扁平绕带式压力容器在爆炸载荷作用下的动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扁平绕带式压力容器是一种新型压力容器,已被广泛地应用于石油、化工和机械等工业领域。许多学者对扁平绕带式压力容器的静态力学性能问题进行了大量的实验研究和理论分析并取得了许多重要成果。在石油化工这一特殊行业中,这一类型的压力容器往往处于高温和高压下运行,在突发故障下可能引起的爆炸是不可避免的。其次,目前广泛使用的整体式高压容器,其难以克服的固有缺陷逐渐显露,扁平绕带式压力容器有望解决这类缺陷问题而被开发为新型高压容器。在公共安全方面,自美国发生9·11恐怖爆炸事件以来,国际上恐怖爆炸犯罪活动日益猖獗,为防止类似突发事件的发生,国家有关重要和安全部门以及人员高度集中或流动频繁的公共场所也需配置制造简便、体积较小和造价较低的爆炸容器以备紧急处理可疑爆炸物品,设计灵活、材料质量可靠和制造简便以及成本低的扁平绕带式压力容器具有被开发为此类爆炸容器的潜在前景。但是,对扁平绕带式压力容器在爆炸冲击载荷作用下动力特性问题研究的公开文献报道几乎没有。为了揭示扁平绕带式压力容器的动力特性,建立有关参量之间的关系,本文从实验研究和理论分析以及数值模拟等方面开展了一系列的工作,取得了以下重要结果:
     1)本文对钢带缠绕角度分别为10°、15°、20°的扁平绕带式压力容器和相同厚度相同长度的整体式圆柱形压力容器在其内腔中心位置安放TNT炸药进行了爆炸加载实验。
     实验研究发现,在大于100gTNT当量的爆炸下扁平绕带式压力容器产生明显的残余变形,主要集中在爆心附近且最大值在爆心横截面上。钢带缠绕角度为10°的扁平绕带式压力容器在500g TNT当量的爆炸冲击载荷作用下爆破,钢带缠绕角度为20°的扁平绕带式压力容器在450g TNT当量的爆炸冲击载荷作用下爆破,表明钢带缠绕倾角较小的扁平绕带式压力容器能够承受较大TNT当量的爆炸冲击载荷作用。钢带长度方向以拉应变为主、宽度方向以压应变为主,最大应变值出现在爆心横截面处,封头上的应变值是一个比爆心横截面处应变值小一个数量级的值。在相同TNT当量的爆炸冲击载荷作用下,扁平绕带式压力容器的塑性变形大于整体式圆柱形压力容器的塑性变形。扁平绕带式压力容器爆破前有明显的前兆,破裂位置在爆心附近,爆破后产生的碎片极少,对周围环境造成的危害程度较小。
     2)在实验研究的基础上,基于刚塑性理论,简化载荷形式,对扁平绕带式压力容器的动力响应问题进行了分析,给出了容器在矩形脉冲载荷和三角脉冲载荷作用下的塑性变形模态,推导出了容器的静态极限载荷、残余变形和响应时间的计算式。在矩形脉冲载荷作用下,扁平绕带式压力容器能够承受的静态极限载荷低于相同壁厚和相同长度的整体式圆柱形压力容器的静态极限载荷,钢带缠绕层数较多的扁平绕带式压力容器承受的静态极限载荷较大。在三角脉冲载荷作用下,扁平绕带式压力容器的塑性变形模态与实验得到的变形形状基本吻合,残余变形发生在爆心附近区域。扁平绕带式压力容器在较大三角脉冲载荷作用下的内壳和钢带缠绕层间分离,离内壳越远的钢带缠绕层其残余变形越大;绕带残余变形与实验值相比较偏大,这可能是由于忽略钢带缠绕预应力、层间摩擦力作用和材料应变率效应而造成的。在相同TNT当量的爆炸冲击载荷作用下,钢带缠绕倾角较小的扁平绕带式压力容器的塑性变形较小。
     3)采用双线性弹塑性本构模型,运用大型非线性有限元程序LS—DYNA对爆炸冲击载荷作用下的绕带式压力容器进行了数值模拟。有限元模型的几何尺寸和材料参数与实验容器的相同,通过Cowper-Symonds模型描述应变率效应。
     通过数值模拟研究发现,在大于100gTNT当量的爆炸冲击载荷作用下,扁平绕带式压力容器存在明显的残余变形,最大残余变形出现在爆心横截面处,残余变形由爆心处向远爆处方向迅速减小,与实验观察的现象相吻合。在相同TNT当量的爆炸冲击载荷作用下,钢带缠绕层的残余变形大于内壳的残余变形,越靠外的缠绕层,其残余变形越大,与理论分析结果一致。不考虑层间摩擦力作用的扁平绕带式压力容器内壳和最外层钢带的残余变形模拟值分别是考虑摩擦力作用的1.3倍和1.4倍左右,表明钢带层间摩擦力对扁平绕带式压力容器的塑性变形起着显著的抑制作用,说明在理论分析中没有考虑摩擦力作用的影响也是导致钢带缠绕层残余变形偏大的原因之一。在相同TNT当量的爆炸冲击载荷作用下,缠绕倾角越小的扁平绕带式压力容器,其相应的残余变形也越小,表明缠绕角度较小的扁平绕带式压力容器,其抗塑性变形能力较强。在100gTNT当量以上的爆炸冲击载荷作用下,扁平绕带式压力容器的残余变形大于整体式圆柱形压力容器的残余变形,这是由于钢带材质比整体式圆柱形压力容器材质较软、两种容器结构的能量吸收和耗散机理不同而造成的。
     扁平绕带式压力容器具有较强的塑性变形能力和较好的能量耗散机理,在发生爆裂时对周围环境造成的危害程度较小,可以开发为单次使用的反恐和公共安全领域运用的爆炸容器
     本课题的研究在国内外尚属首次,研究结果对扁平绕带式压力容器抗爆设计和工程应用有重要的指导价值。
A pressure vessel with flat-wound steel ribbons is a new kind of pressure vessel. Many such vessels are serving in industrial fields, such as petroleum, chemical industry, mechanical industry, etc. Many scholars have studied static mechanics characters of ribbon vessels in experimental and theoretic aspects and many important results are obtained. Especially, in the field of petroleum and chemical industry the vessels