地下爆炸波冲击下地面结构动力响应及滑移隔震研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市地下隧道内的剧烈爆炸,往往会给隧道衬砌、周围土体以及附近地面的结
    构物造成严重损坏。为揭示各类地表结构在该事故引发的地下爆炸波作用下的动力
    响应规律,探讨能降低其响应的一些减隔震措施及其效果,本文针对多层建筑、大
    跨屋盖结构和连续梁桥等三类结构遭受地下爆炸波冲击的动力响应及其滑移隔震
    效果进行了系统的分析研究,主要的创新工作与成果包括以下几个方面:
    (1)引入多种数值模拟方法,采用子结构理论建立起包含地下隧道、半无限土
    体和各类地表结构(分为非隔震和滑移隔震两种情形)在内的各个耦合体系模型。
    基于本文提出的隧道内壁爆炸超压的简化模型和相应于隧道衬砌和周围土体而采
    取的 von-Mises 和 Mohr-Coulomb 等屈服准则,应用 Newmark 增量时程计算中的等
    效载荷法对各体系进行隧道内爆炸作用下的弹塑性动力响应分析。与使用 Lysmer
    粘滞边界法和修正的 Lysmer 粘滞边界法的结果比较,验证了本文方法的有效性。
    (2)针对地下爆炸波冲击下多层建筑和大跨屋盖结构的基底滑移隔震分析和连
    续梁桥的摩擦摆支座隔震分析而分别建立起各个隔震装置的力学模型,提出了以滑
    移接触面压力和相对滑移速度为自变量的各个修正连续摩擦力模型。这不仅消除了
    应用传统库仑摩擦力模型所带来的对啮合、滑移阶段及其过渡边界需时刻跟踪以及
    易造成较大累积误差等缺陷,还使摩擦力的确定过程大为简化。
    (3)应用本文提出的单元塑性区域确定方法,研究了隧道及其周围土体在隧道
    内爆炸发生时的塑性区域拓展规律;分析了自由场地表各点位移、速度及加速度的
    峰值变化趋势以及地下爆炸波沿地表传播的行波效应和衰减特征。至于地下爆炸波
    冲击下上述三类地表结构在同时考虑土-结构相互作用、各个滑移装置的独立工作
    以及地下爆炸波的行波效应等因素时(后两者主要针对大跨屋盖结构和连续梁桥而
    言)的复杂动力响应计算问题,应用本文的模型及求解方法均可自然、良好地加以
    解决。对连续梁桥来说,本文的相关模型及解法还自然考虑了凹形地表对地下爆炸
    波行波效应的影响以及该爆炸波遇凹形地表后的散射问题。
    (4)应用本文方法对地下爆炸波冲击下多层建筑和大跨屋盖结构在非隔震和基
    底滑移隔震两种情况下的动力响应进行了比较分析,揭示了摩擦系数和地基强度等
    参数对其隔震效果的影响规律;对地下爆炸波冲击下连续梁桥在分别设置钢性球铰
    支座、板式橡胶支座和摩擦摆支座等三种情形下的动力响应进行了比较分析,揭示
    了摩擦系数和地基强度等参数对摩擦摆支座隔震效果的影响规律。对大跨屋盖结构
    和连续梁桥还提出了“残余内力”问题,分析了影响其大小的一些因素。上述工作
    既为进一步的理论研究奠定了基础,也为具体工程实践提供了重要而有益的借鉴。
A fierce explosion occurring in an underground tunnel of city usually causes severe
    damage to the tunnel lining, the surrounding soil and even some structures on the ground
    adjacent to the tunnel. In order to discover the laws for the dynamic responses of
    different types of structures to the underground explosion waves from the accident and
    then to develop some shock absorber or isolator of those structures and evaluate their
    effects, a systematical study on the dynamic responses and the sliding-isolation effects of
    the three types of structures, consisting of the multistory building, the long-span
    roof-truss structure and the continuous-girder bridge, under the impact of the
    underground explosion waves is performed in this dissertation, and the primary
    innovative work and achievements are as follows.
