爆炸复合界面内非(纳米)晶及ASB内组织形成机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
借助透射电子显微镜(TEM)和高分辨电子显微镜(HREM)实验技术和MATLAB计算软件,研究了爆炸复合界面层内的纳米晶与非晶及其形成原因,并定量的分析和探讨了绝热剪切带内纳米晶组织的形成演化机制。
     TEM和HREM观察表明,TA2/TA2爆炸复合界面层内共存着大量的纳米晶和非晶。这些纳米晶晶格完整、其内没有缺陷,晶粒尺寸分布在2nm到50nm,其晶界是共格界面,从而可以保证晶界的高强度。界面层内的非晶则呈现出长程无序特征,并与纳米晶共存。利用爆炸复合界面的温度场模型对界面熔层冷却速率的定量分析表明:在TA2/TA2爆炸复合完成的瞬间,冷却速率高达10~8K/s,在非晶态转变温度(T_g)时的冷却速率高达10~6K/s。爆炸复合界面熔层的高冷却速率、爆炸复合过程中界面承受的高压力、高剪切应力都是形成非晶的有利条件。
     TEM观察表明绝热剪切带(ASB)中心区域由30-70纳米的等轴晶组成。一种基于力学辅助的旋转式动态再结晶(RDR)机制可以很好的解释ASB内组织的演化过程。将热/力学、再结晶动力学与微观组织演化过程有机结合起来,定量的分析了ASB内纳米晶组织在变形和冷却过程中的演化。
     根据能量守恒原理,建立了一个用于计算绝热剪切带内的组织在演化过程中的亚晶尺寸的公式:对于TA2中的绝热剪切带,计算得L=29.4nm,与TEM观察到的绝热剪切带内的晶粒尺寸30-70nm十分符合。
The amorphous and nano-sized grains within the explosive cladding interface were observed by means of transmission electronic microscope (TEM) and high-resolution transmission electron microscope (HRTEM). Their forming reasons were studied using a scientific-calculational software (MATLAB). The microstructure evolution of the nano-sized grains within the adiabatic shear bands was also analyzed quantitatively.
    The observation by mean of TEM and HRTEM indicated that the amorphous and nano-sized grains co-existed within the TA2/TA2 explosive cladding interface. The size of the nano-sized grains was 2-50 nm. Typical nano-sized grain had a conjunct interface with the matrix, ensuring the high strengthening of the interface. A model for the temperature field was used to quantitatively analyzing the cooling rate. The cooling rate was about 108K/s after the explosive cladding, and it was still about 106K/s when the temperature was cooled to the amorphous phase transition temperature (Tg). The high cooling rate, high pressure and high shearing stress were all advantageous factors to form amorphous phase.
    TEM observation showed that the center of the adiabatic shear band (ASB) was composed of recrystallized nano-grains (about 30-70 nm in diameter). A Rotational Dynamic Recrystallization (RDR) mechanism which based on mechanics assistance can well explain the microstructure evolution within the ASB. The microstructure evolution of nano-sized grains within ASB during the deformation and cooling stage was analyzed quantitatively by combining thermal-mechanics and recrystallization kinetics with microstructure evolution.
    By the law of conservation of energy, an equation was proposed to calculate the subgrain size during the microstructure evolution of ASB:
    for the ASB within TA2, the calculation showed L=29.4 nm. It is very consistent with the TEM observations (i.e. the grain size was 30-70 nm in diameter).
