炸药爆炸冲击合成氮化碳及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用炸药爆炸产生的冲击波直接作用于反应前驱体的方法对氮化碳的合成进行了系统的研究。对爆炸冲击波作用下氮化碳的微观合成机理进行了理论分析;实验研究了C2H4N4、CH3N5、CI4分别作为反应前驱体主要成分对氮化碳合成效果的影响;研究了前驱体中辅助N源对合成效果的影响;探讨了Cu粉在前驱体中延长压力、温度的作用机理。研究了液相氧化和气相氧化相结合的氮化碳提纯方法,并对提纯过程中杂质的去除机理进行了探讨。详细研究了冲击波压力、水保护介质、约束底座的强度和密度对氮化碳合成收得率的影响规律;通过具有强腐蚀性的混酸研究了氮化碳在常温和高温条件下的耐腐蚀性;研究了空气介质中氮化碳的热稳定性,以及在不同温度条件下内部结构的变化规律。利用Materials Studio软件分别模拟了α-C3N4和β-C3N4两种氮化碳结构的晶胞组成及XRD图谱,分析比较了理论模拟与实测图谱的差异及原因。通过XRD、FTIR、SEM、EDS、XPS等手段对氮化碳的物相组成、显微结构、元素比例及键合状态进行了表征,用TG-DTA分析了氮化碳的热稳定性。具体研究结果如下:
     利用冲击波引发物质相变的机理,分析得出氮化碳的合成机理。在一定强度的冲击波能量作用下,有机前驱体中含有的C=N和C≡N被打开,然后重组后形成C—N;无机前驱体中含有的C、N原子在经过瞬时高压压缩后,C、N原子的外层电子处于sp3、sp2高活性态,进而提高了C—N成键能力。
     采用DYNA程序建立了空气介质中炸药爆炸冲击及有机玻璃衰减理论模型,模拟了密度为1.604g/cm3的RDX和密度为1.800 g/cm3的HMX炸药柱的爆炸过程;计算模拟了两种炸药爆炸冲击波经过不同厚度有机玻璃板衰减后的冲击波压力及冲击波速度;通过模拟得到的冲击波压力及冲击波速度,计算了相应条件下的冲击波温度,为进一步的实验研究提供了理论依据。
     经过17.28 GPa冲击波作用后,以C2H4N4、CH3N5、CI4为主要成分的反应前驱体得到的氮化碳中C/N分别为1:0.75、1:2.98、1:1.02。CH3N5为主要成分的前驱体发生反应后,观测到了线度为2μm的六边β-C3N4晶粒。同时在合成的目标产物中发现了非晶SiO2、C3N4晶间相及金属硅酸盐共同构成的球形团聚体。
     不同前驱体方案经过17.28 GPa冲击波作用后,XRD图谱均显示出α-C3N4、β-C3N和石墨相C3N4的特征峰;FTIR图谱中观测到了较强的C—N衍射峰;XPS测试结果显示出氮化碳中的C、N两种原子分别以C—N(SP2)和C(Sp3)—N的形式成键。
     选用RDX和HMX作为冲击波源炸药,通过爆炸冲击波在有机玻璃中的衰减模型计算调节可以获得实验所需压力。冲击波压力为29GPa时,氮化碳收得率最高,可以达到3.8%。29GPa之后,冲击波压力的提高反而会使收得率降低。水保护介质的存在可以使氮化碳收得率提高25%。随着约束底座强度和密度的提高,氮化碳收得率呈上升趋势。
     氮化碳粉末常温下可以在王水中稳定存在48h以上,180—220℃高温时可以在混酸(HSO4:HNO3=2:1)中稳定存在6h以上。在空气介质中,氮化碳的氧化温度可以达到1000℃以上。
     模拟得出的α-C3N4、β-C3N4晶胞与理论预测结果吻合性较好;模拟得到的XRD图谱与实测结果的匹配程度可达60%以上。
Carbon nitride was synthesized by shock-compression directly acting on the precursor. The microcosmic composite mechanism of carbon nitride was theoretically analyzed. Three kinds of precursors, such as C2H4N4、CH3N5 and CI4,were used to compose carbon nitride. The influence of additional N comprised in precursor was discussed. The mechanism of postponing compression and temperature by existence of Cu was investigated. Method of purification through the cooperation of liquid phase and gaseous phase was investigated, and the mechanism of eliminating impurities was studied. In terms of the yield of carbon nitride, shock-compression, water protective medium as well as the density and intensity of restraint potence were investigated, respectively. Under normal temperature and high temperature, the corrosion resistance of carbon nitride was researched through the using of mixed acid. The heat endurance in air and the mutative disciplinarian of micromechanism of carbon nitride were discussed. Crystal cells and the diffraction peaks ofα-C3N4 andβ-C3N4 were respectively simulated. The difference of simulant spectral line and the observed one was compared and analysed. The phase composition, microstructure, elements proportion, form of chemical bonds and heat endurance of carbon nitride were characterized with the help of XRD, FTIR, SEM, EDS, XPS and TG-DTA. The conclusion are the followings:
