包含运动界面的爆炸流场数值模拟方法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝聚态炸药的爆炸流场广泛存在于国防和国民经济建设的许多领域,典型的爆炸流场中存在三种不同形式的运动界面:炸药/爆轰产物与空气的界面、空气与可动物体的界面、爆轰产物/空气与水的界面,本文采用数值方法对这三类运动界面问题进行研究。
     本文首先发展了一套动态混合网格的多组分流动数值模拟算法及软件,并以此作为研究工作的基础。该软件在动态混合网格上求解任意拉格朗日-欧拉形式的积分型控制方程,空间离散采用AUSM+-up和HLLC格式以及Venkatakrishnan限制器,时间离散采用Runge-Kutta格式,具有时空二阶精度,可以处理一维/二维/三维及球、柱、轴对称问题。计算方法不涉及特征矩阵的分解,适于计算各种形式的单流体/混合流体状态方程。在动网格方面,采用弹簧近似和网格重构相结合的方法模拟运动边界,采用虚拟网格通气技术解决运动物体从接触到分离过程中网格拓扑变化的难题。
     针对炸药/爆轰产物与空气的界面,采用流体混合型方法,提出了一种炸药/爆轰产物/空气的流体混合模型。该模型中炸药及爆轰产物采用JWL状态方程,空气采用完全气体模型,在固相(炸药)与气相(爆轰产物、空气)间采用等压假设,且体积可加;气相间满足等温假设及分压定理。该模型中混合流体的状态方程无需迭代求解,计算效率较高。将该模型与点火-生长反应模型结合,可以有效处理炸药/爆轰产物与空气间界面的复杂运动问题。数值模拟了空气中球形TNT装药的爆轰问题,计算得到了清晰的波系结构及流体界面,爆炸近区的峰值超压与实验符合较好。研究了驱动管中爆轰波的传播过程,得到了典型的有限直径药柱中的二维爆轰波结构,获得了管壁及管底的压力加载曲线,为驱动管设计提供了重要参考;分析了不同的驱动管排布方式以及延长段长度对激波管性能的影响。
     针对流体与可动物体间的动边界绕流问题,本文采用动网格跟踪运动边界,推导了ALE形式的流体控制方程,研究了动网格的几何守恒律,分析了不满足几何守恒律导致计算误差的原因,并提出了一种新的体积修正方法,可以消除网格运动引起的计算误差。将多体动力学求解方法与流场计算相耦合,解决了存在相互作用力的多个刚体的绕流的非定常求解方法。综合采用网格变形、网格重构、多体动力学耦合求解、虚拟网格通气等技术,仿真了内嵌式助推器的分离过程,发现了进气道整流罩打开后,进气道和燃烧室内存在衰减较慢的大幅压力振荡;助推器头部通过前体飞行器的喉部时,助推器所受的法向力剧烈振荡,给分离安全性带来一定影响。模拟了爆炸波驱动下卡车的运动,验证了本文方法对于含有运动物体的爆炸问题的模拟能力。
     针对水下爆炸中的水-气界面问题,本文采用ALE方法追踪流体界面,并将改进的虚拟流体方法应用于界面计算中。对气-气、气-水、爆轰产物-水等多个Riemann问题的模拟表明,相对于Euler型方法以及原始的ALE界面追踪方法,改进后的ALE方法具有更小的界面耗散以及更高的计算精度,界面压力无振荡。模拟了一维和二维水下爆炸问题,结果反映出了激波与水-气界面的相互作用,得到的气泡最大半径和首次脉动周期与实验值符合较好;二维水下爆炸中的气泡界面清晰,且不存在物理量的虚假振荡。
     最终,通过本文的工作,形成了模拟空中爆炸和水下爆炸的数值计算软件,可用于计算炸药爆轰、爆炸近区流场、爆炸波与刚性物体的相互作用,可以处理气-气、气-固、气-液等多种流体界面。软件具有较高的精度和较好的鲁棒性、通用性,并在工程实际问题中得到了应用。
Explosion flow field of condensed explosives widely exists in the field of defense and economic contribution, there are three forms of moving interface in typical explosion flow field: interface between explosives/detonation products and air; moving boundary between air and movable objects; interface between detonation products/air and water. These three moving interface problems are numerically investigated in this thesis.