often work under high temperature and pressure circumstances. It is possible that the ribbon vessels are subjected to inner explosion loading in the process of utilizing practically because of bigger inner pressure. At present, disadvantages of the monobloc containment vessels used widely appear. Consequently, it is possible that some problems which are caused by the monobloc thick-walled containment vessel are solved through using the flat ribbon helically wound structure. Furthermore, in the public safety, because terroristic activities turn to more and more frequent since "9·11", some devices are needed to deal with explosive substances in public concourses, such as train stations, airports, post offices, wharfs and squares, etc. It has well foreground that the ribbon vessels with smaller volumes and low costs are developed to that type of vessels. But, there are few papers about dynamic characteristics of pressure vessels with flat-wound steel ribbon subjected to explosion loading. In order to reveal the dynamic characteristics of the pressure vessels, and to establish the quantitative relations between the concerned parameters, a series of studies have been made experimentally, theoretically and numerical simulation in present paper. The important results are summarized in the following several aspects.
     First, the vessels with 10°, 15°and 20°winding angle , respectively, and the monobloc cylindrical vessel are investigated experimentally. The experimental results show that the pressure vessels with flat-wound ribbons have residual deformation subjected to inner central blast loading when the quantity of explosive is more than 100g TNT. And the deformations are mainly concentrated near the center section of blasting. The vessel with 10°winding angle ruptures under 500g TNT. The vessel with 20°winding angle ruptures under 450g TNT, and the rupture locations of two vessels are near the central section of explosion. In the same time, the few broken fragments are produced. The ribbons are subjected to tensile stress in the length direction and compressive stress in the width direction. And the values of stress decrease gradually from the center of the vessels to the cover and flange. Experiment shows that the vessels subject to larger TNT explosion impact loading with the decreasing of the winding angle of the ribbons. The ribbon vessels compared with the monobloc vessels have better capacity of the plastic deformation, absorbing and releasing energy. In addition, both sizes of rupture and harm to environment are less than those of the monobloc.