     Composite mechanism of carbon nitride was described after analysing the mechanics of phase change under shock-compression. Under special intensity of blast wave, the C=N and C≡N consisting in the organic precursors were disconnected and recombine the C-N. During the instantaneous shock-compression, the outer orbit electrons of C and N consisting in the inorganic precursors were excitateded and turn into a higher active energy level in which the C and N are in the sp3 or sp2 phase. The ability of bonding C-N was improved obviously.
     Theoretical model which describing the shock-compression of explosive detonation and the attenuation mechanism of plexiglass in the air was established through DYNA procedures. The explosive procedure of RDX and HMX which density is 1.604g/cm3 and 1.800 g/cm3, respectively was simulated. Shock wave pressure and shock wave velocity through the plexiglass plate with different thickness were simulated and calculated. Based on the shock wave pressure and velocity, the shock wave temperature was calculated. The calculating and simulating results provide the theoretical basis for further experimental study.
     Under the shock-compression of 17.28GPa, the ratios of C and N in the carbon nitride prepared from C2H4N4, CH3N5 and CI4 are 1:0.75,1:2.98 and 1:1.02, respectively. In the sample obtained from CH3N5, some hexagonal P-C3N4 particles of 2μm in size were observed. Some spherical aggregations which composed by amorphous SiO2, intergranular phases of C3N4 and metallic metasilicates were discoveried.
     In the samples prepared from different precursors under the shock-compression of 17.28GPa, the diffraction peaks ofα-C3N4,β-C3N4 and graphit C3N4 were detected. The feature peaks of C-N were found in the infrared picture and the C were mainly bonded with N by C-N(SP2) and C(SP3)-N.
     The appropriate shock-compression provided by RDX and HMX was calculated and regulated through using the attenuating regularity of detonation shock wave in the PMMA gap. Under the shock-compression of 29GPa, the highest yield of carbon nitride could reach 3.8%. The yield would reduce on the contrary after the shock-compression of 29GPa. The yield could be increased by 25% in the water protective medium. With the increasing of the density and intensity of restraint potence, the yield of carbon nitride was an upward trend. At room temperature, the carbon nitride could be stable in chloroazotic acid more than 48h, while at 180-220℃, the carbon nitride could be in a stable existence for more than 6h. In the air medium, the oxidation of carbon nitride could reach temperatures above 1000℃.
     The simulated crystal cells ofα- C3N4 andβ-C3N4 coincided very well with the prediction. Simulations of the XRD patterns with the measured results matched of up to 60%.
