蒸汽爆炸相关现象机理的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸汽爆炸是核反应堆发生严重事故时,堆芯熔化后燃料与冷却剂相互作用可能产生的一系列后果之一,对于核电站来说,这就带来了将放射性裂变产物释放到环境中去的风险。因此,蒸汽爆炸在核安全领域是一个重要的研究课题。蒸汽爆炸是一个综合的多相流现象,包括粗混合、触发、传播和膨胀四个阶段,目前蒸汽爆炸过程中的机理还未被完全了解,这阻碍了对蒸汽爆炸现象进行准确预测。
     本文主要采用数值模拟手段,对蒸汽爆炸过程中的现象机理进行研究,弥补了以往传统的理论与实验研究的不足。由于蒸汽爆炸是一个极复杂的热流体相互作用动力学过程,它对算法的适用性与健壮性都提出了较大挑战。为此,本文使用VOF方法追踪自由界面,并将VOF方法推广到复杂计算区域,存在相变及流体可压缩的情况,独立开发了多相流计算程序。
     本文通过数值模拟,确定了粗混合阶段膜态沸腾条件下高温颗粒的运动阻力变化规律及主要影响因素,结合理论分析建立了新的阻力模型。该模型包含压差阻力和摩擦阻力,考虑了表面张力及汽液界面形状对压差阻力的影响。与实验数据的对比表明该模型能成功描述高温颗粒在冷却剂中的运动。根据数值模拟结果,本文还对各种基于理论分析与实验数据的圆球表面膜态沸腾传热关系式进行了分析评价。
     在对单个熔融液滴在压力脉冲作用下热碎化的研究中,发现了Richtmyer-Meshkov不稳定性对蒸汽-冷却剂界面上的初始扰动的增长起了决定作用。数值模拟结果表明,当蒸汽膜坍塌时,冷却剂与熔融液滴表面的接触是非均匀的,直接接触点上由于快速蒸发,会形成高压蒸汽包。蒸汽包在液滴表面形成凹陷,在两个凹陷之间则产生尖峰,尖峰上方蒸汽膜的坍塌不足以阻止尖峰的产生,而是会使尖峰出现分叉。计算结果还表明,压力波通过液滴时的衍射效应是触发热碎化的重要因素。
     对于水力碎化的数值模拟表明,液滴变形与液滴表面的水力不稳定性是液滴碎化的主要机理。在压力波通过后的初期,没有发生流动分离,液滴后滞止点的压力几乎能够完全恢复,液滴在前后挤压下从中间向外拉伸,在液-液系统中,周围流体与液滴的密度比远大于气-液系统,因此液滴变形在整个碎化过程中尤其重要,对液滴的碎化时间有较大影响。
Vapor explosion is one of the consequences of fuel-coolant interactions in a severe accident of a nuclear reactor. In nuclear plants, there is then a risk of release of radioactive fission products into the environment. So vapor explosion is an important topic to investigate in nuclear safety. Vapor explosion is a compositive multiphase phenomenon including four stages: coarse premixing, triggering, propagation and expansion. The mechanisms involved in the vapor explosion process have not been understood, which prevents predicting the explosion precisely.
     The mechanisms of the phenomena involved in vapor explosions are studied with numerical simulation. Vapor explosion is a very complex dynamic progress with heat and mass transfer, which challenges the robustness and applicability of the numerical algorithms. In this study Volume of Fluid (VOF) method is used to track interface and is extended to complex domain, phase change and compressible flow. A computational fluid dynamics code for multiphase flow is developed for this purpose.
     A hot particle moving in water with film boiling is simulated, and the drag force on the particle is investigated. Based on the simulation results, a new drag model including pressure drag and friction drag is established with the help of theoretical analysis. In this model, the pressure drag force is affected by the surface tension and the shape of the liquid-vapor interface in the vicinity of the particle. The model is validated with experimental data. In addition, different heat transfer correlations are evaluated with the simulation results.
     In simulation of thermal fragmentation of a melt drop under a pressure pulse, it is found that Richtmyer-Meshkov instability determines the growth of the initial disturbances on the coolant-vapor interface. As the vapor film collapses, the coolant will contact the drop at a series of local points. The local generation of high-pressure vapor at the surface will cause a small crater. A spike appears between two craters. The collapse of the vapor film above the spike could not suppress the formation of spike, but will bifurcate the spike. It is also indicated that the diffraction of the pressure wave is important to trigger a thermal fragmentation.