引文
[1] 李强,徐永波,赖祖涵等.Monel合金高速塑性剪切变形与动态再结晶.金属学报,1999,35(1):49-52
    [2] SIA Namat-Nasser, Jon B et al. Microstructure of High-strain, High-strain Rate Deformed Tantalum. Acta Mater, 1998, 46(4): 1307-1325
    [3] M.A. Meyers, Y.J. Chen et al. High-strain, High-strain-rate Behavior of tantalum. Metallurgical and Materials Transactions A, 1995, 26(10): 2494-2501
    [4] Bai Yilong. Adiabatic Shear Banding. Res Mechanica, 1990, 31:133-203
    [5] 程信林.TC4钛合金绝热剪切形变中热力学参量的数值模拟及其剪切带内微观组织深化机制的探讨:[硕士学位论文].长沙:中南大学,2003
    [6] 郑远谋.爆炸焊接和爆炸复合材料在汽车中的应用,汽车工艺与材料.2002,6:9-11
    [7] 何建军,陈鼎.大块非晶体材料的研究发展.湖南冶金,2002,9(5):4-7
    [8] 郑远谋,爆炸焊接和金属复合材料及其工程应用,长沙:中南大学出版社,2002
    [9] 闫鸿浩,李晓杰,奚进一.块体非晶合金制备技术展望.金属功能材料,2001,8(4):1-4
    [10] Zhang Kai, Li Xiaojie. Study on the Multilayer Explosive Cladding of Thin Amorphous Foils. Journal de Physique Ⅲ, 1991, 1(C): 229-234
    [11] S. Itoh, H. Iyama et al. On the Characteristic of the Explosive Welding Technique using the Underwater Shock Wave (Ⅰ)- High Speed Deformation of the Metal Flying Plate due to Underwater Explosion. Journal of the Japan Explosives Society, 2001, 62(4): 194-200
    [12] Hokamoto, M. Fujita et al. A new method for explosive welding of AL/ZrO2 joint using regulated underwater shock wave. Journal of Materials Processing Technology, 1999, 85:175-179
    [13] 郝红卫,吴爱珍.爆炸焊接的特殊应用.稀有金属材料与工程,1995,3:63-
    [14] F.E.卢博斯基[美].非晶态金属合金,北京:冶金工业出版社,1989
    [15] 祁焱,张羊换等.钎焊及钛基钎焊料的发展及应用.金属功能材料,2003,10(5):31-37
    [16] 杨扬,程信林.绝热剪切的研究现状及发展趋势.中国有色学报,2002,12(3):401-408
    
    
    [17] R.C. Batra, L. Chen. Effect of viscoplastic relations on the instability strain, shear band initiation strain, the strain corresponding to the minimum shear band spacing, and the band width in a thermoviscoplastic material. International Journal of Plasticity, 2001, 17:1465-1489
    [18] Q. Xue, M.A. Meyers, V.F. Nesterenko. Self-organization of shear bands in titanium and Ti - 6Al - 4V alloy. Acta Mater, 2002, 50: 575-596
    [19] FJ. Zerilli, RW. Armstrong. Source cited in Ref. [18]
    [20] 徐天平,王礼立等.高应变率下钛合金Ti-6Al-4V的热粘塑性特性和绝热剪切变形.爆炸与冲击,1987,7(1):1-7
    [21] 包合胜,王礼立.钛合金在低温下的高速变形特性和绝热剪切.爆炸与冲击,1989,9(2):109-119
    [22] 徐永波,白以龙,沈乐天等.钢中剪切变形局部化的形成与发展.金属学报,1995,31(11):485-491
    [23] 魏志刚,李永池等.冲击载荷作用下钨合金材料绝热剪切带形成机理.金属学报,2000,36(12):1263-1268
    [24] M.A. Meyers, Xu Yongbo. Microstructural evolution in adiabatic shear localization in stainless steel. Acta Materialia, 2003, 51:1307-1325
    [25] F.J. Humphreys. Review grain and subgrain characterisation by electron backscatter diffraction. Journal of Materials Science, 2001, 36: 3822-3854
    [26] M.T. Perez-Prado, J.A. Hines et al. Microstructural evolution in adiabatic shear bands in Ta and Ta-W alloys. Acta Mater, 2001, 49: 2905-2917
    [27] L.S Toth. A. Hildenbrand, A. Molinari. Dynamic recrystallisation in Adiabatic shear Bands. J. Phys, Ⅳ France 2000, 10(9): 365-370
    [28] 杨卓越,赵家萍.金属材料中绝热剪切带微观结构综述.华北工学院学报,1995,16(4):327-333
    [29] M.A. Meyers, Han-Ryong Pak, et al. Observation of an adiabatic shear band in Titanium by high-voltage transmission electron microscopy. Acta Metal, 1986, 34(12): 2493-2499
    [30] Y. YANG, Z. XINMING, L. ZHENGHUA and L. QENGYUN. Adiabatic Shear Band On The Titanium Side In The Ti/Mild Steel Explosive Cladding Interface. Acta mater, 1996, 44(2): 561-565
    [31] U. Andrade, M.A. Meyers and K.S. Vecchio et al. Dynamic Recrystallization
    
