耐药Du145细胞致瘤特性及CD44和CD44~+细胞在其致瘤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     已有研究报道肿瘤干细胞(Cancer stem cells, CSCs)或肿瘤起始细胞对化疗天然耐药,或对化疗具有耐药性的肿瘤细胞表现出CSCs的表型特征。也有研究表明CD44+(α2β1hi)前列腺癌细胞含有高致瘤性和转移性的肿瘤干细胞,但是,是否这些肿瘤干细胞对化疗药物具有更强的抵抗力,以及是否在功能上参与前列腺癌的发展目前并不清楚。为了阐明这些重要的问题,我们开展了此项研究。
     目的:
     1.了解前列腺癌CSCs是否对化疗药物具有更强的抵抗力或长期化疗药物处理是否富集CSCs。
     2.从一个新的角度探讨CD44和/或CD44+的前列腺癌细胞在肿瘤发展中的作用。
     3.为临床有效治疗前列腺癌提供新思路。
     方法:
     1.选择含有一部分CD44+细胞的前列腺癌细胞株Du145,用两种临床药物etoposide和paclitaxel,以及三种实验药物stauro sporine、WP1102和WP1103(两种新的paclitaxel类似药)亚致死剂量长期处理该肿瘤细胞株,IC50实验用于检验这些药物选择的细胞是否真正具有耐药性和交叉耐药性。
     2.将建立的耐药细胞株移植到NOD/SCID小鼠皮下和前列腺,观察肿瘤发展,以评价耐药Du145细胞致瘤和转移能力。
     3.细胞增殖实验、BrdU掺入实验和克隆形成实验用于评价细胞的增殖速度及克隆效率;Western blotting和免疫荧光染色用于分析各种蛋白的表达水平。
     4.采用shRNA干扰技术使Du145细胞中CD44表达下降,再通过肿瘤发展实验评价CD44在前列腺癌发展中的功能性作用。
     结果:
     通过亚致死剂量的不同药物长期处理肿瘤细胞株,成功建立了各种类型的耐药Du145肿瘤细胞模型。耐药的Du145细胞移植到NOD/SCID小鼠皮下和前列腺,Du145-Paclitaxel(即对paclitaxel耐药的Du145细胞)和Du145-WP1103(即对WP1103耐药的Du145细胞)细胞致瘤能力完全丧失,Du145-VP16(即对VP16耐药的Du145细胞)、Du145-STS(即对STS耐药的Du145细胞)和Du145-WP1102(即对WP1102耐药的Du145细胞)三种耐药细胞致瘤和转移能力表现为不同程度的下降。通过该方法选择的耐药DLD1结肠癌细胞和一部分耐药UC14细胞也表现为致瘤能力下降。
     体外实验发现耐药Du145细胞增殖减慢,克隆效率下降。进一步分子机制研究发现Du145-Paclitaxel和Du145-WP1103细胞P27和P21表达明显增加,抗凋亡蛋白BCL-2表达下降,而其它三种类型耐药细胞P27和BCL-2表达均有所增加;Western blotting和免疫荧光染色结果显示Du145-Paclitaxel和Du145-WP1103细胞CD44无表达和/或CD44+细胞缺乏,Du145-VP16和Du145-STS细胞CD44表达减少和/或CD44+细胞减少,Du145-WP1102细胞CD44表达和CD44+细胞比例与对照Du145细胞无明显差别,但更多细胞CD44为弱阳性表达。有趣的是,CD44+细胞减少的程度与细胞再生肿瘤的能力密切相关,肿瘤细胞中CD44+细胞越少,其致瘤和转移能力越低。CD44 Knockdown试验进一步证实了Du145细胞中CD44表达下降可抑制肿瘤发生和发展。
     结论:
     1.一些耐药肿瘤细胞可能不一定富集CSCs或甚至缺乏CSCs。
     2.CD44和/或CD44+细胞与前列腺癌发展密切相关,耐药Du145细胞中CD44表达越低和/或CD44+细胞越少,致瘤和转移能力越低。
     3.CD44可作为临床开发治疗前列腺癌药物时的靶标参考,并应注意提高药物在体内到达CD44+细胞的效率。
Background:
     Cancer stem cells (CSCs) or tumor-initiating cells have been reported to be resistant to therapeutics and therapy-resistant cancer cells have been shown to manifest phenotypic properties of CSCs. We have shown that CD44+(α2β1hi) prostate cancer cell population harbors highly tumorigenic and metastatic stem/progenitor cells, but whether these stem-like cancer cells are more resistant to chemotherapy drugs and are functionally involved in prostate cancer development remains unanswered. To address these important questions, we conducted the study.