     Secondly, based on the experimental results, the dynamic responses of the pressure vessels with flat-wound steel ribbons are studied through using rigid-plastic theory. The models of the plastic deformation of the vessels subjected to internal rectangular loading and triangular loading are given, respectively. The formulas of static limit loading, residual deformations and time of dynamic responses of the vessels are obtained. The limit loading of the vessels subjected to rectangular loading is smaller than that of the monobloc cylindrical vessel under the same conditions. The better the ribbon vessel capacity subjected to limit loading is, the more layers of the ribbons is. The deformation models of the vessels subjected to triangular loading are basically consistent with the ones that are obtained by the experiments. The residual deformations are concentrated on close center section of the vessels. The inner shell and the ribbons of the vessels are separated under the larger rectangular loading. The more the distance of the ribbons away from the inner shell is, the larger the residual deformations of them are. The theoretical values of the residual deformations of the ribbons are larger than the experimental ones because the pre-stresses of steel ribbons, the frictional force between the layers and the strain rate effect of the material are ignored possibly. The residual deformations of the vessels increase gradually with the winding angle increasing. The smaller the winding angle of the ribbons is, the higher the capacity of the deformation resistance of the vessel is.
     Finally, based on elastic-plastic theory, numerical simulation is achieved by non-linear finite element code LS-DYNA. The sizes and material parameters of FEM of vessels are identical to those of the experimental vessels. The strain rate effect of the materials is considered using Cowper-Symonds model. The numerical results show that the vessels have residual deformation when the quantity of explosive is larger than 100g TNT subjected to inner center explosion loading. The maximum deformation is on the centre cross section of explosion. The results simulated are consistent with those obtained by the experiment. The residual deformations of the ribbons is larger than those of the inner shell, and the larger the distance from the ribbon to the inner shell is, the larger the residual deformations of the ribbons are. The results are identical to the theoretical. The frictional forces between the ribbon layers improve the capacity of the deformation resistance remarkably. Therefore, the residual deformations of the ribbons theoretically are larger than those numerically. The vessel with smaller winding angle has the higher deformation resistance capacity. The residual deformations of the vessels are larger than those of the monobloc cylindrical vessels subjected to more than 100g TNT, it is caused by tensile strength of the materials made up the ribbons is smaller than that of the monobloc materials, and two kinds of vessels have different principle of absorbing and releasing energy.
