气相爆燃与爆轰法制备纳米二氧化钛颗粒研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气相爆燃与爆轰法是通过引爆由可燃气体、气相氧化剂和前驱体所组成的混合气体来制备纳米氧化物的一种新型的合成技术。此方法不仅具有爆轰法操作简单,易于控制,高效、经济和节能等优点,而且生成物产量高、无杂质,并且易于进行工业化生产。本文利用气相爆燃与爆轰法制备出了纳米级的二氧化钛颗粒,并对其合成反应机理进行了研究,主要工作内容与成果如下:
     1.对氢气与空气混合气体的爆燃和氢氧混合气体爆轰过程中的爆炸压力进行了测量实验,通过高速摄影机拍摄了氢气与空气爆燃和氢气与氧气爆燃转爆轰过程中火焰面的传播过程。氢气与空气的实验中,反应是爆燃反应,从观察窗口观察得到其最大火焰速度在250 m/s左右,最大爆炸压力约为0.5 MPa。氢气与氧气的爆轰实验中,反应在初始端处在爆燃转爆轰的过程中,由于湍流的影响,火焰面产生了畸变,导致了燃烧速度加快,最终在管尾发展形成气相爆轰。距离起爆端0.46 m处,火焰面速度为1300 m/s,其后仍在不断加速,最大爆炸压力约为2.0 MPa。环境温度的改变对氢氧气体爆轰的最大爆炸压力和爆炸压力上升速率的影响较小;而氢气空气混合气体爆燃的最大爆炸压力和爆炸压力上升速率随着环境温度的增加而增加。
     2.对密闭管道中氢气与空气和氢氧混合气体的反应过程进行了数值模拟,发现氢气与空气反应属于爆燃反应,而氢氧反应属于爆轰反应。氢气与空气反应过程中,管道内压力和温度随着时间增加而升高,火焰阵面前出现压缩波,火焰面后的气体密度降低。随着反应的进行,火焰在管道中从点火点向另一端传播,传播到管尾时反应结束。氢氧爆炸反应中,反应由爆燃反应逐步的转化为了爆轰反应,模拟结果与实验结果比较吻合。
     3.通过调整初始氢气与空气混合气体的初始环境温度、注入的前驱体的量等参数,从而对爆燃合成的纳米二氧化钛晶粒尺度、组成与形貌进行主动控制,实现了选择性合成二氧化钛纳米粉体。根据克劳修斯—克拉佩龙方程推出了四氯化钛的蒸汽压与温度的关系曲线。在环境温度未达到前驱体的气化温度时,注入的前驱体一部分气化,而另一部分在反应器的内管壁形成气溶胶状态或吸附于内管壁,这对气相爆燃和爆轰合成产物的组成、晶粒尺度分布和形貌有着较大的影响。
     4.以氢气与氧气的混合气体为爆炸源,以四氯化钛为前驱体,进行了气相爆轰合成二氧化钛纳米粉的研究,并对产物的结构和性质进行了表征。我们发现相对氢气与空气混合气体的爆燃合成,相同工况下氢氧混合气体的爆轰合成反应速度更快,释放的热量也更大,爆轰合成出来的二氧化钛颗粒形态更趋于球形,而且控制好四氯化钛的浓度时,产物的分散性也较好。这说明气相爆轰法相对于气相爆燃法有一定的优势,是一种有前景的制备纳米二氧化钛粉体的方法。
     5.利用反应热力学理论分析了爆轰过程中纳米二氧化钛的成核、长大过程。分析了在化学反应、晶核形核、晶粒生长、晶粒间吸附凝聚等过程中的一系列影响因素。改进了kruis模型,推导出了气相爆燃合成和爆轰合成的晶核扩散生长模型,计算结果和实验结果比较符合。分析和讨论了气相爆燃和爆轰合成中颗粒的相变机理,结合理论公式和实验结果得出部分二氧化钛颗粒是在氢氧燃烧反应区外水解生成的结论。
Gas-phase Deflagration and Detonation method is a new synthesis technology for preparing nanomaterials by detonating the combustible gases, gas-phase oxidants and precursors. Not only is it simple operation, easy control, high efficiency, low costs and energy efficiency, but also it is high output, high purity and easy for industrialization. In this paper, TiO_2 nanoparticles were produced by gas-phase deflagration and detonation method, and the synthesis mechanism had also been studied. The main work and results are as follows:
     1. The detonation pressure of hydrogen-air deflagration and hydrogen oxygen detonation were measured. The flame propagation processes of deflagration and detonation were photographed by high speed cameras. In the deflagration reaction of H_2 and air, the maximum flame velocity is about 250 m/s in the obserbing window, and the maximum detonation pressure is about 0.5 MPa. In the initial stage of the reaction H_2 and O_2, it is under transition from deflagration to detonation. Then the frame front produced distortion due to the turbulence, which leads to the increase of combustion velocity. Finally the reaction is up to detonation at the tail of pipe. The flame velocity is about 1300 m/s at the distance of 0.46 m from the initiation, and the velocity becomes higher. The maximum detonation pressure is about 2.0 MPa when the reaction finished. The ambient temperature has less influence on the maximum pressure and the pressure rising rate in the detonation reaction of H_2 and O_2. With the ambient temperature increase, the maximum pressure and the pressure rising rate rise in the deflagration reaction of H_2 and air.