引文
[1]周志刚.铁氧体磁性材料[M].北京:科学出版社,1981
    [2]Amy Y. Liu, Marvin 1. Cohen. Prediction of New Low Compressibility Solid[J]. Science.1989,245:841-842
    [3]Amy Y. Liu, Marvin L. Cohen. Structural Properties and Electronic Structure of Low Compressibility Materials:β-Si3N4 and Hypothetical β-C3N4[J]. Physical Review B. 1990,41(15):10727-10734
    [4]Chien-Min Sung, Michael Sung, Carbon nitride and other speculative superhardmaterials[J], Materials Chemistry and Physics,1996,43:1-18
    [5]Marvin L. Cohen, Calculation of bulk moduli of diamond and zinc-blende solids[J]. Physical Review B,1985,32(12):7988-7991
    [6]Ch.-M. Wang, X. Pan, M. Ruhle, et al. Silicon nitride crystal structure and observationsof lattice defects[J]. Journal of Materials Science.1996,31(20):5281-5298
    [7]吴现成,刘国汉,陈光华.氮化碳的研究进展[J].甘肃科学学报,1999 11(3):9-13
    [8]E.G. Wang. Research on Carbon Nitrides[J]. Progress in Materials Science.1997,41: 248-298
    [9]Jennifer L. Corkill, Marvin 1. Cohen. Calculated Quasiparticle Band Gap of β-C3N4[J]. Physical Review B.1993,48(23):17622-17624
    [10]Amy Y. Liu. Stability of Carbon Nitride Solids[J]. Physical Review B.1994,50(14): 10632-10635
    [11]David M. Teter, Russell J. Hemley, Low-compressiblity carbon nitrides[J].Science, 1996,271:53-55
    [12]Yoshiyuki Miyamoto, Marvin L. Cohen and Steven G. Louie. Theoretical Investigation of Graphitic Carbon Nitride and Possible Tubule Forms[J]. Solid State Communication. 1997,102(8):605-608
    [13]I. Alves, G. Denazeau, B. Tanguy, F. Weill. On a New Model of The Graphitic Form of C3N4[J]. Solid State Communications.1999,109:697-701
    [14]J. E. Lowther. Defective and Amorphous Structure of Carbon Nitride[J]. Physical Review 63 B.1998,57(10):5724-5727
    [15]M. Mattesini and S. F. Matar. Density-functional Theory Investigation of Hardness, Stability, and Eletron-energy-loss Spectra of Carbon Nitride with C11N4 Stoichiometry[J]. Physical Review B.2002,65(7):110-114
    [16]J.J. Cuomo, P.A. Leary, D. Yu, et al. Reactive Sputtering of Carbon and Carbide Targets in Nitrogen[J]. Journal of Vacuum Science and Technology.1979,16(2):299-302
    [17]T. Sekine, H. kanda, Y. bando, M. Yokoyama. A graphitic carbon nitride[J]. Mater. Sci. Lett.1990,9:1376-1378
    [18]John V Badding, Solid-state carbon nitride[J]. Adv. Mater.,1997,9(11):877-886
    [19]Jeffrey H. Nguyen, Raymond Jeanloz, Initial description of a new carbon-nitride phase synthesized at high pressure and temperatures[J]. Materials Science and Engineering A, 1996,209:23-25
    [20]Jesus Martin-Gil, Francisco J. Martin-Gil, Mehmet Sarikaya, Maoxu Qian ey al., Evidence of a low compressibility carbon nitride with defect-zincblende structure[J]. Appl. Phys.,1997,81(6):2555-2558
    [21]Tien-Rong Lu, Cheng-Tzu Kuo, Teng-Ming Chen, Preparation of a novel target material for carbon nitride film deposition[J].Thin Solid Films,1997,308-309:126-129
    [22]I. Alves, CL Demazeau, B. Tanguy, F. Weill, On a new model of the graphitic form of C3N4[J]. Solid State Communications,1999,109:697-701