     A numerical simulation algorithm and software for multi-species flow using dynamic hybrid grids is developed, which is the basis of this thesis's research. Integral governing equations in arbitrary Lagrangian Eulerian(ALE) form are solved on dynamic hybrid grid in this software, in which AUSM+-up and HLLC schemes combined with Venkatakrishnan’s limiter are used in spatial discretization and multi-stage Runge-Kutta scheme in temporal discretization. The ultimate method has 2-order accuracy both in spatial and temporal direction, and it could hold one/two/three dimensional and spherical/cylindrical/axial symmetry problems. This algorithm is free of characteristic matrix decomposition, accordingly it's suitable for singe/multi-species flows with any form of state equations. The mesh movement strategy combined of deformation and remeshing is used, and a kind of "virtual mesh ventilation method" is used to resolve the problem when multi bodies move from contact to separation and the mesh topology changes.
     Aimed at the interface between explosive/detonation product and air, a new mixed fluid model of explosive, detonation product and air is proposed within fluid-mixture type algorithm. In this model, JWL and perfect gas state equations are used for explosive/products and air separately, isobaric assumption is made between solid phase(explosives) and gas phase(detonation products and air), and iso-temperature assumption and partial pressure law is used within gas phases. The state equations of mixed fluid in this model can be solved without iteration, so a high computation efficiency is gained. Combined with growth and ignition reaction model, complex flow problems involving moving interface between explosive/detonation products and air can be effectively solved in this model. Detonation of spherical TNT explosives in air is simulated, fluid structure and interface are captured clearly, and the near-field peak overpressure accords well with experimental results. The spread of detonation wave in driven tube is researched, a typical two dimensional detonation wave structure in finite diameter explosives is achieved, and the time history of overpressure on the side and bottom of the driven tube is gained, which affords an important reference to the design of driven tube. Influence of different distribution forms of driven tubes and length of extended section to the performance of shock tube is also analyzed.
     Aimed at the moving boundary problems between fluid and movable objects, dynamic grid method is used to track moving boundaries, the ALE form of governing equations is derived, and the geometrical conservation law(GCL) is studied. The reason of introducing computation errors when violating GCL is analyzed, and a new volume correction method is proposed, which could eliminate computation errors arised from moving grid. Coupled multi-body dynamics with fluid calculation, a unsteady computation method for the flow field of multi-body with interactional forces is established. Integrated with grid deforming, remeshing, multi-body dynamics and virtual mesh ventilation method, the embedded booster's separation process is simulated, and it's found that pressure oscillation will occur in the inlet and combustor after the open of inlet cover and it's hard to attenuate. When the booster's head passes through the forebody's throat, normal forces on the booster oscillate severely, which may influence the safety of separation. The movement of a truck driven by blast wave is simulated, which validates the simulation ability to the explosion problems involving moving objects.
     Aimed at the gas-water interface problem in underwater explosion, ALE formulation is used to trace fluid interface, and the modified ghost fluid method is introduced to the interface computation. Through the calculation of several Riemann problems such as gas-gas, gas-water, detonation product-water Riemann problems, this modified ALE method is proved of smaller interface dissipation and higher computation accuracy than Euler and original ALE method. In the simulation of one and two dimensional underwater explosion, interactions between shock wave and gas-water interface is captured, and the maximum radius and first period of air bubble accord well with experimental results. The bubble's interface is clear, without nonphysical spurious oscillations.
     Finally, a numerical computation software of simulating air blast and underwater explosion is established in this thesis, it could be used to compute detonation of condensed explosives, near-field blast, interaction of blast wave and rigid body and handle multi-fluid interface including gas-gas, gas-solid, gas-liquid interfaces. This software is accuracy, robust and universal, it has been applied in practical engineering problems.
引文
[1]杨冠华.基于激波管喷流实验的爆炸波研究[D].长沙:国防科学技术大学, 2001.
    [2] Baum J D, Mestreau E L, Luo H, et al. Modeling of near-field blast wave evolution[R]. AIAA 2006-0191, 2006.
    [3] Lee E L, Tarver C M. Phenomenological model of shock initiation in heterogeneous explosives[J]. Physics of Fluids, 1980, 23(12): 2362-2372.
    [4]孙承纬,卫玉章,周之奎.应用爆轰物理[M].北京:国防工业出版社, 2000.
    [5]孙海权,张文宏.散心爆轰数值模拟中人为粘性与空间步长的匹配关系[J].含能材料, 2006, 14(1): 16-20.
    [6] Clutter J K, Belk D. Simulation of detonation wave interaction using an ignition and growth model[J]. Shock Waves, 2002, 12(3): 251-263.