    (1) Some different kinds of numerical methods are introduced to establish various
    coupling models of systems, including the underground tunnel, semi-infinite soil and the
    three types of structures whether their sliding isolation equipment is installed or not,
    using sub-structure theory. According to the proposed simplified model of overpressure
    on the tunnel wall and the von-Mises’ and the Mohr-Coulomb’s yielding principles
    corresponding to the tunnel and the soil around respectively, the elaso-plastic dynamic
    responses of various systems to the explosion inside the tunnel are numerically analyzed
    by means of the equivalent-load method in the Newmark increment calculation. In
    comparison with the results of the Lysmer viscous boundary method and the modified
    Lysmer viscous boundary method, the validity of the methods proposed in the
    dissertation is proved.
    (2) In respect of the sliding base-isolation analyses of the multistory building and the
    long-span roof-truss structure and the friction pendulum isolation analyses of the
    continuous-girder bridge, the mechanical models of various isolation installations are
    built, and a number of the modified continuous friction models with the compressive
    force of the sliding interface and the sliding velocity relative regarded as the independent
    variables are proposed. This not only avoids some disadvantages of the traditional
    Coulomb friction model, like tracing momentarily the phases of the meshing and the
    sliding and the boundaries between them and resulting easily in remarkable accumulated
    errors, but also makes the process of determining the friction simplified greatly.
    (3) With a method suggested in the dissertation to determine the plastic region of element,
    the law of extending of the plastic region in the tunnel and the soil around on account of
    the explosion happening in the tunnel is investigated. In addition, the varying trends of
    
    
    the peak displacements, the peak velocities and the peak accelerations at the surface
    points of the free-field are analyzed, and the travelling-wave effects and the attenuation
    characteristics of the underground explosion waves propagating along the earth’s surface
    are testified at the same time. As for the complicated computation about the dynamic
    responses of the three types of structures to the underground explosion waves
    considering the soil-structure interaction, the independent work of every sliding isolation
    installation and the traveling-wave effect of the blast waves all together (the last two
    factors are mainly related to the long-span roof-truss structures and the continuous-girder
    bridge), the models and solutions offered in the dissertation can be used to naturally and
    better deal with it. For the continuous-girder bridge, the related models and solutions can
    also naturally consider both the influence of the concave surface of the earth on the
    traveling-wave effect of the blast waves and the scatter problem of the blast waves on the
    concave surface.
    (4) Some comparative analyses on the dynamic responses of the multistory building and
    the long-span roof-truss structure, considering no isolation and the sliding base-isolation,
    to the underground explosion waves are executed usi
引文
[1] 叶列平译. 图解隔震结构入门,北京,科学出版社,1998.
    [2] 武田寿一主编,建筑物隔震防振与控振(纪晓惠,陈良,鄢宁译),北京,
     中国建筑工业出版社,1997.6~16,23~38
    [3] 范立础编著. 桥梁抗震,上海,同济大学出版社,1997. 206~214
    [4] 范立础,王志强著,桥梁减隔震设计,北京:人民交通出版社,2001.58~
     88
    [5] 范立础,李建中,王君杰著,高架桥梁抗震设计,北京:人民交通出版社,
     2001.32~33
    [6] 范立础,卓卫东著. 桥梁延性抗震设计,北京,人民交通出版社,2001.168~
     194
    [7] 范立础,胡世德,叶爱君著,大跨度桥梁抗震设计,北京:人民交通出版社,
     2001.90~100
    [8] 范立础,袁万城. 桥梁橡胶支座减,隔震性能研究,同济大学学报,
     1989,17(4):447~455
    [9] 万歌,李忠献. 建筑结构滑移隔震的研究及发展应用,天津建设科技,
     2001,11(4):17~20
    [10] B.Westermo,F.Udwadis. Periordic Response of a Sliding Oscillator
     System to Harmonic Excitation. Earthquake Engineering and
     Structural Dynamics, Vol.11,No.1,1983:135~146
    [11] Masashi Iura,Kunihito Matsui,etal. Analytical expressions for three
     different modes in harmonic motion of sliding structures. Earthquake
     Engineering and Structural Dynamics, Vol.21, No.9, 1992: 757~769
    [12] N.Mostaghel,M.Hejazi,et al. Response of sliding structures to
     harmonic support motion. Earthquake Engineering and Structural
     Dynamics, Vol.11, No.3, 1983: 355~366
    [13] N.Mostaghel,M.Khodaverdian. Dynamics of resilient-friction base
     isolator(R-FBI). Earthquake Engineering and Structural Dynamics.