     Objectives:
     1. To understand whether stem-like prostate cancer cells are more resistant to chemotherapy drugs or whether chronic drugs treatment enrich stem-like prostate cancer cells.
     2. To determine the functional roles of CD44 and/or CD44+cells in prostate cancer development.
     3. To provide new sight on efficiently treating prostate cancer in clinical.
     Methods:
     1. We chronically treated Du145 prostate cancer cells, which have a subset of CD44+ cells, with two clinically relevant drugs, etoposide and paclitaxel, and three experimental drugs, i.e., staurosporine and two novel paclitaxel analogs WP1102 and WP1103. IC50 assay was used to determine whether the drug-tolerant Du145 cells were actually drug-resistant to selecting drugs and also cross-resistant to non-selecting drugs.
     2. The limiting-dilution tumor experiments in NOD/SCID mice by injecting subcutaneously (s.c) or orthotopically in the dorsal prostate (DP) were carried out to evaluate the tumorigenicity and metastaticity of drug-tolerant cells.
     3. Proliferation assay and BrdU incorporation assay were used to measure cell proliferation. The clonal assay was carried out to measure the ability of cells, at the single-cell level, to founder a self-renewing clone. Western blotting and immunofluorescence staining experiments were carried out to measure the protein expressions including P27, P21, BCL-2, CD44, etc.
     4. To prospectively determine whether CD44 is causally involved in prostate cancer cell tumorigenicity, we infected parental Du145 cells with a lentiviral vector encoding CD44 shRNA (CD44-shRNA) or a non-silencing shRNA control vector (NS-shRNA). Then these cells were implanted either subcutaneously or orthotopically in the DP.
     Results:
     Chronic sublethal drug treatment led to generation of drug-tolerant and cross-resistant cancer cells. Surprisingly, when the drug-tolerant cells were implanted, either subcutaneously or orthotopically, into NOD/SCID mice, they showed much reduced tumorigenicity or were even non-tumorigenic. Drug-tolerant DLD1 colon cancer cells and some UC14 bladder cancer cells selected by this protocol also displayed reduced tumorigenicity.
     Drug-tolerant Du145 cells demonstrated low proliferative and clonogenic potential. Consistent with reduced cell proliferation, drug-tolerant Du145 cells showed increased levels of two important cyclin-dependent kinase inhibitors, p21 and p27, especially in Dul45-Paclitaxel and Du145-WP1103 cells, the two cell lines that completely lacked tumorigenicity. The p27 levels were also elevated in all three other drug-tolerant Du145 cell lines. In contrast to p21 and p27, Bcl-2, an anti-apoptotic protein, showed less again in the two non-tumorigenic Du145 lines, i.e., Du145-Paclitaxel and Du145-WP1103.
     Western blotting and immunofluorescence staining experiments showed that both Du145-Paclitaxel and Du145-WP1103 cultures completely lacked CD44 and/or CD44+ cells. Du145-VP16 and Du145-STS cultures also showed reduced CD44 protein levels and/or numbers of CD44+ cells. By contrast, Du145-WP1102 cells, which retained some tumor-initiating capacity, showed similar levels of CD44 protein expression to and slightly more CD44+ (many faintly positive) cells than parental Du145 cultures. The extent to which CD44 protein and/or CD44+ cells were ablated in drug-tolerant Du145 cultures appeared to correlate well with the level of reduction in their tumorigenic potential. Prospective knockdown of CD44 in Du145 cells inhibited tumor regeneration.