    [23]H. Montigaud, B. Tanguy, G. Demazeau, I. Alves, et al., Solvothermal synthesis of the graphitic form of C3N4 as macroscopic sample[J].Diamond and Related Materials, 1999,8:1707-1710
    [24]Chunming Niu, Yuan Z. Lu, Charles M. Lieber, Experimental realization of the covalent solid carbon nitride[J]. Science,1993,261:334-336
    [25]Z. John Zhang, Shoushan Fan, Jinlin Huang, et al. Diamondlike properties in a single phase carbon nitride solid[J]. Appl. Phys. Lett.,1996,68(19):2 639-2 641
    [26]I. N. Mihailescu, E. Gyorgy, R. Alexandrescu, et al.,印 tical studies of carbon nitride thin films deposited by reactive pulsed laser ablation of a graphite target in low pressire ammonia[J].Thin Solid Films,1998,323:72-78
    [27]R. Alexandrescu, F. Huisken, G. Pugna, et al., Preparation of carbon nitride fine powder by laser induced gas-phase reactions[J]. Appl. Phys. A,1997,65:207-213
    [28]Z. John Zhang, Jinlin Huang, Shoushan Fan, et al., Phases and physical properties of carbon nitride thin films prepared by pulsed laser deposition[J]. Materials Science and Engineering A,1996,209:5-9
    [29]J. Hartmann, P. Siemroth, B. Schultrich, et al., Characterization of carbon nitride produced by high-current vacuum arc deposition[J].Vac. Sci. Technol. A,1997,15(6):2 983-2987
    [30]Imad F. Husein, Yuan Zhong Zhou, Fan Li, et al., Synthesis of carbon nitride thin films by vacuum arcs[J]. Materials Science and Engineering A,1996,209:10-15
    [31]D. Jones, A. D. Stewart, Philos. Experimental realization of the covalent solid carbon[J]. Mag. B,1982,46:423
    [32]He-xiang Han, Bernard J. Feldman. Preparation of carbon nitride[J].Solid State Commun.,1988,65:921
    [33]Ming Y. Chen, D. Li, X. Lin, V. P. Dravid, et al., Analytical electron-microscopy and ramen-spectroscopy studies of carbon nitride thin-film[J].Vac. Sci. Technol. A,1993, 11:521-530
    [34]C. Niu, Y Z. Li, C. M. Lieber, Experimental realization of the covalent solid carbon nitride[J]. Science,1993,261:334-336
    [35]Kin Man Yu, Marvin L. Cohen, E. E. Halter, W. L. Hansen, Amy Y Liu, I. C. Wu, Observation of crystalline C3N4[J]. Phys. Rev. B,1994,49(7):5034-5037
    [36]H. Sjostrom, S. Stafstriim, M. Boman, J. E. Sundgren, Superhard and elastic carbon nitride thin films having fullerenelike microstructure[J]. Phys. Rev. Lett.,1995,75(7):1 336-1339
    [37]E. Broitman, W. T. Zheng, H. Sjbstrtim, I. Ivanov, J. E. Greene, Stress development during deposition of CNx thin films[J]. Appl. Phys. Lett.,1998,72(22):2 532-2 534
    [38]A. K. M. S. Chowdgury, M. Monclus, D. C. Cameron, et al., The composition and bonding structure of CNx films and their influence on the mechanical properties [J]. Thin Solid Films,1997,308-309:130-134
    [39]E. Broitman, W. Macdonald, N. Hellgren, G. Radnoczi, et al., Carbon nitride films on orthopedic substrates[J]. Diamond and Related Materials,2000,9:1984-1991
    [40]Zhang Ze-bo, Li Yin-an, Xie Si-shen, Yang Guo-zhen, Polycrystalline P-C3N4 thin films deposited on single-crystal KCl (100) using rf sputtering[J].Chin. Phys. Lett.,1996, 13(1):69-72
    [41]Yin-An Li, S. Xu, Han-Shi Li, Wei-Y Luo, Polycrystalline carbon nitride β-C3N4 thin films synthesized by radio frequency ma.gneyton sputtering[J]. Mater. Sci, Lett.,1998, 17:31-35