     Vol.15,No.3,1987:379~390
    [14] 樊剑,唐家祥. 带限位装置的摩擦隔震结构动力特性及地震反应分析. 建
     筑结构学报, 2001, 22(1): 20~25
    [15] 俞茂宏,马国伟,王一兵等. 砖混建筑结构基础隔震分析. 建筑结构学报,
     1996, 17(4):52~59
     164
    
    
    参考文献
    [16] 樊剑,唐家祥. 基于指数摩擦力模型滑移隔震结构的动力特性,振动与冲
     击,2000,19(3):30~33
    [17] 樊剑,唐家祥. 带限位装置的摩擦隔震结构动力特性分析,噪声与振动控
     制,2000(3):24~27,37
    [18] 樊剑,唐家祥. 滑移隔震结构的动力特性及地震反应,土木工程学报,
     2000,33(4):11~16
    [19] 樊剑,唐家祥. 滑移隔震结构的地震反应分析,工程抗震,2001(3):27~
     31
    [20] 熊仲明,王清敏,丰定国等. 基础滑移隔震房屋抗震性能的试验研究,建
     筑结构,2000,30(3):13~16
    [21] 熊仲明,俞茂宏,刘云贺等. 基础滑移隔震体系的地震响应计算,应用力
     学学报,2002,19(4):139~142
    [22] 熊仲明,王清敏. 基础滑移隔震体系中的复位弹簧的刚度计算,工程抗震,
     1997,(4):26~28
    [23] 熊仲明,王清敏,丰定国等. 基础滑移隔震房屋滑移位移的简化计算,西
     安建筑科技大学学报,1998,30(3):301~303
    [24] 梁文,杨树标. 多层砖混结构的滑移隔震方法,河北建筑科技学院学报,
     2000,17(2):14~16
    [25] 邸元,丰定国,王清敏. 基础滑动隔震体系地震反应分析,西安建筑科技
     大学学报,1996,28(2):162~166
    [26] 杨志勇,刘福义,范么清等.摩擦隔震结构中不同摩擦力模型在地震作用下
     结构响应分析,地震工程与工程振动,2003,23(4):139~143
    [27] 朱玉华,吕西林,杜芳等. 组合隔震系统滑动支座的滑移系数研究,结构
     工程师,2001(2):34~40,44
    [28] 朱玉华,吕西林. 滑移摩擦隔震系统在多向地面运动作用下的试验研究,
     地震工程与工程振动,2002,22(5):77~84
    [29] 张文芳. 基础隔震结构设置摩擦阻尼器的地震反应研究,土木工程学报,
     2001,34(5):1~9
    [30] 黄斌,常晓林. 等效线性的基础隔震建筑的动力响应. 振动与冲击,2000,
     19(4):35~37
    [31] 徐晓,李红梅,郝文秀等. 基础摩擦滑移隔震结构摩擦系数敏感性分析,
     河北农业大学学报,2002,25(4):164~166
    [32] 李红梅,魏建国,杜占良等. 摩擦滑移隔震结构的减震分析,河北农业大
     学学报,2002,25(3):102~105
     165
    
    
    参考文献
    [33] 李海岭,葛修润. 土-结构动力相互作用对隔震结构影响的模态分析法,振
     动与冲击,2000,19(3):63~67
    [34] 邹立华,赵人达. 土-结构相互作用基础隔震体系地震反应分析,兰州铁道
     学院学报,2003,22(4):72~75
    [35] M.C.Constantinou et al. Experimental study of FPS system in bridge
     seismic isolation, Earthquake Eng. Struct. Dyn.,1996,25:65~78
    [36] J.S.Hwang,L.H.Sheng. Effective stiffness and equivalent damping of
     base-isolated bridges, Journal of Structural Engineering,
     ASCE,Vol119, No.10, 1993:3094~3101
    [37] 陈兴冲. 采用不同隔震支座时桥梁隔震性能的比较,工程力学,1999,
     3(A03):800~805
    [38] 龚一琼,胡勃,袁万城等. 连续梁桥的减隔震设计,同济大学学报,
     2001,29(1):94~98
    [39] 李建中,辛学忠. 连续梁桥减震,隔震体系非线性地震反应分析,地震工
     程与工程振动,1998,18(3):67~73
    [40] 李建忠,黄道凤. 连续梁桥隔震体系非线性地震反应分析,石家庄铁道学
     院学报,1996,9(1):15~20
    [41] 司马玉洲,张建文. 利用隔震技术的连续刚构桥结构振动特性,南阳师范
     学院学报,2003,2(3):30~33
    [42] 张骏,阎贵平. 减隔震支座对梁式桥抗震性能的影响,中国公路学报,
     2002,15(1):38~43
    [43] Josef.Henrych. The dynamics of explosion and its use. Amsterdam ,
     New York : Elsevier Scientific Pub. Co. New York: distribution for
     the U.S.A. and Canada, Elsevier/North-Holland, 1979.42~47,63~
     81,151~157
    [44] J.亨利奇著,爆炸动力学及其应用(熊建国等译),北京:科学出版社,
     1987.8~15,123~133
    [45] 李翼祺,马素贞. 爆炸力学,北京,科学出版社,1992.76~79,249~274
    [46] 李国豪主编,工程结构抗爆动力学,上海,上海科学技术出版社,1989.1~
     5,229~260
    [47] 恽寿榕,涂侯杰,梁德寿等编著. 爆炸力学计算方法,北京,北京理工大
     学出版社,1995.197~211
    [48] 张雪亮,黄树棠. 爆破地震效应,北京,地震出版社,1981.1~30