     Conclusions:
     Altogether, our studies reveal that:
     1. Some drug-resistant cancer cells are not necessarily, and may actually be depleted of, CSCs;
     2. CD44 and/or CD44+ cancer cells play causal roles in tumor regeneration;
     3. In exploring the new drugs to treat prostate cancer, it is possible to choose CD44+ prostate cancer cells as therapeutic target, and especially, efficient delivery of drugs in vivo should be considered to improve anti-tumor effects. V
引文
[1]. Landis SH, Murray T, Bolden S, et al. Cancer statisties. CA Cancer J Clin 1998; 48(1):6-29.
    [2]. 宋恕平,盛立军,任国华.前列腺癌的诊治进展.中国处方药2008;6:80-81.
    [3]. 顾方六.前列腺癌.见:顾方六主编.现代前列腺病学.北京:人民卫生出版社,2002;275-255.
    [4]. 周四维,祖雄兵,宁坷平.重视激素难治性前列腺癌的化学治疗.现代泌尿生殖肿瘤杂志2009;1(4):193-196.
    [5]. Ntais C, Polyearpou A, Tsatsonlis A, et al. Molecular epidemiology of prostate cancer:androgens and polymorphisma in androgen-related genes. Endoerinol 2003; 149(6):469-477.
    [6]. Crawford ED, Rosenblum M, Ziada AM, et al. overview:hormone refractory prostate cancer. Urology 1999; 54(6ASuppl):1-7.
    [7]. Cheville JC, Tindall D, Boelter C, et al. Metastatic prostate carcinoma to bone: clinical and pathologic feathers associated with cancer-specific survival. Cancer 2002; 95(5):1028-1036.
    [8]. Visvader, JE, Lindeman, GJ. Cancer stem cells in solid tumours:accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8:755-768.
    [9]. Bonnet D, Diek IE. Human acute myeloid leukemia is organized as a hierarchy that origination from a primitive hematopoietic cell. Nature Med 1997; 3(7): 730-737.
    [10]. George AA, Franklin J, Kerkof K, et al. Detection of leukemic cells in the CD34+CD38- bone marrow progenitor population in children with acute lymphoblastic leukemia. Blood 2001; 97(12):3925-3930.
    [11]. Miyamoto T, Weissman IL, Akashi K. AMLI/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal transloeation. Proc Natl Acid Sci USA 2000; 97(13):7521-7526.
    [12]. Dalmay T, EdwardsDR. MicroRNAs and the hallmarks of cancer. Oncogene 2006; 25(46):6170-6175.
    [13]. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumor initiating cells. Nature 2004; 432:396-401.
    [14]. Suva ML, Riggi N, Stehle JC, et al. Identification of cancer stem cells in Ewing's sarcoma. Cancer Res 2009; 69:1776-1781.
    [15]. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100:3983-3988.
    [16]. Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1:555-567.
    [17]. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445:106-110.
    [18]. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445:111-115.
    [19]. Todaro M, Alea MP, Di Stefano AB, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 2007; 1: 389-402.
    [20]. Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104:10 158-10 163.
    [21]. Du L, Wang H, He L, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 2008; 14:6751-6760.
    [22]. Chu P, Clanton DJ, Snipas TS, et al. Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 2009; 124:1312-1321.
    [23]. Huang EH, Hynes MJ, Zhang T, et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009; 69:3382-3389.
    [24]. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67:1030-1037.
    [25]. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1:313-323.
    [26]. Ma S, Chan KW, Lee TK, et al. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 2008; 6:1146-1153.
    [27]. Yang ZF, Ho DW, Ng MN, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 2008; 13:153-166.
    [28]. Yamashita T, Ji J, Budhu A, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 2009; 136:1012-1024.
    [29]. Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 2009; 27:1006-1020.
    [30]. Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008; 15:504-514.
    [31]. Jiang F, Qiu Q, Khanna A, et al. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res 2009; 7:330-338.
    [32]. Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007; 104:973-978.
    [33]. Bussolati B, Bruno S, Grange C, et al. Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J.2008; 22:3696-3705.
    [34]. Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 2008; 68:4311-4 320.
    [35]. Alvero AB, Chen R, Fu HH, et al. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 2009; 8:158-166.