    [42]肖兴成,江伟辉,田静芬等.高温处理对CNx薄膜晶化的影响[J].物理学报,200049(Ⅰ):173-176
    [43]D. Marton, K. J. Boyd, A. H. Al-Bayati, et al. Carbon nitride deposited using energetic species:Atwo-phase system[J]. Phys. Rev. Lett.,1994,73(1):118-121
    [44]P. Hammer, M. A. Baker, C Lenardi, W. Gissler, Synthesis of carbon nitride films at low temperatures[J]. Vac. Sci. Technol. A,1997,15(1):107-112
    [45]E. G. Wang, Research on carbon nitrides[J]. Progress in Materials Science,1997, 41:241-298
    [46]L. P. Guo, Y. Chen, E. G. Wang, L. Li, Z. X. Zhao, Identification of a new tetragonal C-N phase[J]. Journal of Crystal Growth,1997,178:639-644
    [47]L. P Guo, Y Chen, E. G Wang, L. Li, Z. X. Zhao, Identification of a new C-N phase with monoclinic structure[J]. Journal of Crystal Growth,1997,168:26-30
    [48]Yan Chen, Liping Guo, E. G. Wang, Effect on selected-phase growth of crystalline C-N films by controlling nitrogen, hydrogen and methane mixture[J]. Mater. Sci. Lett.,1997, 16:594-597
    [49]Youji Tani, Yoshifumi Aoi, Eiji Kamijo, Composition and crystal structure of carbon nitride films prepared by the electron cyclotron resonance plasma sputtering method[J].Appl. Phys. Lett.,1998,73(12):1652-1654
    [50]Somnath Bhattacharyya, C. Cardinaud, G Turban, Spectroscopic determination of the structure of amorphous nitrogented carbon films[J]. Appl. Phus.,1998,83(8):4 491-4500
    [51]顾有松,张永平,常香荣,田中卓等.C3N4硬膜的人工合成和鉴定[J].中国科学(A辑),1999,29(8):757-768
    [52]S. Kundoo, A.N. Banerjee, P. Saha, et al. Synthesis of Crystalline Carbon Nitride Thin Films by Electrolysis of Methanol-urea Solution[J]. Materials Letters.2003,57(15): 2193-2197
    [53]H. Montigaud, B. Tamguy, G. Demazeau, et al. C3N4:Dream or Reality Solvothermal Synthesis as Microscopic Samples of the C3N4 Graphitic Form[J]. Journal of Materials Science.2000,35:2547-2552
    [54]Yu-Jun Bai, Bo Lii, Zhen-Gang Liu, et al. Solvothermal Preparation of Graphite-like C3N4 Nanocrystals[J]. Journal of Crystal Growth.2003,247:505-508
    [55]Chuan-Bao Cao, Qing Lv, He-Sun Zhu. Carbon Nitride Prepared by Solvothermal Method[J]. Diamond and Related Materials.2003,12(3-7):1070-1074
    [56]Y. Fahmy, T.D. Shen, D.A Tucker, et al. Possible Evedence for the Stabilization of β-carbon Nitride by High-energy Ball Milling[J]. Journal of Materials Research.1999, 14(6):2488-2499
    [57]Long-Wei Yin, Mu-Sen Li, Gang Luo, et al. Nanosized Beta Carbon Nitride Crystal through Mechanochemical Reaction[J]. Chemical Physics Letters.2003,369:483-489
    [58]M.D. Alcala, J.C. Sanchez-Lopez, C. Real, et al. Mechanosynthesis of Carbon Nitride Compounds[J]. Diamond and Related Materials.2001,12:1995-2001
    [59]于栋利,李冬春,田永军等.碳氮化合物合成方法及其晶体结构的研究.博士论文.河北:燕山大学,2001
    [60]N. Tsubouchi, Y. Horino, B. Enders, et al., Kinetic energy inflience of hyperthermal dual ion beams on bonding and optical properties of carbon nitride films[J]. Appl. Phys. Lett., 1998,72(12):14121414
    [61]Chuarbao Cao, Hao Wang, Hesun Zhu, Carbon nitride films deposited from organic solutions by electrodeposition[J]. Diamond and related materials,2000,9:1786-1789