    [49] S.P.Singh,Rodney D.Lamond. Prediction and Measurements of Blast
     166
    
    
    参考文献
     Vibrations. International Journal of Surface Mining and Reclamation,
     Vol.7,No.4, 1993:149~154
    [50] M.M.Ismail and S.G.Murray, Study of the Blast Wave Parameters from
     Small Scale Explosions,Propellants,Explosives,Pyrotechnics 1993,
     18,11~17
    [51] B.Vanderstraeten,M.Lefebvre,J.Berghmans. A simple blast wave model
     for bursting spheres based on numerical simulation. Journal of
     Hazardous Materials. Vol.46,Issue:2-3,1996:145~157
    [52] 林大超,白春华,张奇. 空气中爆炸时爆炸波的超压函数,爆炸与冲击.
     2001,21(1):41~46
    [53] D.K.Pritchard,D.J.Freeman,P.W.Guilbert. Prediction of explosion
     pressures in confined spaces. Journal of Loss Prevention in the
     Process Industries. Vol.9,Issue:3,1996, 205~215
    [54] 段卓平,恽寿榕. 密闭爆炸容器实验研究及数值模拟,中国安全科学学报,
     1994,4(3):1~7
    [55] P. D. Smith, G. C. Mays, T. A. Rose et al. Small scale model of complex
     geometry for blast overpressure assessment[J]. International
     Journal of Impact Engineering, 1992, 12(3): 345—360
    [56] P.C.Chan, H.H.Klein, Study of Blast Effects inside an Enclosure,
     Journal of Fluids Engineering Transaction, ASME, Vol.116, No.3,
     September 1994, ASME, New York, NY, USA, 450~455.
    [57] E.D.Esparza,W.E.Aker,G.A.Oldham. Blast pressure inside and outside
     suppressive structures.USA:South-west Research Institute,1975: 8~
     14
    [58] W.A.Kccnan,J.E.Tancreto. Blast environment from fully and partially
     vented explosion in cubicles. USA: Civil Engineering Laboratory
     Naval Construction Battalion Center,1975:1~12
    [59] C.R.Welch. In-tunnel airblast engineering model for internal and
     external detonations. Proceedings of the 8th International
     Symposium on Interaction of the Effects of Munnitions with
     Structures. Mclean Virginia, 1997:195~208.
    [60] C.Lunderman,A.P.Ohrt. Small-scale experiment of in-tunnel airblast
     from external and internal detonations. Proceedings of the 8th
     International Symposium on Interaction of the Effects of Munnitions
     with Structures. Mclean Virginia, 1997:209~221
     167
    
    
    参考文献
    [61] Wenhui.Zhu,Honglu.Xue,Guangquan.Zhou,G.K.Schleyer. Dynamic res-
     ponse of cylindrical explosive chambers to internal blast loading
     produced by a concentrated charge. International Journal of Impact
     Engineering, Vol.19,Issue:9-10,1997: 831~845
    [62] Y.Wu,R.G.Siddall. Mathematical model for vented explosions in a
     cylindrical chamber. Process Saf. Environ. Prot. Trans. Inst.
     Chem.Eng., Part B,Vol74,No.1,1996:31~37
    [63] Jun.He, Yalun.Yu, Zhongwua.Li, Mathematical Model for the Demolition
     of Tubular Structures by Controlled Blasting. FRAGBLAST, Vol.3,
     No.2,1999,127~135.