     It is the first time that the study on dynamic characteristics of the pressure vessels with flat-wound steel ribbons in this paper is performed in the field. The work are extremely worthy for explosion resistance design and engineering application on the pressure vessels with flat-wound ribbons.
引文
[1] 浙江大学化机教研室。“新型扁平绕带高压容器”。1965,5
    [2] 朱国辉。新型薄内筒扁平绕带式高压容器。浙江大学学报,1982,16(1),84-90
    [3] 朱国辉,郑津洋。新型绕带式压力容器。机械工业出版社,1995
    [4] 郑津洋。扁平绕带式压力容器优化设计理论及工程应用分析。博士学位论文,浙江大学,1992
    [5] Zheng J Y, Sun G.Y, Wang L Q. A review of development in layered vessels using flat-ribbon-wound cylindrical shells. International Journal of Pressure Vessels and Piping. 1998, 75, 653-659
    [6] 张立权。扁平绕带容器的分析和探讨。化工与通用机械。1979,10,28-40
    [7] Huang P S, Zhu G.. Stress analysis of pressure vessel with wound-flat steel ribbons. ASME Journal of Pressure Vessel Technology. 1992, 114, 94-100
    [8] Zheng J Y, Xu P, Hu Y L. The state of the art of explosion containment vessels and its unique structure. Proceedings of the Second National Meeting on Experimental Techniques of Explosion dynamics, 2002, 161-166
    [9] Zheng J Y, Hu Y L, Zhu G H. Analysis and design of explosion containment vessels. Proceedings of the 5th Asia-Pacific conference on shock & impact loads on structures. Changsha, China, 2003, 487-494
    [10] 朱国辉。多层薄内筒扁平绕带式压力容器。中国专利 No.86210510
    [11] ASME Boiler & pressure vessel code, code case 2229, design of layered vessels using flat ribbon wound cylindrical shells, section Ⅷ, Division 1, 1996
    [12] ASME Boiler & pressure vessel code, code case 2269, design of layered vessels using flat ribbon wound cylindrical shells[S], section Ⅷ, Division 2, 1997
    [13] 朱国辉,陈志平,郑传祥等。新型绕带式压力容器技术的突出发展优势。化工机械。2000,27(3),162-166
    [14] 骆晓玲,黄载生。新型扁平绕带式压力容器。机械工程师。1999,2:15
    [15] 朱瑞林,杨金来,胡兆吉等。扁平绕带式压力容器综合评述。科技通报。1999,15(1),42-47
    [16] Baker W E, Allen F J. The response of elastic spherical shells to spherically symmetric internal blast loading. Proc. 3rd U. S. Nat. Cong. Appl. Mech. Amer. Soc. Mech. 1958, 6, 79-87
    [17] Baker W E. The elastic-plastic response of thin spherical shells to internal blast loading. J. Appl. Mech. 1960, 27, 139-144
    [18] Baker W E, Hu W G L, Jackson, et al. Elastic response of thin spherical shells to axiymmetric blast loading. J. Appl. Mech. 1966, 33,800-806
    [19] 1968, 5, 47-50
    [20] 1968, 6, 94-98
    [21] 鲍姆,斯达纽柯维奇著(众智译)。爆炸物理学。北京:科学出版社,1964
    [22] Buzukov A A. Characteristics of the behaviour of the walls of explosion chambers under the action of pulsed loading. Phys. Combustion & Explosion. 1976, 12(4), 605-610
    [23] Kornev V M, Adishchev V V, Mitrofanov A N, et al. Experimental investigation and analysis of the vibrations of shell of an explosion chamber. Phys. Combustion & Explosion. 1979, 15(6), 155-161
    [24] Goodier J N, McIVOR I K. The elastic cylindrical shell under nearly uniform radial impulse. J. Appl. Mech.. 1964, 31,259-266
    [25] Lindberg H E. Buckling of a very thin cylindrical shell due to an impulse pressure. J. Appl. Mech.. 1964, 31, 267-272