    [7]张波,于明.用一种改进的Euler方法模拟凝聚炸药的爆轰[J].含能材料, 2006, 14(3): 195-199.
    [8]于明.用点火生长模型模拟凝聚态炸药的起爆过程[J].含能材料, 2004, 12(z1): 516-520.
    [9]楼建锋,于恒. CTVD格式数值计算非均质炸药爆轰问题[J].计算物理, 2005, 22(4): 358-364.
    [10]刘尔岩,刘邦第,王元书.应用阵面追踪法对散心爆轰波传播的数值模拟[J].爆炸与冲击, 2001, 21(1): 57-61.
    [11]文尚刚.三维爆轰波传播的LS方法研究[D].绵阳:中国工程物理研究院, 2001.
    [12]柏劲松,李平,钟敏,等.以DSD理论和LS方法为基础的程序燃烧法[J].爆炸与冲击, 2008, 28(5): 401-406.
    [13] Korobeinikov V P. Problems of point-blast theory[M]. New York: AIP, 1991.
    [14] Baum J D, Luo H, L?hner R. Numerical simulation of blast in the World Trade Center[R]. AIAA 1995-0085, 1995.
    [15]钟方平.柱形容器内部爆炸流场的数值模拟[J].计算物理, 2000, 17(6): 695-701.
    [16]刘君,刘瑞朝,贾忠湖,等.爆炸波与物体干扰流场的数值模拟[J].空气动力学学报, 2000, 18(1): 55-60.
    [17]宁建国,王仲琦,赵衡阳,等.爆炸冲击波绕流的数值模拟研究[J].北京理工大学学报, 1999, 19(5): 543-547.
    [18]吴开腾,宁建国.机库内爆炸流场的三维数值模拟分析[J].太原理工大学学报, 2005, 36(6): 725-728.
    [19]王飞,朱立新,顾文彬,等.基于ALE算法的空气冲击波绕流数值模拟研究[J].工程爆破, 2002, 8(2): 13-16.
    [20] Chapman T C, Rose T A, Smith P D. Blast wave simulation using AUTODYN2D: A parametric study[J]. International Journal of Impact Engineering, 1995, 16(5-6): 777-787.
    [21] Zhou X Q, Hao H. Prediction of airblast loads on structures behind a protective barrier[J]. International Journal of Impact Engineering, 2008, 35(5): 363-375.
    [22]王可强,苏经宇,王志涛.爆炸冲击波在建筑群中传播规律的数值模拟研究[J].中国安全科学学报, 2007, 17(10): 121-128.
    [23] Baum J D, Luo H, L?hner R, et al. A coupled fluid/structure modeling of shock interaction with a truck[R]. AIAA 96-0795, 1996.
    [24] Joseph D B, Hong L, L?hner R. The numerical simulation of strongly unsteady flows with hundreds of moving bodies[R]. AIAA 98-0788, 1998.
    [25] Joseph D B, Hong L, Mestreau E L, et al. A coupled CFD/CSD methodology for modeling weapon detonation and fragmentation[R]. AIAA 99-0794, 1999.
    [26] Joseph D B, Hong L, Mestreau E L, et al. A new coupled CFD/CSD methodology for modeling weapon-target interaction[R]. AIAA 99-3442, 1999.
    [27] Joseph D B, Hong L, Mestreau E L, et al. Recent development of a coupled CFD/CSD methodology[R]. AIAA 2001-2618, 2001.
    [28]霍宏发.组合式爆炸容器动态特性分析及实验研究[D].西安:西安交通大学, 2000.
    [29]张亚军.爆炸流场及容器内爆流固耦合问题计算研究[D].合肥:中国科学技术大学, 2007.
    [30]尹群,陈永念,胡海岩.水下爆炸研究的现状和趋势[J].造船技术, 2003, 6: 6-12.
    [31] Wardlaw A B, Mair H U. Spherical solutions of an underwater explosion bubble[J]. Shock and Vibration, 1998, 5(2): 89-102.
    [32]柏劲松.水下爆炸过程的高精度数值计算[J].应用力学学报, 2003, 20(1): 103-106.
    [33]荣吉利.水下爆炸气泡脉动的实验及数值模拟[J].北京理工大学学报, 2008, 28(12).
    [34] Du J, Fix B, Glimm J, et al. A simple package for front tracking[J]. Journal of Computational Physics, 2006, 213(2): 613-628.