    [64] 隋树元,王树山. 终点效应学,北京,国防工业出版社,2000:285~289
    [65] 杨科之,杨秀敏,坑道内化爆冲击波的传播规律,爆炸与冲击,2003.23(1):
     37~40
    [66] 庞伟宾,何翔,李茂生等. 空气冲击波在坑道内走时规律的实验研究,爆
     炸与冲击,2003,23(6):573~576
    [67] 徐龙河,基于 MR 阻尼器的半主动结构控制的理论与试验研究:[博士学位
     论文],天津;天津大学,2004
    [68] 虞季森编. 中大跨建筑结构体系及造型,北京,中国建筑工业出版社,
     1990.106~116
    [69] 哈尔滨建筑工程学院编. 大跨房屋钢结构(新一版),北京,中国建筑工业
     出版社,1993. 3~6
    [70] 蓝天,张毅刚著. 大跨度屋盖结构抗震设计,北京,中国建筑工业出版社,
     2000.3~6
    [71] 侯鹏,彭世江. 大跨度空间结构在地震行波作用下的响应,四川建筑,
     2003,23(5):49~50
    [72] 马保林编著,李子青主审. 高墩大跨连续刚构桥,北京,人民交通出版社,
     2001.27~48
    [73] 李传习,夏桂云编著. 大跨度桥梁结构计算理论,北京,人民交通出版社,
     2002.88~113
    [74] 李忠献,史志利. 行波激励下大跨度连续刚构桥的地震反应分析,地震工
     程与工程振动,2003,23(2):68~76
    [75] 刘洪兵,范立础. 大跨桥梁考虑地形及多点激励的地震响应分析,同济大
     学学报,2003,31(6):641~646
    [76] 潘旦光,楼梦麟. 多点输入下大跨度结构地震反应分析研究现状,同济大
     168
    
    
    参考文献
     学学报,2001,29(10):1213~1219
    [77] 赵大亮,甘亚南,王根会. 大跨度连续梁桥地震反应分析,兰州铁道学院
     学报,2002,21(6):87~90
    [78] 康希良,王步云,赖远明. 梁桥与基础共同工作时的弹塑性地震反应分析,
     甘肃科学学报,1999,11(2):23~29
    [79] 屈铁军. 土-端承桩-结构相互作用对连续梁桥自振特性的影响,东北林业
     大学学报,1991,19(2):104~111
    [80] W. E. Baker, P. A. Cox, P. S. Westine, et al. Explosion Hazards and
     Evaluation (Fundamental Studies in Engineering 5), Amsterdam, the
     Netherlands, Elsevier Scientific Publishing Company, 1983: 238~
     243
    [81] 田力,李忠献. 地下爆炸冲击波引起的基底滑移隔震建筑的动力响应. 爆
     炸与冲击,Vol.24,No.1,2004,16~23.
    [82] 田力,李忠献,严士超. 桩承高层建筑与土体间动力相互作用研究. 振动
     工程学报,Vol.15,No.2,2002,215~219.
    [83] 田力,严士超. 双塔高层建筑—多层地下室—桩—土系统动力相互作用研
     究.工程抗震,No.4,2001,8~15
    [84] 郑颖人,龚晓南.岩土塑性力学基础,北京,中国建筑工业出版社,1989.19~
     165
    [85] 龚晓南编著,土塑性力学,杭州,浙江大学出版社,1990.74~124
    [86] 张学言编著. 岩土塑性力学,北京,人民交通出版社,1993.91~191
    [87] 杨桂通,熊祝华编著. 塑性动力学,北京,清华大学出版社,1984.16~
     30,48~52
    [88] 姜晋庆,张铎,结构弹塑性有限元分析法,北京,宇航出版社,1990:61~
     97,337~342,398~410
    [89] 丁红岩,半无限平面的弹塑性动静力响应:[博士学位论文],天津;天津大
     学,1994
    [90] 张树传,动、静荷载作用下半无限地基的弹塑性变形:[硕士学位论文],
     天津;天津大学,1996
    [91] P.A.Cundall et al Solution of infinite dynamic problems by finite
     modeling in time domain. Conf. App. Num. Modelling Madrid,1978
    [92] P.Bettess. Infinite elements. Int. J. Num. Meth. Eng,1977,11,53~
     64
    [93] Y.K.Chow and I.M.Smith. Static and periodic infinite solid elements.