     2. The numerical simulation processes of hydrogen-air reaction and hydrogen-oxygen reaction are studied. It can be proved that the hydrogen-air reaction is deflagration reaction, and the hydrogen-oxygen reaction is under detonation. In the reaction of H_2 and air, the pressure and temperature rise with time. Furthermore, compression wave appears ahead of flame front. Otherwise, gas density decreases behind of flame front. With the process of reaction, the flame propagates from the ignition to another end until the reaction finished. In the reaction of H_2 and O_2, the deflagration reaction gradually turns to the detonation reaction. Compared with the experimental results, the numerical simulation results are identical.
     3. With changing the ambient temperature and the content of precursor, we could selectively synthesize TiO_2 nanoparticles by controlling the particle size and shapes of TiO_2 particles. According to Clausius-Clapeyron equation, we deduced the relation curve between vapor pressure of titanium tetrachloride and gasification temperature. When the ambient temperature did not reach the gasification temperature of titanium tetrachloride, the titanium tetrachloride turned into aerosol, which would change to foggy droplets nearby the inner wall of pipe. In the above case, it would have great influence on the particle size and the shapes of TiO_2 particles.
     4. Using titanium tetrachloride as the source of TiO_2, the experiments for synthesizing TiO_2 nanoparticles were carried out by detonating the premixed gas of H_2 and O_2. The structures and properties of the as-prepared TiO_2 nanoparticles were also characterized. Compared with the reaction of H_2 and air, the reaction of H_2 and O_2 more easily reach detonation which react faster and order more heat in the same conditions. The shapes of TiO_2 nanoparticles which were synthesized by gas-phase detonation tend to sphere, and it could have good dispersibility. The results indicated gas-phase detonation synthesis method was a promising method for industrial production in the future.
     5. Based on the reaction thermodynamics theory, the nucleation and growth processes of TiO_2 nanoparticles were analyzed in the detonation. The influencing factors of chemical reaction, crystal nucleation, grain growth and intercrystalline adsorption-condensation were studied. Moreover, the kruis model was improved. And the growth model of crystal nuclear proliferation for gas deflagration and detonation synthesis was derived. The calculation results are close to the experimental results. The phase transition mechanism of grains synthesized by gas deflagration and detonation was analyzed and discussed. In the end, combining with experimental results and theoretical formulas, it is found that some TiO_2 particles are formed by pyrohydrolysis outside the combustion reaction.
引文
[1]Birringer R,Gleiter H,Klein H-P et al.Nanocrystalline materials an approach to a novel solid structure with gas-like disorder.Phys.Lett.A,1984,102(8):365-369.