    [36]. Collins AT, Habib FK, Maitland NJ, et al. Identification and isolation of human prostate epithelial stem cells based on alpha (2) beta (1)-integrin expression. J Cel 1 Sci 2001; 114:3865-3872.
    [37]. Bhatt RI, Brown MD, Hart CA, et al. Novel method for the isolation and characterisation of the putative prostatic stem cell. Cytometry A 2003; 54 (2): 89-99.
    [38]. Liu AY, True LD, La Tray L, et al. Analysis and sorting of prostate cancer cell types by flow cytometry. The Prostate 1999; 40:192-199.
    [39]. Friedrichs K, Franke F, Lisboa BW, et al. CD44 isoforms correlate with cellular differentiation but not with prognosis in human breast cancer. Cancer Res 1995; 55 (22):5424-433.
    [40]. Gunthert U, Hofmann M, Rudy W, et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 1991; 65 (1):13-24.
    [41]. Woodman AC, Sugiyama M, Yoshida K, et al. Analysis of anomalous CD44 gene expression in human breast, bladder, and colon cancer and correlation of observed mRNA and protein isoforms. Am J Pathol 1996; 149 (5):1519-1530.
    [42]. Patrawala L, Calhoun T, Schneider2Broussard R, et al.Highly purified CD44+ prostate cancer cell s f rom xenograft human tumors are enriched in t umorigenic and metastatic progenitor cells. Oncogene 2006; 25:1696-1708.
    [43]. Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65:10946-10951.
    [44]. Jiang X, Zhao Y, Smith C, et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007; 21:926-935.
    [45]. Matsui W, Wang Q, Barber JP, et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008; 68:190-197.
    [46]. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444:756-760.
    [47]. Yu F, Yao H, Zhu P, et al. let-7 regulates self-renewal and tumorigenicity of breast cancer cells. Cell 2007; 131:1109-1123.
    [48]. Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100:672-679.
    [49]. Shafee N, Smith CR, Wei S, et al. Cancer stem cells contribute to cisplatin resistance in Brcal/p53-mediated mouse mammary tumors. Cancer Res 2008; 68: 3243-3250.
    [50]. Dallas NA, Xia L, Fan F, et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-Ⅰ receptor inhibition. Cancer Res 2009; 69:1951-1957.
    [51]. Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008; 27:1749-1758.
    [52]. Weisent hal LM, Lippman ME. Clonogenic and nonclonogenic in vitro chemosensitivity assays. Cancer Treat Rep 1985; 69 (6):615-632.
    [53]. Jeter C, Badeaux M, Choy G, et al. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 2009; 27:993-1005.
    [54]. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2 and ABCG2cancer cells are similarly tumorigenic. Cancer Res 2005; 65:6207-6219.
    [55]. Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG. Hierarchical organization of prostate cancer cells in xenograft tumors:the CD44 α2β1+ cell population is enriched in tumor-initiating cells. Cancer Res 2007; 67:6796-6805.
    [56]. Li HW, Chen X, Calhoun-Davis T, Claypool K, Tang DG. PC3 Human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res 2008; 68:1820-1825.
    [57]. Beier D, Rohrl S, Pillai DR, et al. Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res 2008; 68:5706-5715.
    [58]. Bao S, Wu Q, Li Z, et al. Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 2008; 68:6043-6048.
    [59]. Moserle L, Indraccolo S, Ghisi M, et al. The side population of ovarian cancer cells is a primary target of IFN-alpha antitumor effects. Cancer Res 2008; 68:5 658-5668.
    [60]. Todaro M, D'Asaro M, Caccamo N, et al. Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes. J Immunol 2009; 182:7287-7296.
    [61]. Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138:645-659.
    [62]. Huss WJ, Gray DR, Greenberg NM, et al. Breast cancer resistance protein-mediated efflux of androgen in putative benign and malignant prostate stem cells. Cancer Res 2005; 65:6640-6650.
    [63]. Miki J, Furusato B, Li H. et al. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 2007; 67:3153-3161.
    [64]. Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65:10946-10951.