     169
    
    
    参考文献
     Int. J. Num. Meth. Eng, 1981(17):503~526
    [94] F.Medina et al. Infinite elements for elastodynamics. Earthq. Eng.
     Struct. Dyn,1982(10):699~709
    [95] Zhang Chuhan,Zhao Chongbin. Coupling method of finite and infinite
     elements for strip foundation wave problems. Earthq. Eng. Struct.
     Dyn. 1987,(15): 839~851
    [96] Zhang Chuhan,Zhao Chongbin. Effect of topograghy and geological
     condition on strong ground motion. Earthq. Eng. Struct.
     Dyn,1988,(16):81~97
    [97] 赵崇斌, 张楚汉, 张光斗. 用无穷元模拟半无限平面弹性地基. 清华大学
     学报, 1986, 26(3): 51—64
    [98] 赵崇斌, 张楚汉, 张光斗. 映射动力无穷元及其特性研究,地震工程与工
     程振动.1987,7(3):1~13
    [99] 赵崇斌, 张楚汉, 张光斗. 弹性和粘弹性地基无限域动力模型,岩土工程
     学报.1991,13(1):11~23
    [100] 赵崇斌,张楚汉. 工程中的无穷元方法及其进展,陕西机械学院学报,
     1989,5(1):98~106
    [101] 赵崇斌,张楚汉. 地基无限域的动力模拟:有限元与无穷元耦合模型,水
     利学报,1990(6):20~27
    [102] 赵崇斌,张楚汉. 河谷形态对平面 SH 波散射的影响,岩土工程学报,
     1990,12(1):1~11
    [103] 陈健云,林皋,三维结线动力无穷元及其特性研究,岩土力学.1998,19(3):
     14~19
    [104] 陈健云,林皋. 复杂地基中波动问题的数值模拟及其近似求解方法,水利
     学报,1998(9):57~61
    [105] 张伯艳,陈厚群. 无穷元刚度矩阵及其数值积分,地震工程与工程振动,
     1992,12(3):92~99
    [106] R.W.Clough,J.Penzien 著,结构动力学(王光远等译),北京,科学出版
     社,1981,176~182,228~238,251~253
    [107] 刘昭培,丁学成,结构动力学,北京,高等教育出版社,1989.194~224
    [108] 林家浩编著,计算结构动力学,北京,高等教育出版社,1989.237~245
    [109] 洪锦如编著. 桥梁结构计算力学,上海,同济大学出版社,1998. 36~
     51,157~160
    [110] 张海龙编著. 桥梁的结构分析,程序设计,施工监控,北京,中国建筑工
     170
    
    
    参考文献
     业出版社,2003.127~140,184~208
    [111] 肖汝诚编著. 桥梁结构分析及程序系统,北京,人民交通出版社,2002.
     10~21,83~87
    [112] 石洞,石志源,黄东洲编著. 桥梁结构电算,上海,同济大学出版社,
     1987.234~256
    [113] 王勖成,邵敏编著,有限单元法基本原理和数值方法(第二版),北京,
     清华大学出版社,1997:448~454
    [114] Naser Mostaghel, Todd Davis. Representations of Coulomb Friction
     for Dynamic Analysis. Earthquake Engineering and Structural
     Dynamics, 1997, 26(5): 541~548
    [115] John. Lysmer and Roger L. Kuhlemeyer, Finite Dynamic Model for
     Infinite Media, Journal of the Engineering Mechanics Division, ASCE,
     August, 1969, 859~877
    [116] 沈冯强, 改进的阻尼透射边界. 合肥工业大学学报, 1998, 21(6): 18~
     21.
    [117] 沈冯强. 周期分布结构-地基系统在竖向传播地震作用下的透射边界模
     型,合肥工业大学学报,2000.23(2):173~176,181
    [118] 沈冯强. 倾斜入射地震下结构-地基的透射边界,合肥工业大学学报,
     2000,23(4):533~537,541
    [119] 蔡永恩编著 热弹性问题的有限元方法及程序设计,北京,北京大学出版
     社,1997.188~204
    [120] 罗定安编著.工程结构数值分析方法与程序设计,天津,天津大学出版社,
     1995.146~165,202~229
    [121] 戴俊, 岩石动力学特性与爆破理论, 北京, 冶金工业出版社,2002.
    [122] 熊代余,顾毅成主编,岩石爆破理论与技术新进展,北京,冶金工业出版
     社,2002.
     171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700