    [2]Chen X B,Mao S S.Synthesis of Titanium Dioxide(TiO_2) Nanomaterials,J.Nanoscience and Nanotechnology,2006,6(4):906-925.
    [3]Fujishima A,Honda K.Electrochemical Photolysis of Water at a Semiconductor Electrode.Nature,1972,37(1):238-245.
    [4]Frank S N,Bard A J.Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders.J.Phys.Chem.,1977,81(15):1484-1486.
    [5]Schrauzer G N,Guth T D.Photocatalytic reactions.1.Photolysis of water and photoreduction of nitrogen on titanium dioxide.J.Am.Chem.Soc.,1977,99(10):7189-7193.
    [6]Kreutler B,Bard A J.Heterogeneous photocatalytic preparation of supported catalysts.Photodeposition of platinum on titanium dioxide powder and other substrates.J.Am.Chem.Soc.,1978,100(13):4317-4318.
    [7]Desilvestro J,Grt(a|¨)zel M,Kavan L,et al.Highly efficient sensitization of titanium dioxide.J.Am.Chem.Soc.,1985,107(10):2988-2990.
    [8]Sato S.Photocatalytic activity of NO_x-doped TiO_2 in the visible light region.Chem.Phys.Lett.,1986,123(1-2):126-128.
    [9]O'Regan B,Gr(a|¨)tzel M.A Low Cost,High Efficiency Solar Cell based on the Sensitization of Colloidal Titanium Dioxide.Nature,1991,353(24):737-740.
    [10]Wang R,Hashimoto K,Fujishima A,et al.Light-induced amphiphilic surfaces.Nature,1997,388(6640):431-432.
    [11]Asahi R,Morikawa T,Ohwakl T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides.Science,2001,293(5528):269-271.
    [12]郑丽凤,邵慧明,于忠.超微细粉体材料二氧化钛的开发和应用.中国氯碱,2003,10(10):33-36.
    [13]Li W,Ni C,Lin H,et al.Size dependence of thermal stability of TiO_2 annoparticles.J.Appl.Phys.,2004,96(11):6663-6668.
    [14]Turchi C S and Oills DF.Mixed reactant photocatalysis:Intermediates and mutual rate inhibition.J.Catal.1989,119(2):483-496.
    [15]Anpo M,Shima T,Kodama S,et al.Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates.J.Phys.Chem.,1987,91(16):4305-4310.
    [16]Kim J W,Shim J W,Bae J H.Titanium dioxide/poly(methylmethacrylate) composite microspheres prepared by in situ suspension polymerization and their ability to protect UV rays.Colloid Polym Sci.,2002(280):584-588.
    [17]MatsumotoY,Murakami M,Shono T et al.Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide.Science,2001,291(5505):854-856.
    [18]Min S P,Kwon S K,Min B I.Electronic Structures of Doped Anatase TiO_2:Ti_(1-x)M_xO_2(M=Co,Mn,Fe,Ni).Phys.Rev.B,2002,65(16):161201(4Pages).
    [19]Wang Z J,Tang J K,Tung L D,et al.Ferromagnetism and Transport Properties of Fe-doped Reduced -rutile TiO_(2-δ) thin Films.J.Appl.Phys.,2003,93(10):7870-7872.
    [20]Droubay T,Heald S M,Shutthanandan V et al.Cr-doped TiO_2 Anatase:A Ferromagnetic Insulator.J.Appl.Phys.,2005,97(4):046103(3Pages).
    [21]Ahonen P P,Tapper U,Kauppinen E I et al.Aerosol synthesis of Ti-O powders via in-droplet hydrolysis of titanium alkoxide.Mater.Sci.Eng.A,2001,315(1-2):113-121.
    [22]Tsumura T,Kojitani N,Izumi I,et al.Carbon coating of anatase-type and photoacitivity.J.Mater.Chem.,2002,12(5):1391-1396.
    [23]Yu J G,Yu J C,Leung M K P,et al.Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania.J.Catal.2003,217(1):69- 78.
    [24]杨世源,金孝刚,李菊芬等.利用冲击波技术制备TiO_2纳米晶.材料研究学报,2005,19(2):189-192.