    [65]. Vander Griend DJ, Karthaus WL, Dalrymple S, et al. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res 2008; 68:9703-9711.
    [66]. Tang DG, Patrawala L, Calhoun T, et al. Prostate cancer stem/progenitor cells: Identification, characterization, and implications. Mol Carcinog 2007; 46:1-14.
    [67]. Gu G, Yuan J, Wills M, Kasper S. Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 2007; 67: 4807-4815.
    [68]. Bhatia B, Jiang M, Suraneni M, et al. Critical and distinct roles of p16 and telomerase in regulating the proliferative lifespan of normal human prostate epithelial progenitor cells. J Biol Chem.2008; 283:27 957-27 972.
    [69]. Auzenne E, Ghosh SC, Khodadadian M, et al. Hyaluronic acid-paclitaxel: antitumor efficacy against CD44+ human ovarian carcinoma xenografts. Neoplasia 2007; 9:479-486.
    [70]. Krause DS, Lazarides K, von Andrian UH, Van Etten RA. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12:1 175-1 180.
    [71]. Jin L, Hope KJ, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12:1 167-1 174.
    [72]. Strobel T, Swanson L, Cannistra SA. In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice:A novel role for CD44 in the process of peritoneal implantation. Cancer Res 1997; 57:1 228-1 232.
    [1]. Luzzi KJ, MacDonald IC, Schmidt EE, et al. Multistep nature of metastatic inefficiency:dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. The American Journal of Pathology 1998; 153: 865-873.
    [2]. Spillane JB, Henderson MA. Cancer stem cells:a review. ANZ J Surg 2007; 77: 464-468.
    [3]. Li F, Tiede B, Massague J, Kang Y. Beyond tumorigenesis:cancer stem cells in metastasis. Cell Res 2007; 17:3-14.
    [4]. Vaidya JS. An alternative model of cancer cell growth and metastasis. Int J Surg 2007; 5:73-75.
    [5]. Kucia M, Ratajczak MZ. Stem cells as a two edged sword--from regeneration to tumor formation. J Physiol Pharmacol 2006; 57 Suppl 7:5-16.
    [6]. Allan AL, Vantyghem SA, Tuck AB, Chambers AF. Tumor dormancy and cancer stem cells:implications for the biology and treatment of breast cancer metastasis. Breast Dis 2006; 26:87-98.
    [7]. Holmgren L, O'Reilly MS, Folkman J. Dormancy of micrometastases:balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995; 1:149-153.
    [8]. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2:563-572.
    [9]. Luzzi KJ, MacDonald IC, Schmidt EE, et al. Multistep nature of metastatic inefficiency:dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 1998; 153:865-873.
    [10]. Raff M. Adult stem cell plasticity:fact or artifact? Annu Rev Cell Dev Biol 2003; 19:1-22.
    [11]. Passegue E, Wagers AJ. Regulating quiescence:new insights into hematopoietic stem cell biology. Dev Cell 2006; 10:415-417.
    [12]. Horsley V, Aliprantis AO, Polak L, et al. NFATcl balances quiescence and proliferation of skin stem cells. Cell 2008; 132:299-310.
    [13]. Tumbar T, Guasch T, Greco V, et al. Defining the epithelial stem cell niche in skin. Science 2004; 303:359-363.
    [14]. Morrison SJ, Spradling AC. Stem cells and niches:mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132:598-611.
    [15]. Furth J et al. The transmission of leukaemia of mice with a single cell. Am J. Cancer 1937; 31:276-282.
    [16]. Bruce WR, Van Der Gaag H. A Quantitative Assay for the Number of Murine Lymphoma Cells Capable of Proliferation in Vivo. Nature 1963; 199:79-80.
    [17]. Becker AJ, Mc CE, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 1963; 197: 452-454.
    [18]. Buick RN, Till JE, McCulloch EA. Colony assay for proliferative blast cells circulating in myeloblastic leukaemia. Lancet 1977; 1:862-863.
    [19]. Raftopoulou M. Cancer stem cells:the needle in the haystack. http://www.nature.com/milestones/milecancer/full/milecancer06.html 2006.
    [20]. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367:645-648.