     It is shown in simulation that the drop deformation and surface instability are the main mechanisms in hydrodynamic fragmentation. After passing of shock wave, flow separation does not occur in the early time and the pressure is nearly recovered at the back stagnation point.
     The drop is squeezed by these pressures and pulled out at the equator. In a liquid-liquid system, the density ratio is much larger than that in a gas-liquid system, so the drop deformation is especially important, and affects the fragmentation time evidently.
引文
[1] Theofanous T G. The study of steam explosion in nuclear systems. Nuclear Engineering and Design, 1995, 155:1-26
    [2] Theofanous T G. The probability of alpha-mode containment failure. Nuclear Engineering and Desing, 1995, 155:459-473
    [3] Theofanous T G, Yuen W W, Angelini S, et al. Lower head integrity under steam explosion loads. Nuclear Engineering and Design, 1999, 189: 5-57
    [4] Fletcher K F, Anderson R P. A review of pressure-induced propagation models of the vapor explosion process. Progress in Nuclear Energy, 1990, 23(2): 137-179
    [5] Taleyarkhan R P. Vapor explosion studies for nuclear and non-nuclear industries. Nuclear Engineering and Design, 2005, 235: 1061-1077
    [6] Board S J, Hall R W. Recent advances in understanding large scale vapor explosions. Proc. Comm. Saf. Nucl. Install. Meet. Sodium-Fuel Interact. Fast Reactor, Tokyo, 1976: 249-293
    [7] Cho D H, Fauske H K, Grolmes M. Some aspects of mixing in large mass energetic FCI. Proc. Int. Meet. Fast React. Saf. Rel. Phys., Chicago, 1976: 1852-1861
    [8] Angelini S, Theofanous T G, Yuen W W. On the regimes of premixing. Nuclear Engineering and Design, 1999, 189: 139-161
    [9] Angelini S, Theofanous T G, Yuen W W. The mixing of particle clouds plunging into water. Nuclear Engineering and Design, 1997, 177: 285-301
    [10] Berthoud G, Oulmann C, Valette M. Corium-water interaction studies in France. Int. Symposium on Heat and Mass Transfer in Severe Nuclear Reactor Accidents, Kusadasi, Turkey, 1995.
    [11] Meyer L. QUEOS, an experimental investigation of the Premixing Phase with hot Spheres. Nuclear Engineering and design, 1999, 189: 191-204
    [12] Cao X, Tobita Y. Verification of SIMMER-III Modeling on FCI Through Simulation of QUEOS experiments. Proc of Atomic Energy Society of Japan pring Meeting, Section II,Univ, Aihime, Japan, 2000
    [13] Fodemski T R. Forced Convection Film Boiling in the Stagnation Region of a Molten Drop and Its Application to Vapor Explosions. Int. J. Heat Mass Transfer. 1992, 35: 2005-2016
    [14] Cao XW, Yoshiharu T. Drag Correlations for a Hot Particle/Droplet with VaporFilm. J Nucl Sci Technol, 2001, 38(9): 721~728
    [15] Yang Y. Multi-phase simulation for phenomena in vapor explosion. Ph.D. dissertation, University of Tokyo, 1996
    [16]李小燕.高温颗粒沉降冷液热工水力特性研究.博士学位论文,上海交通大学, 2005
    [17] Bromley L A, LeRoy N R, Robbers J A. Heat transfer in forced convection film boiling. Ind. Engng Chem, 1953, 45: 2639-2646
    [18] Witte L C, Film boiling from a sphere. I and EC Fundamentals, 1968, 7(3): 517-518
    [19] Kobayasi K. Film boiling heat transfer around a sphere in forced convection. J. Nucl. Sci., 1965, 2(2): 62-67
    [20] Kobayasi K. Counter-comment to Hesson & Witte’s Comment on“Film boiling heat transfer around a sphere in forced convection”. J. Nucl. Sci., 1966, 3(10): 449-450
    [21] Epstein M, Heuser G M. Subcooled forced-convection film boiling in the forward stagnation region of a sphere or cylinder, Int. J. Heat Mass Transfer, 1980, 23: 179-189.