    [25]Sujaridworakun P,Koh F,Fujiwara T et al.Preparation of anatase nanocrystals deposited on hydroxyapatite by hydrothermal treatment.Mater.Sci.Eng.C,2005,25(1):87-91.
    [26]Bao X W,Yan S S,Chen F,et al.Preparation of TiO_2 photocatalyst by hydrothermal method from aqueous peroxotitanium acid gel.Mater.Lett.2005,59(4):412-415.
    [27]Zhang H Z,Banfield J F.Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:Insights from TiO_2.J.Phys.Chem.B.2000,104(15):3481-3487.
    [28]Serpone N.Brief introductory remarks on heterogeous photocatalysis.Solar Energy Materials and Solar Cells.1995,38(14):369-379.
    [29]祖庸,雷闫影,李晓娥,王训,吴金龙.纳米TiO_2-一种新型的无机抗菌剂.现代化工,1999,19:46-48.
    [30]Herrmann J.M,Guillard C,Pichat P.Heterogeneous photocatalysis:an emerging technology for water treatment.Catalysis Today,1993,17(1):17:7-20.
    [31]李晓平,徐宝琨,刘国范,吴凤清.纳米TiO_2光催化降解水中有机污染物的研究与发展.功能材料,1999,17(3):7-20.
    [32]沈伟韧,赵文宽,贺飞,方佑龄.TiO_2光催化反应及其在废水处理中的应用.化学进展.1998,10(4):349-361.
    [33]L.B.Khalil,W.E.Mourad,M.W.Rophael.Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination.Appl.Catal.B:Environ.1998,17(3):267-273.
    [34]Yamashita H,Ichihashi Y,Anpo M,et al.Photocatalytic Decomposition of NO at 275 K on Titanium Oxides Included within Y-Zeolite Cavities:The Structure and Role of the Active Sites.J.Phys.Chem.1996,100(40):16041-16044.
    [35]Nippon Soda Co Ltd.Method for the preparation of spherical,fine particle titanium oxide.[P]United States,5200167.1993.
    [36]Nargiello M,Herz T.Physical-chemical characteristics of P-25 making it extremely suited as the catalyst in photdegradation of organic compounds.New York:Elsevier,1993.
    [37]Ahonen P P,Moisala A,Tapper U,et al.Gas-phase crystallization of titanium dioxide nanoparticles.J.Nanoparticle Res.2002,4(1-2):43-52.
    [38]姜海波,李春忠,从德滋,朱以华.气相燃烧合成二氧化钛纳米颗粒.中国粉体技术.2001,7(2):28-32.
    [39]Kamal Akhtar M,Pratsinis S E,Mastrangelo S V R.Dopants in vapor-phase synthesis of titania powders.J.Am.Ceram.Soc.,1992,75(12):3408-3416.
    [40]Vemury S,Pratsinis S E.Dopants in flame synthesis of titania.J.Amer.Ceram.Soc.,1995,78(11):2984-2992.
    [41]Haro Poniatowshi.Crystallization of nanosized Titania particles prepared by the Sol-Gel process.J.Mater.Res.,1994,9(8):2102-2108.
    [42]Aruna S T,Tirosh S,Zban A.Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers,J.Mater.Chem.,2000,10(10):2388-2391.
    [43]Zheng Y Q,Shi E W,Chen Z Z et al.Influence of solution concentration on the hydrothermal preparation of titania crystallites.J.Mater.Chem.,2001,11(5):1547-1551.
    [44]Gao L,Li Q,Song Z,et al.Preparation of nano-scale titania thick film and its oxygen sensitivity.Sensors and Actuators B:Chemical,2000,71(3):179-183.
    [45]Alessandri I,Comini E,Bontempi E et al.Cr-inserted TiO_2 thin films for chemical gas sensors.Sensors and Actuators B:Chemical,2007,128(1):312-319.
    [46]Lee M S,Lee G D,Ju C S,et al.Preparations of nanosized TiO_2 in reverse microemulsion and their photocatalytic activity.Solar Energy Materials and Solar Cells,2005,88(4):389-401.