    [21]. Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells--perspectives on current status and future directions:AACR Workshop on cancer stem cells. Cancer Res 2006; 66:9339-9344.
    [22]. Joseph NM, Mosher JT, Buchstaller J, et al. The loss of Nfl transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell 2008; 13:129-140.
    [23]. Zheng H, Chang L, Patel N, et al. Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer Cell 2008; 13:117-128.
    [24]. Kim CF, Dirks PB. Cancer and stem cell biology:how tightly intertwined? Cell Stem Cell 2008; 3:147-150.
    [25]. Tang DG, patrawala L, calhoun T, et al. Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 2007; 46:1-14.
    [26]. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003; 3:895-902.
    [27]. Mazurier F, Gan OI, McKenzie JL, et al. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 2004; 103:545-552.
    [28]. Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449:1003-1007.
    [29]. Patrawala L, Calhoun T, schneider-Broussard R, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 2005; 65:6207-6219.
    [30]. Clarke RB, Spence K, Anderson E, et al. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 2005; 277: 443-456.
    [31]. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A 2004; 101: 781-786.
    [32]. Hadnagy A, Gaboury L, Beaulieu R, Balicki D. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 2006; 312:3 701-3 710.
    [33]. Ho MM, Ng AV, Lam S, Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007; 67:4 827-4 833.
    [34]. Fang D, Nguyen TK, Leishear K, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005; 65:9328-9337.
    [35]. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature 2004; 432:396-401.
    [36]. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors:stem cells and their niche. Cell 2004; 116:769-778.
    [37]. Clarke RB, Anderson E, Howell A, Potten CS. Regulation of human breast epithelial stem cells. Cell Prolif 2003; 36 Suppl 1:45-58.
    [38]. Patrawala L, Calhoun T, schneider-Broussard R, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006; 25:1696-1708.
    [39]. Yu F, Yao HR, Zhu PC, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007; 131: 1 109-1 123.
    [40]. Kiel MJ, He SH, Ashkenazi R, et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 2007; 449: 238-242.
    [41]. Szotek PP, Chang HL, Brennand K, et al. Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proc Natl Acad Sci U S A 2008; 105:12 469-12 473.
    [42]. Barrandon Y, Green H. Cell size as a determinant of the clone-forming ability of human keratinocytes. Proc Natl Acad Sci U S A 1985; 82:5390-5394.
    [43]. Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A 1987; 84:2302-2306.
    [44]. Locke M, Heywood M, Fawell S, Mackenzie IC. Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res 2005; 65:8944-8950.
    [45]. Li H, Chen X, Calhoun-Davis T, et al. PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res 2008; 68:1 820-1825.
    [46]. Baguley BC. Tumor stem cell niches:a new functional framework for the action of anticancer drugs. Recent Patents Anticancer Drug Discov 2006; 1:121-127.
    [47]. Trumpp A, Wiestler OD. Mechanisms of Disease:cancer stem cells--targeting the evil twin. Nat Clin Pract Oncol 2008; 5:337-347.
    [48]. Arai F, Ohmura M, Sato H, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149-161.
    [49]. Zhang J, Niu Ch, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425:836-841.
    [50]. Kaplan RN, Psaila B, Lyden D. Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med 2007; 13:72-81.
    [51]. Li L, Xie T. Stem cell niche:structure and function. Annu Rev Cell Dev Biol 2005; 21:605-631.
    [52]. Sipkins DA, Wei X, Wu JW, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005; 435:969-973.
    [53]. Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11:69-82.
    [54]. Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006; 66:7 843-7848.
    [55]. Croker AK, Allan AL. Cancer stem cells:implications for the progression and treatment of metastatic disease. J Cell Mol Med 2008; 12:374-390.
    [56]. Li L, Neaves WB. Normal stem cells and cancer stem cells:the niche matters. Cancer Res 2006; 66:4553-4557.
    [57]. Wicha MS, Liu S, Dontu G. Cancer stem cells:an old idea--a paradigm shift. Cancer Res 2006; 66:1 883-1 890.
    [58]. Raguz S, Yague E. Resistance to chemotherapy:new treatments and novel insights into an old problem. Br J Cancer 2008; 99:387-391.