    [62]Kazuhiro Yamamoto, Yoshinori Koga, Kiyoshi Yase, et al., Formation of cubic phase carbon nitride solid by low energy nitrogen implantation into graphite[J].Jap. J. Appl. Phys,1997,36:230-233
    [63]许祀安,沈明荣,宁兆元,朱警生,电解有机溶液法制备CNx薄膜[J].物理学报,1999,48(7):1292-1296
    [64]Dong Li, Xi-Wei Lin, Shang-Cong Cheng, Vinayak P. Dravid, Yip-Wah Chung, Structure and hardness studies of CNxfTiN nanocomposite coatings[J]. Appl. Phys. Lett.,68(9):1 211-1213
    [65]吴大维,付德君,毛先唯,叶明生等.C3N4/Si交替复合膜的微结构研究[J].物理学报,1999,48(5):904-912
    [66]Z. Q. Li, J. Y. Zhou, T. B. Chen, et al. Carbon Nitrides Synthesized by Glow Discharge Method[J]. Journal of Alloys and Compounds.2002,346:230-234
    [67]M. Kawaguchi, S. Yagi, H. Enomoto. Chemical Preparation and Characterization of Nitrogen-rich Carbon Nitride Powders[J]. Carbon.2004,42:345-350
    [68]M. Jelinek, W. Kulisch, M.P. Delplancke-Ogletree, et al. Mechanical and Optical Properties of CNx Films with High N/C Ratio[J]. Applied Physics A.2001,73:167-170
    [69]F. Fendrych, L. Jastrabik. L. Pajasova, et al. The Mechanical, Tribological and Optical Properties of CNx Coatings Prepared by Sputtering Methods[J]. Diamond and Related Materials.1998,7:417-421
    [70]Andrei G. Khurshudov, Koji Kato. Tribological properties of carbon nitride overcoat for thin-film magnetic rigid disks[J]. Surface and Coatings Technology.1996,86-87: 664-671
    [71]A. Fernandez, C. Fernandez-Ramos, J.C. Sanchez-Lopez. Preparation, Microstructural Characterisation and Tribological Behaviour of CNx Coatings[J]. Surface and Coatings Technology.2003,163-164:527-534
    [72]A. Champi, R.G. Lacerda, F.C. Marques. Thermal Expansion Coefficient of Amorphous Carbon Nitride Thin Films Deposited by Glow Discharge[J]. Thin Solid Films.2002, 420-421:200-204
    [73]A. Fernandez, C. Fernandez-Ramos, J.C. Sanchez-Lopez. Preparation, Microstructural Characterisation and Tribological Behaviour of CNx Coatings[J]. Surface and Coatings Technology.2003,163-164:527-534
    [74]M.A. Baker, P. Hammer, C. Lenardi, et al. Low-temperature Sputter Deposition and Characterisation of Carbon Nitride Films[J]. Surface and Coatings Technology.1997,97: 544-551
    [75]D.C. Cameron. Optical and Electronic Properties of Carbon Nitride[J]. Surface and Coatings Technology.2003,169-170:245-250
    [76]叶雪均,钟盛文.爆炸冲击在新材料中的应用与发展[J].中国钨业,2000,15,22-25
    [77]张守中,爆炸基本原理[M].北京:国防工业出版社,1988
    [78]E Teller.高能密度物理学[M].北京:原子能出版社,1982
    [79]唐志平,冲击相变研究的现状与趋势[J].高压物理学报,1994,8,14-21
    [80]马本堃,高尚惠,孙煜,热力学与统计物理[M].北京:高等教育出版社,1980
    [81]Bancroft D, Peterson E L, Minshall S. Polymorphism of iron pressure[J]. Appl Phys. 1956,27,291-298
    [82]李俊.LiTa03单晶的冲击相变研究.硕士论文.北京:中国工程物理研究院,2007
    [83]金福谦,实验物态方程导引[M],北京:科学出版社,2001
    [84]林培琰,伏利群.快反应技术[J].化学世界,1990,8:65-74
    [85]shagpov V.S., VakhitovaN.K. Waves in a bubble system in the Preseneeof gas-Phase chemical reactions[J]. Combustion, Explosion, and Shock Waves,1990,25(6):669-677
    [86]廖其龙.磷酸钙生物活性陶瓷粉末的冲击波合成及活化改性研究.博士论文.四川:四川大学,2003