    [47]Herrig H,Hempelmann R.A colloidal approach to nanometre-sized mixed oxide ceramic powders.Mater.Lett.,1996,27(6):287-292.
    [48]Yamada K,Nakamura H,Matsushima S et al.Preparation of N-doped TiO_2 particles by plasma surface modification.Comptes Rendus Chimie,2006,9(5-6):788-793.
    [49]Oh S-M,Ishigaki T.Preparation of pure rutile and anatase TiO_2 nanopowders using RF thermal plasma.Thin Solid Films,2004,457(1):186-191.
    [50]Mayo M J.Processing of nanocrystalline ceramics from ultrafine particles.Inter.Mater.Rev.1996,41(3):85-115.
    [51]Deguchi Seiichi,Matsuda Hitoki,Hasatani Masanobu.Formation mechanism of TiO_2 fine particles prepared by the spray pyrolysis method.Drying Technology,1994,12(3):577-591.
    [52]Casey J D,Haggerty J S.Laser-induced vapour-phase sythesis of titanium dioxide.J.Mater.Sci.,1987,22(12):4307-4312.
    [53]Oh C W,Lee G D,Park S S,et al.Preparation of nanosized TiO2 particles via ultrasonic irradiation and their photocatalytic activity on the decomposition of 4-Nitrophenol.Korean J.Chem.Eng.,2005,22(4):547-551.
    [54]Liu S,Huang K.Straightforward fabrication of highly ordered TiO_2 nanowire arrays in AAM on aluminum substrate.Solar Energy Mater.Solar Cells.2004,85(1):125-131.
    [55]Lee W,Gao Y M,Dwight K et al.A.Preparation and characterization of titanium(IV).Oxide photocatalysts.Mat.Res.Bull.1992,27(6):685-692.
    [56]Wu J M.Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide.J.Cryst Growth,2004,269(2-4):347-355.
    [57]李晓杰,王小红,闫鸿浩.et al.爆轰法制备纳米颗粒的探讨.材料导报,2007,21(11):170-172.
    [58]Graham R A,Morosin B,Venturini E L,et al.Materials modification and synthesis under high pressure shock compression.Ann.Rev.Mater.Sci.,1986,16:315-341.
    [59]Staver A M,Gubareva N V,Gubareva N A et al.Ultrafine powder manufactured with the use of explosive energy.Fizika Goreniia I Vzryva,1984,20(5):100-107.
    [60]邵丙璜,张小堤.爆炸合成纳米聚晶超硬材料及其制品的产业化前景.金刚石与磨料磨具工程.2001.126(6):26-27.
    [61]牟瑛琳,恽寿榕,任业军.爆轰波直接合成致密相氮化硼研究.爆炸与冲击,1993,13(3):205-211.
    [62]周刚.利用炸药中的碳爆轰合成超细金刚石的研究:(博士学位论文).北京:北京理工大学,1995.
    [63]陈鹏万.爆轰合成超细金刚石的理论及特性表征:(博士学位论文).北京:北京理工大学,1999.
    [64]陈权.炸药爆轰合成超微金刚石的理论及应用问题研究:(博士学位论文).北京:北京理工大学,1998.
    [65]周刚,文潮,孙德玉,刘晓新,黄风雷,恽寿榕.爆轰合成超分散金刚石的实验研究.爆炸与冲击,1999,19(4):365-370.
    [66]章冠人.炸药爆炸产生超细金刚石微粉问题.爆炸与冲击,1998,18(2):118-122.
    [67]徐康,金增寿.炸药爆轰纳米金刚石的制备和应用.爆破器材,1999,28(2):22-26.
    [68]Vasykiv Oleg,Sakka Y,Skorokhod V-V.Nano-explsion synthesis of multi-component ceramic nano-composites.J.Euro.Cerm.Soc.,2007,27(2-3):585-592.