    [26] Lindberg H E . Stress amplification in a ring caused by dynamic instability. J. Appl. Mech.. 1974,41,392-400
    [27] Zhdan S A. Dynamic load acting on the wall of an explosion chamber. Phys. Combustion & Explosion. 1981, 17(2), 142-6
    [28] Belov A I, Belyaev V M, Kornilo V A, et al. Calculation of wall loading dynamics in a spherical combustion chamber. Phy. Combustion & Explosion. 1985, 21(6), 132-136
    [30] Belov A I, Kornilo V A, Klapovskii V E, et al. Comparative investigation of the elastic reaction of cylindrical and spherical shells under internal explosive loading. Phys. Combustion & Explosion. 1990, 26(1), 111-114
    
    [31]Konon U A. Explosive Welding. Press of Mechanical Industry. Moscow. 1987,188
    [32] Ivanov A G, Ryzhanskii V A, Tsypkin V I. Scale effect in the strength of a pressure vessel under internal explosive loading. Phys. Combustion & Explosion. 1981,17(3), 327
    [33] Maltsev V A. Proc. 7~(th) Int. Symp. on "Use of Explosive Energy in Manufacturing Metallic Materials of New Properties" . Pardubice, 1988,517
    [34] Anderson PD. SC-DR-72-0591
    [35] Afanosenko S I. Proc. 7~(th) Int. Symp. on "Use of Explosive Energy in Manufacturing Metallic Materials of New Properties" . Pardubice, 1988,508
    [36] Duffey TA, Romero C. Strain growth in spherical explosive chambers subjected to internal blast loading. International Journal of Impact Engineering. 2003, 28: 967-983
    [37] Hodge P G Jr. Impact pressure loading of rigid-plastic of cylindrical shells. J. Mech. Phys. Solids. 1955,3, 176-188
    [38] Hodge P G Jr, Brooklyn N Y. The influence of blast characteristics on the final deformation of circular cylindrical shells. J. Appl. Mech.. 1956, 23, 617-624
    [39] Hodge P G Jr. The effect of the end conditions of the dynamic loading of plastic shells. J. Mech. Phys. Solids. 1959, 7, 258-263
    [40] Youngdahl C K. Correlation parameters for eliminating the effect of pulse shape on dynamic plastic deformation. J. Appl. Mech. 1970, 9, 744-752
    [41] Youngdahl C K. Dynamic plastic deformation of circular cylindrical shells. J. Appl. Mech. 1972, 9, 746-750
    [42] 章仕表。爆炸容器研制技术总结。江西洪都爆炸机床设备厂(内部资料),1984
    [43] 周复方。爆炸容器鉴定会资料汇编。西南流体物理研究所。1986
    [44] 赵士达。爆炸容器。爆炸与冲击。1989,19(1),85-96
    [45] 张守中,孙业斌。爆炸载荷作用下刚—塑性圆柱壳体的变形和破裂。兵工学报。1985,2,59-64
    [46] 林祖森。受冲击内压作用的厚壁圆筒的动力分析。兵工学报。1986,1,57-64
    [47] 朱文辉。圆柱形爆炸容器动力学强度的理论和实验研究。博士学位论文。长沙。国防科技大学,1994
    [48] 朱文辉,薛鸿陆,刘仓理等。爆炸容器承受内部加载的实验研究。爆炸与冲击。1995,15(4),374-381
    [49] 朱文辉,薛鸿陆,韩钧万等。爆炸容器动力学研究进展评述。力学进展,1996,26(1),68-77
    [50] 钟方平,陆春毅,林俊德等。带平板封头的双层爆炸容器动力响应的实验研究。爆炸与冲击。1999,19(3),199-203
    [51] 钟方平,陆春毅,林俊德等。双层圆柱形爆炸容器弹塑性结构响应的实验研究。兵工学报。2000,21(3),268-271
    [52] 钟方平。柱形容器内部爆炸流场的数值模拟。计算物理。2000,17(6),695-701
    [53] 霍宏发,石小峰,文潮等。椭球封头圆柱形爆炸容器安全性的实验研究。第一届全国工程结构安全防护学术会议论文集。黄山,1999,4,342-349
    [54] 霍宏发,黄协清,陈花玲等。椭球封头圆柱形爆炸容器振动特性研究。机械科 学与技术。2000,19(6),967-969
    [55] 霍宏发,于琴,黄协清。组合式爆炸容器冲击载荷及其动力响应的数值模拟。精密制造与自动化。No.z1 2003,39-40,70
    [56] 霍宏发,于琴,黄协清。组合式爆炸容器冲击载荷及其动力响应的数值模拟。西南交通大学学报。2003,38(5),513-516
    [57] 霍宏发,黄协清,林俊德。组合式密闭爆炸容器螺栓预应力范围的计算方法。机械强度。2001,23(2),194-197
    [58] 霍宏发。组合式爆炸容器振动特性与破坏模式分析。压力容器。2003,20(5),12-16