    [22] Witte L C, Orozco J. The effect on vapor velocity profile shape on flow film boiling from submerged bodies. J of Heat Transfer, Trans. of the ASME, 1984, 106: 191-197
    [23] Liu C, Theofanous T G. Film boiling on spheres in single- and two-phase Flows, Part 1: Experimental Studies, ANS Proceedings, Part 2: A Theoretical Study, National Heat Transfer Conference, Portland, 1995
    [24] Fodemski T R. The influence of liquid viscosity and system pressure on stagnation point vapor thickness during forced convection film boiling. Int. J. Heat Mass Transfer, 1985, 28: 69-80
    [25] Dhir V K, Purohit G P. Subcooled film-boiling heat transfer from spheres. Nuclear Engineering and Design, 1978, 47: 49-66
    [26] Stevens J W, Witte L C. Destabilization of vapor film boiling around spheres. Int. J. Heat Mass Transfer, 1973, 16: 669-679
    [27] Walford F J. Transient heat transfer from a hot Nickel sphere moving through water, Int. J. Heat Mass Transfer, 1969, 12: 1621-1625
    [28] Kolev N I. Film boiling on vertical plates and spheres. Experimental Thermal and Fluid Science, 1998, 18: 97-115
    [29] Nelson L S, Duda P M. Steam explosion experiments with single drops of ironoxide melted with a CO2 laser. NUREG/CR-2295, SAND 81-1346 R3, Sandia Natl. Lab., Albuquerque, NM, 1981
    [30] Ando M, Caldarola L. Triggered fragmentation experiment at KFK. Proc. Inf. Exch. Meet. Post Accid. Debris Cooling, Karlsruhe, Karlsruhe, 1982
    [31] Chen X, Luo R, Yuen W W, et al. Experimental simulation of microinteractions in large scale explosions. Nuclear Engineering and design, 1999, 189: 163-178
    [32] Park H S, Hansson R C, Sehgal B R. Fine fragmentation of molten droplet in highly sub cooled water due to vapor explosion observed by X-ray radiography. Experimental Thermal and Fluid Science, 2005, 29: 351-361
    [33] Kim B, Corradini M L. Modeling of small-scale single droplet fuel/coolant interactions. Nuclear Science and Engineering, 1988, 98: 16-28
    [34] Ciccarelli G, Frost D L. Fragmentation mechanisms based on single drop steam explosion experiments using flash X-ray radiography. Nuclear Engineering and Design, 1994, 146: 109-132
    [35] Inoue A, Yoshifumi F, Matsuzake M, et al. Thermal-hydraulic behavior of vapor-liquid interface due to arrival of a pressure wave. Proc. 7th Int. Topical Meet. Nucl. Reactor Thermal Hydraulics (NURETH-7) NUREG/CP-0142, Vol.3, Saratoga Springs, U.S.A. , 1995: 1663-1675
    [36] Corradini M L, Kim B J, Oh M D. Vapor explosions in LWR: a review of theory and modeling. Prog. Nucl. Energy, 1988, 22(1): 1-117
    [37] Pilch M, Erdman C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int. J. Multiphase Flow, 1987, 13(6):741-757
    [38] Kim D S, Burger M, Froohlich G, et al. Experimental investigation of hydrodynamic fragmentation of gallium drops in water flows. in ANS/ENS Int. Meeting on Light Water Reactor Severe Accident Evaluation, Cambridge, Massachusetts, 1983
    [39] Patel P D, Theofanous T G. Hydrodynamic fragmentation of drops. J. Fluid Mech., 1981, 103: 207-223
    [40] Theofanous T G, Saito M, Efthimiadis T. The role of hydrodynamic fragmentation in fuel-coolant interactions. Fourth CSNI Specialist Meeting on Fuel-Coolant Interactions in Nuclear Reactor Safety, Bournemouth, England, 1979
    [41] Yuen W W, Chen X, Theofanous T G. On the fundamental microinteractions that support the propagation of steam explosions. Nuclear Engineering and Design, 1994, 146: 133-146
    [42] Burger M, Kim D S, Schwalbe W. Two-phase description of hydrodynamic fragmentation processes within thermal detonation waves. Journal of Heat Transfer, Transactions of the ASME, 1984, 106: 728-734
    [43] Scardovelli R, Zaleski S. Direct Numerical Simulation of Free-surface and Interfacial Flow. Annu. Rev. Fluid Mech., 1999, 31:567-603
    [44]刘儒勋,王志峰.数值模拟方法和运动界面追踪.合肥:中国科学技术大学出版社,2001
    [45] Annaland M S, Deen N G, Kuipers J A M. Numerical simulation of gas bubble behavior using a three-dimensional volume of fluid method. Chemical Engineering Science, 2005, 60: 2999-3011