    [59]. Sanchez-Garcia I, Vicente-Duenas C, Cobaleda C. The theoretical basis of cancer-stem-cell-based therapeutics of cancer:can it be put into practice? Bioessays 2007; 29:1 269-1 280.
    [60]. Szakacs G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006; 5:219-234.
    [61]. Chapuy B, Koch R, Radunski U, et al. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia 2008; 22:1 576-1 586.
    [62]. Coelho AC, Messier N, Ouellette M, Cotrim PC. Role of the ABC transporter PRP1 (ABCC7) in pentamidine resistance in Leishmania amastigotes. Antimicrob Agents Chemother 2007; 51:3030-3032.
    [63]. de Jonge-Peeters SD, Kuipers F, de Vries EG, Vellenga E. ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance. Crit Rev Oncol Hematol 2007; 62:214-226.
    [64]. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316:1039-1043.
    [65]. Weisberg E, Manley PW, Cowan-Jacob SW, et al. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 2007; 7:345-356.
    [66]. Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2002; 2:101-112.
    [67]. Hu C, Li H, Zhu Z, et al. Analysis of ABCG2 expression and side population identifies intrinsic drug efflux in the HCC cell line MHCC-97L and its modulation by Akt signaling. Carcinogenesis 2008.
    [68]. Loebinger MR, Giangreco A, Groot KR, et al. Squamous cell cancers contain a side population of stem-like cells that are made chemosensitive by ABC transporter blockade. Br J Cancer 2008; 98:380-387.
    [69]. Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrpl/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7:1 028-1 034.
    [70]. Gutova M, Najbauer J, Gevorgyan A, et al. Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS ONE 2007; 2:e243.
    [71]. Frank NY, Margaryan A, Huang Y, et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 2005; 65:4 320-4333.
    [72]. Wang S, Yang D, Lippman ME. Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. Semin Oncol 2003; 30:133-142.
    [73]. Todaro M, Alea MP, Di Stefano AB, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 2007; 1: 389-402.
    [74]. Cairns J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc Natl Acad Sci U S A 2002; 99:10 567-10 570.
    [75]. Potten CS, Owen G, Booth D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 2002; 115:2381-2388.
    [76]. Park Y, Gerson SL. DNA repair defects in stem cell function and aging. Annu Rev Med 2005; 56:495-508.
    [77]. Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006; 98:1777-1785.
    [78]. Bao S, Wu Q, Mclendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444:756-760.
    [79]. Shafee N, Smith CR, Wei S, et al. Cancer stem cells contribute to cisplatin resistance in Brcal/p53-mediated mouse mammary tumors. Cancer Res 2008; 68: 3 243-3 250.
    [80]. Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD 133+ cancer stem cells in glioblastoma. Mol Cancer 2006; 5:67.
    [81]. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5:275-284.
    [82]. Shipitsin M, Polyak K. The cancer stem cell hypothesis:in search of definitions, markers, and relevance. Lab Invest 2008; 88:459-463.
    [83]. Modok S, Mellor HR, Callaghan R. Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Curr Opin Pharmacol 2006; 6:350-354.
    [84]. Pusztai L, Wagner P, Ibrahim N, et al. Phase Ⅱ study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer 2005; 104:682-691.
    [85]. Wang J, Guo L,Chen L, et al. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 2007; 67:3 716-3 724.
    [86]. Chen JS, Pardo FS, Wang-Rodriguez J, et al. EGFR regulates the side population in head and neck squamous cell carcinoma. Laryngoscope 2006; 116:401-406.
    [87]. Karhadkar SS, Bova GS, Abdallah N, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004; 431:707-712.
    [88]. Fan X, Matsui W, Khaki L, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006; 66:7 445-7452.
    [89]. Peacock CD, Wang Q, Gesell GS, et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci U S A 2007; 104: 4048-4053.
    [90]. Sims-Mourtada J, Izzo JG, Ajani J, Chao KS. Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene 2007; 26:5674-5679.
    [91]. Clement V,Sanchez P, Tribolet ND, et al. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17:165-172.
