [160]戴洪兴,何洪,李佩珩,等.稀土钙钛矿型氧化物催化剂的研究进展.中国稀土学报,2003,21(S2):1-15
    [161] Castro E B, Gervasi C A. Electrodeposited Ni-Co-oxide electrodes: characterization and kineticsof the oxygen evolution reaction. Int. J. Hydrogen Energy,2000,25:1163-1170
    [162] Zhang M L, Liu Z X. Supercapacitor Characteristics of Co(OH)2Synthesized by DepositionTransformation. Chinese J. Inorg. Chem.,2002(5):513-517
    [163] Brossard L. Oxygen evolution in30%KOH at70C on nickel anodically coated with COOOHCO3O4. J. Appl. Electrochem.,1991,21:612-618
    [164] Singh R N, Koenig J F, Poillerat G, et al. Electrochemical studies on protective thin Co3O4andNiCo2O4films prepared on titanium by spray pyrolysis for oxygen evolution. J. Electrochem. Soc.,1990,137:1408-1413.
    [165] Singh R N, Sharma T, Singh A, et al. Perovskite-type La2xSrxNiO4(0≤x≤1) as active anodematerials for methanol oxidation in alkaline solutions. Electrochim. Acta,2008,53:2322-2330
    [166] Hamann C H, Hamnett A, Vielstich W. Electrochemistry.2ndRevised. Weinheim: Wiley-Vch.2007
    [167] Lin S S Y, Kim D H, Engelhar M H, et al. Water-induced formation of cobalt oxides oversupported cobalt/ceria–zirconia catalysts under ethanol-steam conditions. J. Catalysis.,2010,273:229-235
    [168] Makshina E V, Zhilinskaya E A, Siffert S, et al. Nanostructured lanthanum cobaltate: oxidationand coordination states of Co atoms. J. Exp. Nanosci.,2010,5(5):427-437
    [169] Nkeng P, Poillerat G, Koenig J F. Characterization of spinel-type cobalt and nickel-oxidethin-films by X-Ray near grazing diffraction, transmission and reflectance spectroscopies, andcyclic voltammetry. J. Electrochem. Soc.,1995,142(6):1777-1783
    [170]张翀李瑞芳王贵昌,等.扶手椅形单壁碳纳米管环氧异构体的理论研究.高等学校化学学报,2004,25(3):535-38
    [171] Joo S H, Kwong K J, You D J. Pre-paration of high loading Pt nanoparticles on orderedmesoporous carbon with a controlled Pt size and its effects on oxygen reduction and methsnoloxidation reactions. Electrochim. Acta,2009,54(24):5746-5753
    [172] Yan Z X, Meng H, shi L, et al. Synthesis of mesoporous hollow carbon hemispheres as highlyefficient Pd electrocatalyst support for ethanol oxidation. Electrochem. Commun.,2010,12:689-692
    [173] Wu J, Hu F, Shen P K, et al. One-step preparation of pt on pretreated multiwalledcarbonnanotubes for methanol electrooxidation. Fuel Cells,2010,10(1):106–110
    [174] Yan Z X, He G Q, Zhang G G,et al. Pd nanoparticles supported on ultrahigh surface areahoneycomb-like carbon for alcohol electrooxidation. Int. J. Hydrogen. Energy,2010,5:3263-3269
    [175] Bykov Y V, Rybakov K I, Semenov V E. High-temperature microwave processing of materials.Phys. D: Appl Phys.,2004,34: R55-R75
    [176] Nissinen T, Valo T, Gasik M, et al. Microwave synthesis of catalyst spinel MnCo2O4for alkalinefuel cell. J. Power Source,2002,106:109-115
    [177] Boivin J C, Pirovano C, Nowogrocki G, et al. Electrode-electrolyte BIMEVOX system formoderate temperature oxygen separation. Solid State Ionics,1998,113:639-651
    [178] Murrie M, Teat SJ, Stoeckli-Evans H, et al. Synthesis and characterization of a cobalt(II)single-molecule magnet. Angew Chem Int Ed.,2003,42:4653-4656
    [179] Kotsakis N, Raptopoulou C P, Tangoulis V, et al. Correlations of synthetic, spectroscopic,structural, and speciation studies in the biologically relevant cobalt(II)-citrate system: The tale ofthe first aqueous dinuclear cobalt(II)-citrate complex. Inorg. Chem.,2003,42:22-31
    [180] Bhatt A S, Bhat D K, Tai C W, et al. Microwave-assisted synthesis and magnetic studies of cobaltoxide nanoparticles. Mater. Chem. Phys.,2011,125(3):347-350.
    [181] Wang J Q, Du G D, Zeng R, et al. Porous Co3O4nanoplatelets by self-supported formation aselectrode material for lithium-ion batteries. Electrochim. Acta,2010,55(16):4805-4811
    [182] Hoang L H, Hai P V, Hai N H, et al. The microwave-assisted synthesis and characterization ofZn1-xCoxO nanopowders. Mater. Lett.,2010,64(8):962-965
    [183] Pontinha M, Faty S, Walls M G, et al. Electronic structure of anodic oxide films formed on cobaltby cyclic voltammetry. Corros. Sci.,2006,48:2971-2986.
    [184] Singh R N, Tiwari S K, Singh S P, et al. Synthesis of (La, Sr)CoO3perovskite films via a sol-gelroute and their physicochemical and electrochemical surface characterization for anode applicationin alkaline water electrolysis. J. Chem. Soc., Faraday Trans.,1996,92:2593-2598
    [185] Briggs D, Seah M P. Practical Surface Analysis (Second Edition)-Auger and X-rayPhotoelectron Spectroscopy. New York: John Wiley&Sons.,1990,607
    [186]胡刚,于亚莉,张瑞峰. La1-xSrxCoO3的XPS研究Ⅳ. La1-xSrxCoO3的价态谱.催化学报,1990,(06):506-509
    [187]魏诠,崔巍,龙骧,等La1-xMxCoO3(M=Ca, Sr)表面状态的XPS研究.高等学校化学学报,1990,(11):1227-1231
    [188] Lyons M E G, Brandon M P. A comparative study of the oxygen evolution reaction on oxidisednickel, cobalt and iron electrodes in base. J. Electroanal. Chem.,2010,641:119-130
    [189] Wu H J, Ruan Q, Wang B H, et al. Preparation of Ru-Co-Ce electrode and its oxygen evolutionperformance. Rare Met. Mater. Eng.,2010,39:1111-1115
    [190] McAlpin J G, Surendranath Y, Dinca M, et al. EPR evidence for Co(IV) species produced duringwater oxidation at neutral pH. J. Am. Chem. Soc.,2010,132:6882-6883

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700