    [46] Hirt C W, Nichols B D. Volume of fluid (VOF) method for dynamics of free boundaries. J. Comput. Phys., 1981, 39: 201-225
    [47] Rudman M. Volume-tracking method for interfacial flow calculations. International Journal for Numerical Methods in Fluids, 1997, 24: 671-691
    [48] Youngs D L, Time-dependent multi-material flow with large fluid distortion, in K. W. Morton and M. J. Baines (eds), Numerical Methods for Fluid Dynamics, Academic, New York, 1982: 273–285
    [49] Ashgriz N, Poo J Y, FLAIR: flux line-segment model for advection and interface reconstruction. J. Comput. Phys., 1991, 93: 449-468
    [50]林志勇,彭晓峰.振荡液滴内部流态.工程热物理学报, 2007, 28(2): 289-291
    [51]李章国,刘秋生,纪岩,等.航天器贮箱气液自由界面追踪数值模拟.空间科学学报, 2008, 28(1): 69-73
    [52]包光伟.火箭推进剂液体晃动关机响应的数值仿真.宇航学报, 2002, 23(2):84-88
    [53]白志刚,刘针,陈志春. U型防波堤与流浪相互作用的数值模拟.港工技术, 2007 (2): 9-12
    [54]戴会超,王玲玲.淹没水跃的数值模拟.水科学进展, 2004, 15 (2): 184-188
    [55] Gao D, Morley N B, Dhir V. Numerical simulation of wavy falling film flow using VOF method. Journal of Computational physics, 2003, 192: 624-642
    [56] Liu D, Lin P. A numerical study of three-dimensional liquid sloshing in tanks. Journal of Computational physics, 2008, 227: 3921-3939
    [57] Juric D, Tryggvason G. Computations of boiling flows. International Journal of multiphase flow, 1998, 24: 387–410.
    [58] Esmaeeli A, Tryggvason G, Computations of film boiling. Part I: numerical method. International Journal of Heat and Mass Transfer, 2004, 47: 5451-5461
    [59] Welch S W J, Wilson J J. A volume of fluid based method for fluid flows with phase change. Journal of Computational Physics, 2000, 160: 662–682.
    [60] Agarwal D K, Welch S W J, Biswas G, et al. Planar simulation of bubble growth in film boiling in near-critical water using a variant of the VOF method. Journal of heat transfer, 2004, 126: 329-338.
    [61] Son G, Dhir V K. Numerical simulation of film boiling near critical pressures with a level set method. ASME Journal of Heat Transfer, 1998, 120: 183–192.
    [62] Gibou F, Chen L, Nguyen D, et al. A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change. Journal of Computational Physics, 2007, 222(2): 536-555
    [63] Xie W F, Liu T G, Khoo B C. The simulation of cavitating flows induced by underwater shock and free surface interaction. Applied Numerical Mathematics, 2007, 57(5-7): 734-745
    [64] Hankin R K S. The Euler equations for multiphase compressible flow in conservative form. Journal of Computational Physics, 2001, 172: 808-826
    [65] Abgrall R, Karni S. Computations of compressible multifluids. Journal of Computational Physics, 2001, 169: 594-623
    [66] Luo H, Baum J D, Lohner R. On the computation of multi-material flows using ALE formulation. Journal of Computational Physics, 2004, 194: 304-328
    [67] Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface. Journal of Computational Physics, 2003, 190: 651-681
    [68] Bui V A, Dinh T N, Sehgal B R, Numerical Simulation of Surface Instability Phenomena Associated with Fuel-Coolant Interaction. Proceedings of the Eighth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NuReTH-8), Kyoto, Japan, 1997.
    [69] Bui V A, Dinh T N, Sehgal B R, Deformation and Fragmentation of a Melt Drop in the Flow Field: Results of a Numerical Study. International Symposium on Intense Multiphase Interactions and Explosive Eruptions AMIGOIMI’, Sendai, Japan, 1997
    [70] Bui V A, Dinh T N, Sehgal B R, Analysis of Liquid Jet Instability: Effects of Physical Properties and Phase Change. International Symposium on Liquid–Liquid 2- Phase Flow and Transport Phenomena, Antalya, Turkey, 1997
    [71] Koshizuka S, Ikeda H, Oka Y. Numerical analysis of fragmentation mechanisms in vapor explosions. Nuclear Engineering and Design, 1999, 189: 423-433
    [72] Cao X, Hajima R, Furuta K, et al. A numerical analysis of molten metal drop andcoolant interaction. Journal of Nuclear Science and Technology, 2000, 37(12): 1049-1055
    [73] Patankar S V. Numerical heat transfer and fluid flow. New York: McGraw-Hill, 1980.