    [35] Xu Z, Glimm J, Zhang Y, et al. A multiscale front tracking method for compressible free surface flows[J]. Chemical Engineering Science, 2007, 62(13):3538-3548.
    [36] Liu X, Li Y, Glimm J, et al. A front tracking algorithm for limited mass diffusion[J]. Journal of Computational Physics, 2007, 222(2): 644-653.
    [37] Glimm J, Grove J W, Li X L, et al. A Critical Analysis of Rayleigh-Taylor Growth Rates[J]. Journal of Computational Physics, 2001, 169(2): 652-677.
    [38] Chern I L, Glimm J, McBryan O, et al. Front tracking for gas dynamics[J]. Journal of Computational Physics, 1986, 62(1): 83-110.
    [39] Li L, Glimm J, Li X. All isomorphic distinct cases for multi-component interfaces in a block[J]. Journal of Computational and Applied Mathematics, 2003, 152(1-2): 263-276.
    [40] Samulyak R, Du J, Glimm J, et al. A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers[J]. Journal of Computational Physics, 2007, 226(2): 1532-1549.
    [41] LeVeque R J, Shyue K-M. Two-dimensional front tracking based on high resolution wave propagation methods[J]. Journal of Computational Physics, 1996, 123(2): 354-368.
    [42] Shyue K-M. A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions[J]. Journal of Computational Physics, 2006, 215(1): 219-244.
    [43] Singh R, Shyy W. Three-dimensional adaptive Cartesian grid method with conservative interface restructuring and reconstruction[J]. Journal of Computational Physics, 2007, 224: 150-167.
    [44] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
    [45] Youngs D L. Time-dependent multi-material flows with large fluid distortion[A]. in: Numerical methods for fluid dynamics[C], New York, 1982: 273-281.
    [46] Colella P, Puckett E G. A numerical study of shock wave refraction at a gas interface[A]. in: Proceedings of the AIAA Ninth Computational Fluid Dynamics Conference[C], Buffalo, 1989: 426-439.
    [47] Puckett E G, Saltzman J S. A 3D adaptive mesh refinement algorithm for multimaterial gas dynamics[J]. Physica D: Nonlinear Phenomena, 1992, 60(1-4): 84-93.
    [48]胡影影,朱克勤,席葆树.翼型空化绕流数值研究[J].力学季刊, 2003, 24(4): 572-576.
    [49]刘乐华,张宇文,袁绪龙.潜射导弹垂直出水流场数值研究[J].弹箭与制导学报, 2004, 24(2): 183-185.
    [50] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[J]. Journal of ComputationalPhysics, 1988, 79(1): 12-49.
    [51] Sethian J A. Level Set methods and fast marchig methods[M]. London: Cambridge University Press, 1999.
    [52]刘儒勋,王志峰.数值模拟方法和运动界面追踪[M].合肥:中国科学技术大学出版社, 2001.
    [53] Lafon F, Osher S. High order two dimensional nonoscillatory methods for solving Hamilton-Jacobi scalar equations[J]. Journal of Computational Physics, 1996, 123(2): 235-253.
    [54] Barth T J, Sethian J A. Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains[J]. Journal of Computational Physics, 1998, 145(1): 1-40.
    [55] Arienti M, Hung P, Morano E, et al. A level set approach to Eulerian-Lagrangian coupling[J]. Journal of Computational Physics, 2003, 185(1): 213-251.
    [56] Wang Z, Wang Z J. The level set method on adaptive cartesian grid for interface capturing[R]. AIAA 2004-82, 2004.
    [57] Wang Z, Wang Z J. Multi-phase flow computation with semi-lagrangian levelset method on adaptive cartesian grids[R]. AIAA 2005-1390, 2005.
    [58] Wang Z, Wang Z J. A fast level set method with particle correction on adaptive cartesian grid[R]. AIAA 2006-887, 2006.
    [59] Herrmann M. A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids[J]. Journal of Computational Physics, 2008, 227(4): 2674-2706.
    [60]马东军.可压缩/不可压缩流体交界面高精度数值方法的研究[D].合肥:中国科学技术大学, 2002.
    [61]柏劲松,陈森华.重新初始化的LS方法跟踪二维可压缩多介质流界面运动[J].高压物理学报, 2003, 17(1): 22-29.
    [62]柏劲松.可压缩多介质流体动力学高精度数值计算方法和网格自适应技术[D].绵阳:中国工程物理研究院, 2003.