    [69]Hamilton T,Kurmaev E Z,Shamin S N et al.Soft X-ray absorption and emission characterization of nanodiamond prepared by explosive detonation.Diamond and Related Materials,2007,16(2):350-352.
    [70]Wen C,Jin Z H,Liu X X,et al.Synthesis of diamond using nano-graphite and Fe powder under high pressure and high temperature.Mater.Lett.,2006,60(29-30):3507-3510.
    [71]Li R Y,Li X J,Xie X H.Explosive synthesis of ultrafine Al_2O_3 and effect of temperature of explosion.Combust.Explo.Shock waves,2006,42(5):607-610.
    [72]李晓杰,李瑞勇,赵峥,谢兴华,曲颜东,王占磊,陈涛.爆轰法合成纳米氧化铝的实验研究.爆炸与冲击.2005.25f21:145-150.
    [73]Xie X H,Li X J,Yan H H.Detonation synthesis of zinc oxide nanometer powders.Mater.Lett.2006,60(25-26):3149-3152.
    [74]Li X J,Qu Y D,Xie X H et al.Preparation of SrAl_2O_4:Eu~(2+),Dy~(3+) Nanometer Phosphors by Detonation Method.Materials letters,2006,60(29-30):3673-3677.
    [75]李晓杰,曲艳东,李瑞勇等.爆轰法合成铝酸锶铕长余辉发光材料的研究.功能材料,2006,37(2):182-184.
    [76]李晓杰,陈涛,李瑞勇等.爆轰法制备氧化钛微粉及表征.稀有金属材料与工程,2006,35(11):1788-1791.
    [77]李晓杰,陈涛,张越举,曲艳东.偏钛酸爆轰合成纳米TiO_2研究.功能材料,2005,36(9):1391-1393.
    [78]Wang X H,Li X J,Zhang Y J,et al.A new synthetic method for manganese ferrite ultramicropowders.Glass physics and chemistry,2007,33(5):524-525.
    [79]郑敏,王作山.爆轰法合成纳米α-Fe_2O_3.硅酸盐学报.2005,33(8):930-933.
    [80]Sun G L,Li X J,Yan H H.Detonation of expandable graphite to make micron-size powder.New Carbon Materials.2007,22(3):242-246.
    [81]李晓杰.氧化物的爆轰合成万法.200410020553.X,2004-5-13..
    [82]周凯元,李宗芬,陈志坚.气相爆轰波平衡胞格稳定性实验研究.爆炸与冲击.1990,10(02):129-134.
    [83]郭长铭,张德良,谢巍.气相爆轰波在障碍物上Mach反射后流场的分析.中国科学技术大学学报.2000,30(6):685-692.
    [84]王昌建,徐胜利.直管内胞格爆轰的基元反应数值研究.爆炸与冲击,2005,22(5):405-416.
    [85]胡湘渝,张德良,姜宗林.气相爆轰基元反应模型数值模拟.空气动力学学报,2003,5(1):59-66.
    [86]胡宗民,孙宇峰,郭长铭,张德良.气相爆轰波传播特性的数值模拟及实验对照.空气动力学学报,2005,10(2):178-182.
    [87]董刚,范宝春,叶经方.简化CH_4/O_2/N_2基元反应模型在爆轰模拟中的应用.计算力学学报,2005,(4):431-436.
    [88]Longting He.Theoretical Determination of the Critical Conditions for the Direct Initiation of Detonations in Hydyogen-Oxygen Mixtures.COMBUSTION AND FLAME,1996,104:401-418.
    [89]姜海波,李春忠,朱孟钦,丛德滋,朱以华.气相燃烧法合成TiO_2纳米颗粒的形态与结构.华东理工大学学报,2001,27(2):147-151.
    [90]毕明树,李志义,丁信伟,贺匡国.可燃气体爆炸强度的计算.化工机械,1991,18(4):217-220.
    [91]毕明树,丁信伟,贺匡国.容器容积和长径比对可燃气体爆炸强度的影响.化工机械,1993,20(1):29-32.
    [92]赵衡阳.气体和粉尘爆炸原理.北京:北京理工大学出版社,1996.2.