    [59] 胡八一,刘大敏。脉冲载荷下球形爆炸容器的弹性响应。振动与冲击。1998,17(3),19-23
    [60] 胡八一,刘大敏,柏劲松等。密封结构内炸药爆炸产生的准静态气体压力研究评述。第一届爆炸力学实验技术交流会议论文集。2000,9,264-270
    [61] 赵汉中。在密封结构中水对爆炸冲击波的削波、减压作用。爆炸与冲击。2002,22(3),252-256
    [62] 胡八一,柏劲松,张明等。真实爆炸容器壳体动力响应的强度分析。应用力学学报。2001,18(3),91-95
    [63] 胡八一,罗兵,孙承纬。球形爆炸容器水压试验应力测试及分析。实验力学。2001,16(2),207-212
    [64] 胡八一,刘仓理,刘宇等。强电磁干扰环境下的爆炸容器动态应变测试系统。测试技术学报。2001,1
    [65] 谭多望,孙承纬。炸药爆轰产物驱动刚塑性球壳的加速运动。高压物理学报。1998,12(3),218-222
    [66] 高重阳,施惠基,姚振汉等。薄壁柱壳在内部爆炸载荷下膨胀断裂的研究。爆炸与冲击。2000,20(2),160-167
    [67] 林俊德。内部资料。2000
    [68] 文潮,金志浩,关锦清等。国内首台1kgTNT当量复合板爆炸容器的设计。压 力容器。2002,19(7),12-14,37
    [69] 蔡清裕,曾新吾,胡永乐。钢-混凝土复合爆炸容器内爆响应数值模拟。国防科技大学学报。2003,25(3),28-32
    [70] 胡八一,刘仓理,胡海波等。树脂基玻璃纤维复合材料爆炸容器的研制。压力容器。2005,22(6),10-12
    [71] 蒋家羚,朱国辉。新型薄内筒扁平绕带式高压容器绕带的强度分析。力学与实践。1984,6(6),20-24
    [72] 黄载生。扁平绕带高压容器强度的研究。化工炼油机械。1984,13(3),34-39
    [73] 黄载生,王乐勤,朱国辉。绕带高压容器的自增强分析与研究。浙江大学学报。1989,23(5),705-713
    [74] 黄培山,朱国辉。绕带式压力容器的应力分析。浙江大学学报。1989,23(5),742-749
    [75] 杨洪涛,朱国辉。容器缠绕层的应力分析及其设计问题。石油化工设备。1992,21(4),15-18
    [76] 朱国辉,黄载生,王乐勤等。新型薄内筒扁平绕带式高压容器的发展现状、强度与安全特性分析。小氮肥设计技术。1983,6,29-42
    [77] 施钢,朱国辉,黄载生。扁平绕带式压力容器的基本弹性应力分析。化工机械。1992,19(6),26-30
    [78] 郑津洋,朱国辉,黄载生。扁平绕带容器预应力的研究。石油化工设备。1992,21(1),6-8
    [79] 郑津洋,朱国辉,黄载生。螺旋错绕式高压容器层间摩擦力的研究。力学与实践。1993,15(6),45-48
    [80] 郑传祥,朱国辉。扁平绕带容器层间摩擦力的加强作用。锅炉压力容器安全技术。1996,2,14-16
    [81] 朱加贵。绕带式锅炉汽包的开拓性研究。硕士学位论文。杭州。浙江大学。1989
    [82] 施钢。大型卧式扁平绕带式压力容器的强度研究。硕士学位论文。杭州。浙江大学。1991
    [83] 轩景泉。大倾角错绕扁平钢带压力容器的应力分析与强度设计研究。硕士学位论文。呼和浩特。内蒙古工学院。1990
    [84] 朱国辉。绕带式高压容器的安全性能分析。小氮肥。1981,9,7
    [85] 朱关保。扁平绕带压力容器安全性能的测试和分析。石油化工设备。1989,18(2),9-12,6
    [86] 钱季平,蒋家羚,孙国有等。扁平绕带容器可靠性初探。机械强度。1990,12(3),7-12
    [87] 郑津洋。扁平绕带式高压容器的失效方式。化工装备技术。1993,14(5),19-22
    [88] 郑津洋。扁平绕带容器的爆破特性。化工机械。1993,20(3),26-31
    [89] 郑津洋。扁平绕带容器轴向与环向强度试验研究。机械强度。1994,16(1),72-76,79
    [90] 朱国辉,王乐勤,王春泉。扁平绕带高压容器的疲劳试验及断裂力学分析。化工炼油机械。1983,12(1),19-26
    [91] 罗银淼,杨槐堂。扁平绕带容器断裂性能的研究。化工机械。1988,15(4),34-36
    [92] 施钢,朱国辉,黄载生。扁平绕带式压力容器的极限承载能力。化工机械。1995,22(6),23-29
    [93] 郑传祥,朱国辉。扁平绕带式压力容器合理缠绕倾角的研究。化工机械。1996,23(4),18-20
    [94] 黄载生,张景铎。消除扁平绕带压力容器带层间隙的研究。化工炼油机械。1983,12(2),13-18
    [95] 谈念庐,蒋家羚,朱国辉。扁平绕带容器的热应力理论分析与实验研究。化工机械。1989,16(1),32-38
    [96] 郑传祥,朱国辉。扁平绕带式压力容器的复合材料特性分析。化工设备设计。1996,33,4,40-42
    [97] 李翼祺,马素贞。爆炸力学。科学出版社,1992
    [98] 亨利奇 J.著(熊建国等译)。爆炸动力学及其应用。科学出版社,1987
    [99] 周听清。爆炸动力学及其应用。中国科学技术大学出版社,2001
    [100] LS-DYNA KEYWORD USER'S MANUAL.Version970. Livermore Software Technology Corporation. 1999
    [101] LS-DYNA THEORETICAL MANUAL.Version970. Livermore Software Technology Corporation. 1999
    [102] 杨桂通。塑性动力学。北京:高等教育出版社,2000
    [103] 余同希,Strong W.J.塑性结构的动力学模型。北京:北京大学出版社,2002
    [104] LS-DYNA THEORETICAL MANUAL. Version 970. Livermore Software Technology Corporation. 1999: 329-331
    [105] 章冠人,陈大年。凝聚炸药起爆动力学。北京:国防工业出版社,199l:129-131
    [106] 赵隆茂。受强冲击载荷作用下非线性结构动力响应分析时间积分格式的研究。工程力学增刊。2001(1),594-597
    [107] 赵隆茂,杨桂通。动力响应数值分析中hourglass现象。计算力学学报,2003,20(1),53-58
    [108] 赵隆茂。结构动力响应分析中接触—碰撞界面算法研究的进展。太原理工大学学报,2001,32(5):459-462
    [109] 白金泽。LS—DYNA3D理论基础与实例分析。北京:科学出版社,2005:30-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700