    [63]张学莹.多介质流体运动界面高分辨率Level Set方法研究[D].南京:南京航空航天大学, 2006.
    [64]张学莹,赵宁,王春武.可压缩多介质流体数值模拟中的Level-Set间断跟踪方法[J].计算物理, 2006, 23(5): 518-524.
    [65] Abgrall R. How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach[J]. Journal of Computational Physics, 1996, 125(1): 150-160.
    [66] Karni S. Multicomponent flow calculations by a consistent primitivealgorithm[J]. Journal of Computational Physics, 1994, 112(1): 31-43.
    [67] Cocchi J, Saurel R, Loraud J. Treatment of interface problems with Godunov-type schemes[J]. Shock Waves, 1996, 5(6): 347-357.
    [68] Ton V T. Improved shock-capturing methods for multicomponent and reacting flows[J]. Journal of Computational Physics, 1996, 128(1): 237-253.
    [69] Luo H, Baum J D, L?hner R. A hybrid interface capturing method for compressible multi-fluid flows on unstructured grids[R]. AIAA 1996-0416, 1996.
    [70] Shyue K-M. A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state[J]. Journal of Computational Physics, 1999, 156(1): 43-88.
    [71] Shyue K-M. A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state[J]. Journal of Computational Physics, 2001, 171(2): 678-707.
    [72] Buyevich Y A. Statistical hydrodynamics for dispersed system, physical background and general equations[J]. J. Fluid Mech., 1971, 49: 489-507.
    [73] Stuhmiller J. The influence of interfacial pressure forces on the character of two-phase flow model equations[J]. Int. J. Multiphase Flow, 1977, 3: 551-560.
    [74] Chang C-H, Liou M-S. A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme[J]. Journal of Computational Physics, 2007, 225: 840-873.
    [75] Drew D, Cheng L, Lahey J R T. The analysis of virtual mass effects in two-phase flow[J]. Int. J. Multiphase Flow, 1979, 5: 233-242.
    [76] Saurel R, Abgrall R. A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows[J]. Journal of Computational Physics, 1999, 150(2): 425-467.
    [77] Munkejord S T, Papin M. The effect of interfacial pressure in the discrete-equation multiphase model[J]. Computers & Fluids, 2007, 36(4): 742-757.
    [78] Saurel R, LeMetayer O. A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation[J]. J. Fluid. Mech., 2001, 431: 239-271.
    [79] Abgrall R, Saurel R. Discrete equations for physical and numerical compressible multiphase mixtures[J]. Journal of Computational Physics, 2003, 186(2): 361-396.
    [80] Luo H, Baum J D, L?hner R. On the computation of multi-material flows using ALE formulation[J]. Journal of Computational Physics, 2004, 194(1): 304-328.
    [81]王兵,许厚谦,谭俊杰,等.在非结构动网格上追踪多介质界面的ALE方法[J].空气动力学学报, 2008, 26(1): 91-95.
    [82] Fedkiw R P, Aslam T, Merriman B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[J]. Journal of Computational Physics, 1999, 152(2): 457-492.
    [83] Fedkiw R P, Marquina A, Merriman B. An isobaric fix for the overheating problem in multimaterial compressible flows[J]. Journal of Computational Physics, 1999, 148(2): 545-578.
    [84] Fedkiw R P, Aslam T, Xu S. The ghost fluid method for deflagration and detonation discontinuities[J]. Journal of Computational Physics, 1999, 154(2): 393-427.
    [85] Fedkiw R P. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method[J]. Journal of Computational Physics, 2002, 175(1): 200-224.
    [86] Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. Journal of Computational Physics, 2003, 190(2): 651-681.
    [87] Liu T G, Khoo B C. The accuracy of the modified ghost fluid method for gas-gas Riemann problem[J]. Applied Numerical Mathematics, 2007, 57(5-7): 721-733.
    [88] Liu T G, Khoo B C, Xie W F. The modified ghost fluid method as applied to extreme fluid-structure interaction in the presence of cavitation[J]. Communications in Computational Physics, 2006, 1(5): 898-919.
    [89] Xie W F, Liu T G, Khoo B C. The simulation of cavitating flows induced by underwater shock and free surface interaction[J]. Applied Numerical Mathematics, 2007, 57(5-7): 734-745.
    [90] Cai L, Feng J-H, Xie W-X. An efficient ghost fluid method for compressible multifluids in Lagrangian coordinate[J]. Applied Numerical Mathematics, 2008, 58(6): 859-870.