    [93]张连玉,汪令羽,苗瑞生.爆炸气体动力学基础.北京:北京工业学院出版社,1987.
    [94]徐士明.理想气体方程在计算炸药爆炸产物上的应用.沈阳工业学院学报,1994,13(3):54-61.
    [95]陈志华,范宝春,李鸿志.管内均相湍流燃烧加速的数值模拟.爆炸与冲击,2003,23(4):337-342.
    [96]杨宏伟,范宝春,李鸿志.障碍物和管壁导致火焰加速的三维数值模拟.南京理工大学学报,2001,21(4):259-260.
    [97]姚海霞,范宝春,李鸿志.障碍物诱导的湍流加速火焰流场的数值模拟.南京理工大学学报,1999,23(2):109-112.
    [98]范宝春,姜孝海,谢波.障碍物导致甲烷-氧气爆炸的三维数值模拟.煤炭学报,2002,27(4):271-273.
    [99]Huld T,Peter G,Stadtke H.et al.Numerical Simulation of Explosion Phenomena in Industrial Environments.J Hazardous Materials,1996,46:185-195.
    [100]Ulrich Bielert,Martin Sichel.Numerical simulation of premixed combustion processes in closed pipes.Combustion and Flame,1998,114(3):397-419.
    [101]B.E.Lauder,D.B.Spalding.The numerical computation of tubulent flows.Computer Methods in Applied Mechanics and Rngineering,1974(3):269-289.
    [102]U.Klause.Numerical investigation on the influence of velocity fluctuations on venting of vessels.Shenyang:Proceedings of the 6th International Colloquium on Dust Explosions.1994,441-452.
    [103]宋其圣.无机化学教程.济南:山东大学出版社,2001.11.
    [104]高濂,张青红,郑珊.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002.
    [105]Titov V.M,Anisichkin V.F.,alkiv I.Yu.Synthesis of Ultrafine diamonds in detonation Waves[C].In:Wanda J M ed.Preceedings of the Ninth Synmposium(International) on Detonation,Arlington:Office of the Chief of Naval research,1989:407-416.
    [106]Yamada K,Sawaoka A.B.Bery small Spherical Crystals of dispersed diamond found in a detonation product of explosive and their formation mechanism[J].Carbon,1994,32(4):26-332.
    [107]Greinern N ROY.Roberl H.Chemistry of Detonation Soot:Diamond,Grphite and Volatiles[C].The Ninth Symposium(International) on Detonation,Arlington:1989:1170.
    [108]Johnson J.D.Carbon in Detonations[C].In:Wanda J M ed.Preceedings of the Ninth Synmposium (International) on Detonation,Arlington:Office of the Chief of Naval research,1989:417-424.
    [109]XIE H Y.The growth of nano and submicron particles in aerosol process[J].China particuology,2005,3:229-232.
    [110]Seinfeld,J.H..Atmospheric chemistry and physics of air pollution.New York:Wiley,1986.
    [111]Fuchs,N.A.Mechanics of aerosols.New York:Pergamon Press,1964.
    [112]周刚.利用炸药中的碳爆轰合成超细金刚石的研究[D].北京理工大学博士论文.1995.
    [113]Shaw M.S.johnson L.D.Canbon clustering in detonation[J].Journal of Applied physics.1987,62(5):2080-2085.
    [114]Blakely J M.Introduction to the Properties of Crystal Surfaces,Oxford:Pergamon Press,1973
    [115]Cammarata R C,Sieradzki K.Surface and interface stresses.Annu.Rev.Mater.Sci.,1994,24,215-234.
    [116]Zhang H Z,Banfield J F.Thermodynamic analysis of phase stability of nanocrystalline titania.J.Mater.Chem.,1998,8(9):2073-2076
    [117]Qinghong Zhang,Lian Gao,Jingkun Guo.Effects of calcination on the photocatalytic properties of nanosized TiO_2 powders prepared by TiCl_4 hydrolysis.Applied Catalysis B:Environmental,2000,26(3):207-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700