    in High-Strain, High-Strain-Rate Plastic Deformation Of Copper. Acta metal, 1994, 42(9): 3183-3195
    [32] J.A. Hines and K.S. Vecchio. Recrystallization Kinetics Within Adiabatic Shear Bands. Acta mater, 1997, 45(2): 635-649
    [33] Li Qing, Xu Yongbo et al. Dynamic recrystallization induced by plastic deformation at high strain rate in a Monel alloy. Materials Science and Engineering A, 2000, 276:250-256
    [34] Xu Yongbo et al. Shear iocalization and recrystallization in dynamic deformation of 8089 Al-Li alloy. Materials Science and Engineering A, 2001, 238: 287-295
    [35] B. Derby, M.F. Ashby. On dynamic recrystallization. Scripta Metall, 1987, 21:879-884
    [36] J.C, M. Li. Source cited in Ref. [5]
    [37] R.D. Doherty, J.A. Szpunar. Kinetics of sub-grain coalescence: A reconsideration of the theory. Acta Metall, 1984, 32; 1789-1798
    [38] F.J. Humphreys and M. Hatherly. Recrystallization and Related Annealing Phenomena. Pergamon, Oxford, 1995
    [39] B. Derby. The dependence of grain size on stress during dynamic recrystallization. Acta Mater, 1991, 39(5): 955-962
    [40] 朱远志,杨扬.高速变形条件下的动态再结晶机制的研究进展.铝加工,2000,23(3):43-46
    [41] J.A. Hines, K.S. Vecchio et al. A Model for Microstructure Evolution in Adiabatic Shear Bands. Metallurgical And Materials Transactions A, 1998, 29(1): 191-203
    [42] Luo Guo-zhen, Liu Run-ze. Non-aerospace application of Ti materials with a great many social and economic benefits in China. Material Science and Engineering A, 2000, 280:25-29
    [43] 任学佑.国内外钛市场现状及其前景:有色金属,2000,52(3):88-91
    [44] 同铁城.密堆六方晶体形变孪生机制解析.中国科技论文在线, http://www.paper.edu.cn
    [45] M.A. Meyers, D.J. Benson. Constitutive description of dynamic deformation: physically-based mechanisms. Materials Science and Engineering A, 2002, 322:194-216
    [46] 杨扬,张新明,李正华等.TA2/A3爆炸复合界面层的TEM研究.中国有色金
    
    属学报,1994,3(5):93-97
    [47]杨扬,张新明.α-Ti-低碳钢爆炸复合结合层的组织,材料研究学报,1995,9(2):186-189
    [48]Hammerschmidt et al. Shock Waves and High-Strain-Rate Phenomena in Metals. Plenum Press, New York, 1981, 961
    [49]王一禾,杨膺善.非晶态合金,北京:冶金工业出版社,1989:2-26.
    [50]李冬剑,王景唐,丁炳哲.高压非晶化转变机制研究.自然科学进展——国家重点实验室通讯,1992,5:562-564.
    [51]闰鸿浩,李晓杰.爆炸焊接界面产生非晶态相的理论解释.稀有金属材料与工程,2003,32(3):176-178
    [52]廖宁.两步淬火法生产钛基非晶态片状粉末.钛工业进展,1995,2:27-28
    [53]李志成,刘路等.砷化镓单晶中微晶和非晶的形成机制.材料研究学报,2002,16(2):172-178
    [54]Yong Qilong, Tian Jianguo et al. Physical metallurgical data of titanium in steels. Journal of Yunnan Polytechnic University, 1999, 15(2): 7-10
    [55]张志涌等.精通Matlab 6.5.北京:航空航天出版社,2003
    [56]M.A. Meyers, V.F. Nesterenko et al. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization. Materials Science and Engineering A, 2001, 317: 204-225
    [57]B. Derby. The dependence of grain size on stress during dynamic recrystallization. Acta Mater, 1991, 39(5): 955-962
    [58]Michel Bestmann, J. David. Prior. Intragranular dynamic recrystallization in naturally deformed calcite marble: diffusion accommodated grain boundary sliding as a result of subgrain rotation recrystallization. Journal of Structural Geology, 2003, 25:1597-1613
    [59]V. Randle. Microtexture Determination and its applications. Inst. Materials, London, 1992
    [60]郑远谋.退火对钛-钢爆炸复合板中飞线组织的影响.中国有色金属学报,2001,11(1):154-157
    [61]H.米格兰比.材料科学与技术丛书,第6卷,材料的塑性变形与断裂,北京:科学出版社,1998:135-138
    [62]P.J. Hurley, F.J. Humphreys. Modelling the recrystallization of single-phase aluminium. Acta Mater, 2003, 51: 3779-3793

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700