    [91] Hao Y, Prosperetti A. A numerical method for three-dimensional gas-liquid flow computations[J]. Journal of Computational Physics, 2004, 196(1): 126-144.
    [92] Terashima H, Tryggvason G. A front-tracking/ghost-fluid method for fluid interfaces in compressible flows[J]. Journal of Computational Physics, 2009, 228(11): 4012-4037.
    [93]王兵,许厚谦,谭俊杰.在动网格上的多介质界面数值处理方法研究[J].力学与实践, 2007, 29(6): 51-55.
    [94]刘伟.细长机翼摇滚机理的非线性动力学分析及数值模拟方法研究[D].长沙:国防科技大学, 2004.
    [95] Liever P A, Habchi S D. Separation analysis of launch vehicle crew escape systems[R]. AIAA 2004-4726, 2004.
    [96] Liever P A, Habchi S D, Engelund W C, et al. Stage separation analysis of the X-43A research vehicle[R]. AIAA 2004-4725, 2004.
    [97] L?hner R, Sharoy D, Luo H, et al. Overlapping unstructured grids[R]. AIAA 01-0439, 2001.
    [98] Zhang S J, Liu J, Chen Y S, et al. Numerical simulation of stage separation with an unstructured chimera grid method[R]. AIAA 2004-4723, 2004.
    [99] Dubuc L, Cantariti F, Woodgate M, et al. A Grid Deformation Technique for Unsteady Flow Computations[J]. Int. J. Numer. Meth. Fluids, 2000, 32: 285-311.
    [100] Batina J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[R]. AIAA 89-0115, 1989.
    [101] Batina J T. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes[R]. NASA TM-102732, 1990.
    [102] Venkatakrishnan V, Mavriplis D J. Implicit method for the computation of unsteady flows on unstructured grids[R]. NASA CR-198206, 1995.
    [103] Blom F J. Considerations on the spring analogy[J]. Int. J. Numer. Meth. Fluids, 2000, 32: 647-668.
    [104] MURAYAMA M, NAKAHASHI K, MATSUSHIMA K. Unstructured dynamic mesh for large movement and deformation[R]. AIAA 2002-0122, 2002.
    [105]郭正,刘君,瞿章华.非结构动网格在三维可动边界问题中的应用[J].力学学报, 2003, 35(2): 140-146.
    [106] Tezduyar T E, Behr M, Liou J. A new strategy for finite element computations involving moving boundaries and interfaces -- The deforming-spatial-domain / space-time procedure: I. The concept and the preliminary numerical tests[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 339-351.
    [107]刘学强,李青,柴建忠,等.一种新的动网格方法及其应用[J].航空学报, 2008, 29(4): 817-822.
    [108] Liu X, Qin N, Xia H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2): 405-423.
    [109]王巍.有相对运动的多体分离过程非定常数值算法研究及实验验证[D].长沙:国防科学技术大学, 2008.
    [110] Tremel U, Hitzel S M, S?rensen K A, et al. JDAM-store separation from an F/A-18C–an application of the multidisciplinary simserver-system SimServer-system[R]. AIAA 2005-5222, 2005.
    [111] Cavallo P A, Dash S M. Aerodynamics of multi-body separation using adaptive unstructured grids[R]. AIAA 2000-4407, 2000.
    [112] Baum J D, L?hner R. Numerical simulation of pilot/seat ejection from anF-16[R]. AIAA 93-0783, 1993.
    [113] Mestreau E, L?hner R. Airbag simulation using fluid/structure coupling[R]. AIAA 96-0798, 1996.
    [114] Baum J D, Luo H, L?hner R. Application of unstructured adaptive moving body methodology to the simulation of fuel tank separation from an F-16C/D fighter[R]. AIAA 97-0166, 1997.
    [115] Bayyuk S A, Powell K G, van Leer B. Computation of flows with moving boundaries and fluid-structure interactions[R]. AIAA 97-1771, 1997.
    [116] Murman S M, Aftosmis M J, Berger M J. Implicit approaches for moving boundaries in a 3-D Cartesian method[R]. AIAA 2003-1119, 2003.
    [117] Murman S M, Aftosmis M J, Berger M J. Simulations of 6-DOF motion with a Cartesian method[R]. AIAA 2003-1246, 2003.
    [118] Shyue K-M. An efficient shock-capturing algorithm for compressible multicomponent problems[J]. Journal of Computational Physics, 1998, 142(1): 208-242.