    [87]Raghukandan K.,Hokamoto K.,Chiba, A.,et al. A review of shock consolidation and synthesis of ceramics [J]. Memoirs of the Faculty of Engineering,2002,47(1):1-17
    [88]Kovtun V. I., Kurdyumov A. V., Zelyavskij V. B., et al. Phase and structural transformations in sintering of wurtzite boron nitride in shock waves[J]. Poroshkovaya Metallurgiya,1992,(12):38-43
    [89]Beauchamp E.K., Graham R.A. in "Emergent Process Methods for High-Tech Ceramics", 1982:735-748
    [90]Morosin B., Graham R.A. in "Metallur. Appl. Of Shock Waves and High-Strain-Rate Phenomena",1986:1037-1047
    [91]Lee Y.K., Williams F.L., Graham R.A., et al. Specific Surface Area Studies of Shock-Modified Inorganic Powedrs[J]. Journal of Materials Science, 1985,20(7):2488-2496
    [92]Batsanov S.S. Effect of High Dynamic Pressure on The Structure of Solids[J]. Propellants, Explosives, Pyrotechnics,1987,12(6):206-208
    [93]Simonsen I.K., Horie Y., Graham R.A., et al. Formation of Amorphous Nickel Aluminides Under Shock-Wave Loading[J]. Materials Letters,1987,5(3):75-78
    [94]Babkin S.B., Bloshenko V.N., Borovinskaya I.P. Mechanism of mass transfer with combustion of the SHS-system Mo+B[J]. Combustion, Explosion, and Shock Waves (English Translation of Fizika Goreniya I Vzryva),1991,27(3):333-338
    [95]Ferreira A., Meyers M.A., Thadhani N.N., et al. Dynamic compaction of titanium aluminides by explosively generated shock waves:Experimental and materials systems[J]. Metallurgical Transactions A (Physical Metallurgy and Materials Science), 1991,22(3):685-685
    [96]R A Graham, B Morosin, E L Venturini. InProceeding of topic conference on shock wave in condensed matter, edited by Y M Gpta, New York:Plenum Press,1986:791
    [97]刘柯钊,刘金龙.冲击波对高TCYBCO超导材料的改性[J].低温与超导,1995,23(1):52-58
    [98]Sawaoka Akira, Konodo Kenichi. Progress in shock wave research at research laboratory of engineering materials [J]. Report of the research laboratory of engineering materials, 1984:131-460
    [99]龚自正.面向新世纪的冲击波物理学[J].高压物理学报,2002,11(6):152-160
    [100]Setchel R E. Recent progress in understanding the shock response of ferro-electric ceramics[J]. Shock Compression of Condensed Matter, Atlanta,2001
    [101]Germann T C. Large scale molecular dynamics simulations of shock induced plasticity and phase transformations [J]. Shock Compression of Condensed Matter, Atlanta,2001
    [102]Gupta S C. Experimental and theoretical investigations on shock wave induced phase transformatuions[J]. Shock Compression of Condensed Matter, Atlanta,2001
    [103]鲍姆ΦA,斯达钮柯维奇K π.爆炸物理学[M].北京:科学出版社,1963
    [104]张训诰,肖得辉.可靠性及其作用[M].北京:兵器工业出版社,1991
    [105]刘玉存.炸药粒度及粒度级配对冲击波感度和输出的影响研究.博士学位论文.北京:北京理工大学.,1999
    [106]赵士达.爆炸容器[J].爆炸与冲击,1989,9(1):85-95
    [107]范钦珊.压力容器的应力分析与强度设计[M].北京:原子能出版社,1979
    [108]孙业斌,惠君明,曹欣茂.军用混合炸药[M].北京:兵器工业出版社,1995
    [109]李圣华.炭和石墨制品[M].北京:冶金工业出版社,1981
    [110]王建华.炸药爆轰合成纳米金刚石研究.硕士学位论文.太原:华北工学院,2003
    [111]B.K.代因斯坦著.吴自勤译.现代晶体学[M].合肥:中国科学技术出版社,1999
    [112]陈鹏万.爆轰合成超微金刚石的机理及特性研究.博士学位论文.北京:北京理工大学,1999
    [113]Matsumoto S,Xie E Q, Izumi F. On the Validity of the Formation of Crystalline Carbon Nitrides C3N4 [J]. Diam Relt Mater,1999,8:1175-1182.