    [74]陶文铨.计算传热学的近代进展.北京:科学出版社, 2005
    [75] Ferziger J H, Peric M, Computational methods for fluid dynamics, third ed., Springer-Verlag, Berlin, 2001, 225-226
    [76] Rhie C M, Chow W L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J, 1983, 21: 1525-1552
    [77] Miller T F, Schmidt F W. Use of a pressure-weighted interpolation method for the solution of incompressible Navier-Stokes equations on a non-staggered grid system. Numerical Heat Transfer, 1988, 14: 213-233
    [78] Shklyar A, Arbel A. Numercal method for calculation of the incompressible flow in general curvilinear co-ordinates with double staggered grid. Int. J. Numer. Meth. Fluids, 2003, 41: 1273-1294
    [79]陶文铨.数值传热学(第二版).西安:西安交通大学出版社, 2001
    [80] Gueyffier D, Li J, Nadim A, et al. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. Journal of Computational Physics, 1999, 152: 423-456
    [81] Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics, 1992, 100: 335-354
    [82] Van Doormal J P, Raithby G D, McDonalds B H. The Segregated Approach to Predicting Viscous Compressible Flows. ASME J Turbomachinery, 1987, 109: 265-277
    [83] Karki K C, Patankar S V. Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA J, 1989, 27(9): 1167-1174
    [84] Demirdzic I, Lilek Z, Peric M. A collocated finite volume method for predicting flows at all speeds. Int J Numer Heat Fluids, 1993, 16: 1029-1050
    [85] Date A W. Solution of Navier-Stokes equations on nonstagered grid of all speeds. Numer Heat Transfer, Part B, 1998, 33:451-467
    [86] Berenson P J. Film Boiling heat transfer from a horizontal surface. J. Heat Transfer, 1961, 83: 351–358
    [87] Chang C H, Liou M S. A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+ scheme. Journal of Computational Physics, 2007, 225: 840-873
    [88]董曾南,章梓雄.非粘性流体力学.北京:清华大学出版社, 2003
    [89]刘应中,缪国平.高等流体力学(第二版).上海:上海交通大学出版社, 2002
    [90] Chen C J, Patel V C. Near-wall turbulence models for complex flows including separation. AIAA J, 1988, 26: 641-648
    [91] Sakurai A, Shiotsu M, Hata K. A general correlation for pool film boiling heat transfer from a horizontal cylinder to subcooled liquid: Part 1-A theoretical pool film boiling heat transfer model including radiation contributions and its analytical solution. J. of Heat Transfer, Transactions of the ASME, 1990, 112: 430-440.
    [92]候晖昌.减阻力学.北京:科学出版社, 1987
    [93]徐济鋆,贾斗南.沸腾传热和汽液两相流.北京:原子能出版社,1993
    [94] Inoue A, Aritomi M, Takahashi M. An analytical model on vapor explosion of a high temperature molten metal drop in water induced by a pressure pulse. Chem. Eng. Comm., 1992, 118: 189-206
    [95] Iida Y, Okuyama K. Boiling nucleation on a very small film heater subjected to extremely rapid heating. Int. J. Heat Mass Transfer, 1994, 37(17): 2771-2780
    [96] Holmes R, Dimonte G, Fryxell B. Richymyer-Meshkov instability growth: experiment, simulation and theory. J Fluid Mech., 1999, 389: 55-79
    [97] Yang Y, Zhang Q. Small amplitude theory of Ritchtmyer-Meshkov instability. Phys. 1994, Fluids 6(5): 1856-1873
    [98] Nelson L. Steam explosions of single drops of pure and alloyed molten aluminum. Nuclear Engineering and Design, 1995, 155: 413-425
    [99] Joseph D D, Belanger J, Beavers G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream. International Journal of multiphase flow, 1999, 25: 1263-1303
    [100] Wierzba A, Takayama K. Experimental investigation of the Aerodynamic Breakup of liquid drops, AIAA J, 1988, 26(11):1329-1335
    [101] Duan R Q, Koshizuka S, Oka Y. Two-dimensional simulation of drop deformation and breakup at around the critical Weber number. Nuclear Engineering and Design, 2003, 225: 37-48
    [102] Krauss W E. Water drop deformation and fragmentation due to shock wave impact. Ph.D. dissertation, University of Florida, 1970
    [103] Engel O G. Fragmentation of water drops in the zone behind and air shock. J. Res. Natl. Bur. Stand., 1958, 60: 245-280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700