    [119]恽寿榕,赵衡阳.爆炸力学[M].北京:国防工业出版社, 2005.
    [120] Haas J-F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. J. Fluid Mech., 1987, 181: 41-76.
    [121] Quirk J J, Karni S. On the dynamics of a shock-bubble interaction[J]. J. Fluid Mech., 1996, 318: 129-163.
    [122] Marquina A, Mulet P. A flux-split algorithm applied to conservative models for multicomponent compressible flows[J]. Journal of Computational Physics, 2003, 185(1): 120-138.
    [123] Henderson L F, Colella P, Puckett E G. On the refraction of shock waves at a slow-fast gas interface[J]. J. Fluid Mech, 1991, 224: 1-27.
    [124]周听清.爆炸动力学及其应用[M].合肥:中国科学技术大学出版社, 2001.
    [125] Baker W E著,江科译.空中爆炸[M].北京:原子能出版社, 1982.
    [126] Henrych J著,熊建国等译.爆炸动力学及其应用[M].北京:科学出版社, 1987.
    [127]北京工业学院八系《爆炸及其作用》编写组.爆炸及其作用下册:爆炸对目标的作用和穿甲作用[M].北京:国防工业出版社, 1979.
    [128] Kinney G F, Graham K J. Explosive shocks in air[M]. New York: Spring-Verlag, 1985.
    [129] Brode H L. Numerical solution of spherical blast waves[J]. Journal of Applied Physics, 1955, 26(6): 766-775.
    [130] Brode H L. Blast wave from a spherical charge[J]. Physics of Fluids, 1959(2).
    [131] Goodman H J. Compiled free-air blast data on bare spherical pentolite[R]. Ballistic Research Laboratories Report No.1092, 1960.
    [132] Mills R R, Fisch F J, Jezek B W, et al. Self-consistent blast wave parameters[R]. DASA-1559, 1965.
    [133] Brode H L. A calculation of the blast wave from a spherical charge of TNT[R]. Rand Corp. Report RM-1965, 1957.
    [134] Lehto D L, Larson R A. Long range propagation of spherical shockwave from explosions in air[R]. U.S. Naval Ord. Lab. NOLTR 69-88, 1969.
    [135]郭正.包含运动边界的多体非定常流场数值模拟方法研究[D].长沙:国防科技大学, 2002.
    [136]孙世贤,黄圳圭.理论力学教程[M].长沙:国防科学技术大学出版社, 1997.
    [137]肖业伦.飞行器运动方程[M].北京:航空工业出版社, 1987.
    [138] Sharov D, Luo H, Baum J D, et al. Implementation of unstructured grid GMRES+LU-SGS method on shared-memory, cache-based parallel computers[R]. AIAA 2000-0927, 2000.
    [139]郭正,刘君,王巍.解决非结构动网格接触∕分离问题的一种新方法[A].见:中国第一届近代空气动力学与气动热力学会议论文集[C],绵阳, 2006: 508-513.
    [140] Thomas P D, Lombard C K. The geometric conservation law - a link between finite-difference and finite-volume methods of flow computation on moving grids[R]. AIAA 78-1208, 1978.
    [141] Thomas P D, Lombard C K. Geometric conservation law and its application to flow computations on moving grids[J]. AIAA Journal, 1979, 17(10): 1030-1037.
    [142] Lesoinne M, Farhat C. Geometric conservation laws for aeroelastic computations using unstructured dynamic meshes[R]. AIAA 95-1709, 1995.
    [143] Koobus B, Farhat C. Second-order implicit schemes that satisfy the GCL for flow computations on dynamic grids[R]. AIAA 98-0113, 1998.
    [144] Guillard H, Farhat C. On the significance of the GCL for flow computations on moving meshes[R]. AIAA 99-0793, 1999.
    [145] Mavriplis D J. Achieving higher-order time accuracy for dynamic unstructured mesh fluid flow simulation: role of GCL[R]. AIAA 2005-5114, 2005.
    [146] Balakrishnan A, Chaussee D S. A computational study of heat transfer for laminar hypervelocity flows[R]. AIAA 88-2666, 1988.
    [147] Lyubimov A N, Rusanov V V. Gas flows past blunt bodies, PART II: Tables of the gas dynamic functions[R]. NASA TT-F-715, 1973.
    [148]潘锦珊.气体动力学基础(修订版)[M]:国防工业出版社, 1988.