    [114]陈光华,吴现成,贺德衍.氮化碳薄膜的结构与特性[J].无机材料学报,2001,16(2):377-380
    [115]Teter D M,Hemley R J. Low Compressibility Carbon Nit rides [J] Science,1996,271:53255.
    [116]李玲.表面活性剂与纳米技术[M].北京:化学工业出版社,2004
    [117]张生俊,陈光华,邓金祥,宋雪梅,邵乐喜.几种新型超硬薄膜的研究进展[J].物理;2001,30(10):622-627
    [118]杨筠,林志明,崔猛,李江涛.Si粉在空气中燃烧合成Si3N4粉体[J].无机材料学报;2007,22(4):590-594
    [119]Meng X Q, Zhang Z H, Guo H X, et al. Arc discharge synthesizing of carbon nitride[J]. Solid State Commuication,1998,107(2):75-78.
    [120]耿东生,杨振江,刘正堂,张贵锋.热丝CVD法制备C-N薄膜的结构分析[J].微细加工技术;1998,21(3):72-77
    [121]王恩哥.β-C3N4研究的新进展[J].物理;1997,26(1):1-2
    [122]陈光华,严辉,王波等.β-C3N4超硬材料的汽相合成[J].北京工业大学学报;1998,24(3):1-4
    [123]Meng X Q, Zhang Z H, Guo H X, et al. Arc discharge synthesizing of carbon-nitride[J].Solid State Commuication,1998,107(2):75-78.
    [124]陈权等.保护介质对爆轰固相产物生成的影响[J].高压物理学报.1998,12(2):129-133.
    [125]文潮等.纳米金刚石的熔点和德拜特征温度[J].西安交通大学学报,2000,34(11):108-110
    [126]宋银,侯东明,王志光等.氮化碳薄膜的制备及研究现状[J].高压物理学报,2003,17(4):311-317
    [127]熊家炯.材料设计[M].大津:大津大学出版社,2000
    [128]J. R. Chelikowsky and S. G. Louie. Quantum theory of real materials[J]. Kluwer Academy Press1989:1-11
    [129]P. Hohenberg, W. Kohn. Inhomogeneous electron gas[J]. Phys. Rev. B,1964, 136:864-871
    [130]W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects[J]. Phys.Rev. A,1965,140:1133-1138
    [131]L. Sham. Density Functional Theory and Computational Materials Physics. In:J. R. Chelikowsky,S. G. Louie. Quantum Theory of Real Materials. Amsterdam:Kluwer Academic Publishers,1996,13
    [132]S. Lundqvist, N. March. Eds. Theory of the Inhomogeneous Electron Gas[M], Plenum: New York1983
    [133]J.P. Perdew, Y.Wang. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B,1992,45:13244-13249
    [134]B. Hammer, L. B. Hansen and J. K. Norskov. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B,1999,59:7413-7421
    [135]D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B,1990,41:7892-7895
    [136]百度百科.Materials Studio. http://baike.baidu.com/view/1084478.htm
    [137]张永平,顾有松,高鸿钧,等微波等离子体化学气相沉积法制备C3N4薄膜的结构研究[J].物理学报,2001,50(7):1396-1397
    [138]吴大维,何孟兵,熊子友.新型超硬材料—氮化碳薄膜研究新进展[J].材料导报,1997,11(5):30-31
    [139]苏革,成会明,沈祖洪,等,新型超硬材料共价化合物C3N4的研究现状[J].新型碳材料,1997,12(3):6-7
    [140]Teter D.M..Hemley R.j. Arc discharge synthesizing of carbon nitride[J]. Science,1996, 271:53
    [141]吴大维,何孟兵,熊子友.新型超硬材料—氮化碳薄膜研究新进展[J].材料导报,1997,11(5):30-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700