    [92]. Finkel E. The mitochondrion:is it central to apoptosis? Science 2001; 292: 624-626.
    [93]. Papadopoulos V, Baraldi M, R.Guilarte T, et al. Translocator protein (18kDa):new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 2006; 27:402-409.
    [94]. Papadopoulos K. Targeting the Bcl-2 family in cancer therapy. Semin Oncol 2006; 33:449-456.
    [95]. Chelli B, Lena A, Vanacore R, et al. Peripheral benzodiazepine receptor ligands: mitochondrial transmembrane potential depolarization and apoptosis induction in rat C6 glioma cells. Biochem Pharmacol 2004; 68:125-134.
    [96]. Chelli B, Rossi L, Da Pozzo E, et al. PIGA (N,N-Di-n-butyl-5-chloro-2-(4-chlorophenyl) indol-3- ylglyoxylamide), a new mitochondrial benzodiazepine-receptor ligand, induces apoptosis in C6 glioma cells. Chembiochem 2005; 6:1 082-1088.
    [97]. Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007; 7:834-846.
    [98]. Jorgensen HG, Copland M, Allan EK, et al. Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate. Clin Cancer Res 2006; 12:626-633.
    [99]. Aguirre-Ghiso JA. The problem of cancer dormancy:understanding the basic mechanisms and identifying therapeutic opportunities. Cell Cycle 2006; 5:1 740-1 743.
    [100]. Ranganathan AC, Adam AP, Aguirre-Ghiso JA. Opposing roles of mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle 2006; 5: 1799-1807.
    [101]. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5:738-743.
    [102]. Lo Coco F, Nervi C, Avvisati G, Mandelli F. Acute promyelocytic leukemia:a curable disease. Leukemia 1998; 12:1 866-1 880.
    [103]. Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 2006; 444: 761-765.
    [104]. Leszczyniecka M, Robertsa T, Dentd P, et al. Differentiation therapy of human cancer:basic science and clinical applications. Pharmacol Ther 2001; 90: 105-156.
    [105]. Sell S. Cancer stem cells and differentiation therapy. Tumour Biol 2006; 27: 59-70.
    [106]. Ito K, Hirao A, Arai F, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 2006; 12:446-451.
    [107]. Liu Y, Liu R, Mao SC, et al. Molecular-Targeted Antitumor Agents.19. Furospongolide from a Marine Lendenfeldia sp. Sponge Inhibits Hypoxia-Inducible Factor-1 Activation in Breast Tumor Cells. J Nat Prod 2008.
    [108]. Greenberger LM, Horak ID, Filpula D, et al. A RNA antagonist of hypoxia-inducible factor-1{alpha}, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther 2008.
    [109]. Kiel MJ, Yilmaz O, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121:1 109-1 121.
    [110]. Folkman J. Angiogenesis:an organizing principle for drug discovery? Nat Rev Drug Discov 2007; 6:273-286.
    [111]. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350:2335-2342.
    [112]. Vredenburgh JJ, Desjardins A, herndon JE, et al. Phase Ⅱ trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007; 13:1253-1259.
    [113]. Kopp HG, Ramos CA, Rafii S. Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol 2006; 13:175-181.
    [114]. Moreira IS, Fernandes PA, Ramos MJ. Vascular endothelial growth factor (VEGF) inhibition--a critical review. Anticancer Agents Med Chem 2007; 7:223-245.
    [115]. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001; 7:1 194-1 201.
    [116]. Davidoff AM, Ng CY, Brown P, et al. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res 2001; 7:2870-2879.
    [117]. Jain RK. Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy. Science 2005; 307:58-62.
    [118]. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006; 6:93-106.
    [119]. Jin L, Hope KJ, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12:1 167-1 174.
    [120]. Draffin JE, Mcfarlane S, Hill A, et al. CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 2004; 64:5702-5711.
    [121]. Sneddon JB, Werb Z. Location, location, location:the cancer stem cell niche. Cell Stem Cell 2007; 1:607-611.
    [122]. Weijzen S, Rizzo P, Braid M, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 2002; 8:979-986.
    [123]. Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer 2005; 5:423-435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700