    [149]张军,耿继辉,谭俊杰.用HLLC方法处理运动边界[J].力学与实践, 2004, 26(2): 21-24.
    [150] Landon R H. NACA0012 oscillatory and transient pitching[R]. Data Set 3 in: Compendium of unsteady aerodynamic measurements, AGARD Report No. 702,1982.
    [151] Li J, Huang S, Jiang S, et al. Unsteady viscous flow simulations by a fully implicit method with deforming grid[R]. AIAA 2005-1221, 2005.
    [152] Toro E F. Riemann solvers and numerical methods for fluid dynamics[M]. Berlin: Springer-Verlag, 1999.
    [153] Colella P, Glaz H M. Efficient solution algorithms for the Riemann problem for real gases[J]. Journal of Computational Physics, 1985, 59(2): 264-289.
    [154] Sod G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27(1): 1-31.
    [155] Swift E, Decius J. Measurement of bubble pulse phenomena[R]. Navord Report 1946.
    [156]梁龙河.水下爆炸特性的一维球对称数值研究[J].高压物理学报, 2002, 16(3): 199-203.
    [157]方斌.水下爆炸冲击波数值模拟中的参数影响[J].哈尔滨工程大学学报, 2005, 26(4): 419-424.
    [158] Mader C. Numerical modeling of detonation[M]. Los Angeles: University of California Press, 1979.
    [159] Mavriplis D J. Unstructured mesh discretizations and solvers for computational aerodynamics[R]. AIAA 2007-3955, 2007.
    [160] Levy D W, Thacker M D. Comparison of unstructured cell- and node-based schemes for the Euler equations[R]. AIAA 99-3185, 1999.
    [161] Frink N T, Parikh P, Pirzadeh S. A fast upwind solver for the Euler equations on three-dimensional unstructured meshes[R]. AIAA 91-0102, 1991.
    [162] Barth T J, Jespersen D C. The design and application of upwind schemes on unstructured meshes[R]. AIAA 89-0366, 1989.
    [163] Venkatakrishnan V. On the accuracy of limiters and convergence to steady solutions[R]. AIAA 93-0880, 1993.
    [164] Han S-H, Choi J-Y. Multiphase CFD prediction of mist formation over airfoil with generalized EOS[R]. AIAA 2006-3902, 2006.
    [165] Liou M-S. Ten years in the making - AUSM-family[R]. AIAA 2001-2521, 2001.
    [166] Toro E F, Spruce M, Speares W. Restoration of the contact surface in the HLL Riemann solver[J]. Shock Waves, 1994, 25(4): 25-34.
    [167] Liou M-S, Steffen C J. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, 107(1): 23-39.
    [168] Wada Y, Liou M-S. A flux splitting scheme with high-resolution and robustness for discontinuities[R]. AIAA 94-0083, 1994.
    [169] Liou M-S. A Sequel to AUSM: AUSM+[J]. Journal of Computational Physics,1996, 129(2): 364-382.
    [170] Kim K H, Lee J H, Rho O H. An improvement of AUSM schemes by introducing the pressure-based weight functions[J]. Computers & Fluids, 1998, 27(3): 311-346.
    [171] Kim K H, Kim C, Rho O-H. Methods for the Accurate Computations of Hypersonic Flows: I. AUSMPW+Scheme[J]. Journal of Computational Physics, 2001, 174(1): 38-80.
    [172] Kim K H, Kim C, Rho O H. Accurate computations of hypersonic flows using AUSMPW+ scheme and shock-aligned grid technique[R]. AIAA 98-2442, 1998.
    [173] Liou M-S. A sequel to AUSM, Part II: AUSM+-up for all speeds[J]. Journal of Computational Physics, 2006, 214(1): 137-170.
    [174] Harten A, Lax P D, van Leer B. On upstreaming differencing and Godunov-type schemes for hyperbolic conservation laws[J]. SIAM Rev., 1983, 25(1): 35-61.
    [175] Davis S F. Simplified second-order Godunov-type methods[J]. SIAM J. Sci. Stat. Comput., 1988, 9(3): 445-473.
    [176] Einfeldt B. On Godunov-type methods for gas dynamics[J]. SIAM J. Numer. Anal., 1988, 25(2): 294-318.
    [177] Batten P, Leschziner M A, Goldberg U C. Average-state Jacobians and implicit methods for compressible viscous and turbulent flows[J]. Journal of Computational Physics, 1997, 137(1): 38-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700