气相爆燃合成纳米二氧化硅的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米SiO2由于其特殊性能,在许多领域有着非常好的应用前景,因此研究出好的制备方法就显得尤为重要。气相爆燃合成纳米颗粒的方法是通过引爆含有前驱体的可燃气体来制备出所需纳米颗粒的一种新型合成方法。本文以气相爆燃的方法成功合成出了纳米二氧化硅,主要研究内容如下:
     1.对气体爆炸的理论进行了研究,算出了SiCl4分别与氢氧、氢气和空气混合后的爆炸参数。并以四氯化硅为前驱体,分别以氢氧混合气体、氢气与空气混合气体为爆源,以压力测试和高速摄影为实验手段,得出前驱体在这两种不同混合气体爆炸过程中的爆炸压力及爆速。
     2.通过改变氢气与空气混合气体的起爆前管内温度,改变前驱体的注入量,进行了一系列实验,制备出了非晶态纳米Si02,并通过XRF、XRD、TEM等检测手段对产物颗粒形貌、分散性及粒径大小等方面进行了表征。实验发现该方法制得的纳米SiO2颗粒大小分布较为均匀,粒径较小,大约在10m左右,形状近似球形,生成的纳米SiO2产物纯度可达99%以上。而起爆前管内温度的提高,能够较好的改善SiO2产物的分散性,颗粒分布也更加均匀。前驱体注入量过多会使得颗粒间粘结,前驱体的相对摩尔量应控制在1.5以内。
     3.作为比较,我们也进行了以氢氧为混合气体,以SiCl4为前驱体的研究。通过对产物进行表征,发现爆燃合成出来的纳米SiO2颗粒大多呈规则的圆球形,分散性较好,但粒径有所变大。
     4.气相爆燃合成纳米SiO2颗粒是一种很有发展前景的制备方法,其操作简单、成本较低且生成的产物纯度高,若完善其反应条件及设备,有望实现工业化生产。
Due to its special performance, Silicon Dioxide nanoparticles have a very good prospect in many fields, so the study of a good preparation methods are particularly important. Gaseous deflagration methods of synthesizing nanoparticles is a new synthesis method which can prepares nanoparticles by detonated combustible gas which contain precursor. The main research contents of nano SiO2 synthesis with gaseous deflagration are as follows:
     1. Through the theory of gas explosion,we calculated explosion parameters after mixing in SiCl4 with hydrogen and oxygen, hydrogen and air respectively. Taking SiCl4 as the precursor, by means of pressure test and high-speed photography for gaseous deflagration of mixtures which composed of hydrogen and oxygen, hydrogen and air respectively, we also got detonation velocity and detonation pressure of deflagration precess.
     2. By changing the temperature of mixture of hydrogen and air before initiation, changing the injection quantity of precursor, we prepared amorphous nano SiO2 by a series of experiments and characterized particle morphology, dispersion and particle size of product through testing means, such as XRF, XRD, TEM etc. It was found that the particle size of prepared nano-SiO2 were more uniform and smaller, about 10nm or so.The product was spherical shape and its purity was more than 99%. With the temperature of the tube rising before detonating, the dispersion of SiO2 products was improved and particle distribution was more uniform. Excessive precursor injection will make the bond between the particles, the relative amounts of precursors should be controlled within the molar ratio of 1.5.
     3. As a comparison, we also conducted the gas mixture of hydrogen and oxygen with SiCl4 as the precursor. The products were characterized. The nano particles SiO2 were spherical most, well dispersed, but the size became larger.
     4. Synthesizing nano SiO2 particles through gaseous deflagration is a very promising preparation methods. Its operation is simple, cost is low and purity is high. If its reaction conditions and equipment could be perfected, we can hope to achieve industrial production.
引文
[1]施利毅等编.纳米材料[M].上海:华东理工大学出版社,2007.1~2.
    [2]张立德,牟季美著.纳米材料和纳米结构[M].北京:科学出版社,2001.2~22.
    [3]王永康,王立.纳米材料科学与技术[M].杭州:浙江大学出版社,2003.
    [4]代传银.白炭黑中“水”的解析[J].应用化工,2004,31(6):64~66.
    [5]翟晓瑜,张秋禹,艾秋实等.纳米二氧化硅的制备及其在环氧树脂中的应用[J].中国粘结剂,2009,18(6):62~65.
    [6]史非,王立久,刘敬肖.纳米介孔SiO2气凝胶的常压干燥制备及表征[J].硅酸盐学报,2005.33(8):964~967.
    [7]Marpuez N, Bravo B, Chavez G, et al.Analys is of polyethoxylated surfactants in microemulsion-oil-water systems[J]. Analytica Chimica Acta,2000,405: 267~275.
    [8]Venkate swarea R ao A, Pajonk GM, Haranath D. Synthesis of hydrophobic aerogels for transparent window insulation applications[J]. Materials Scienceand Technology,2001,17:343.
    [9]James H Johnsion, Andrew JMcFarlane, Thomat Borrmann, et al. Nano-structured silicas and silicates new materials and their applications in paper [J]. Current Applied Physics,2004,4:41~414.
    [10]蔡亮珍,杨挺.纳米二氧化硅在高分子领域中的应用[J].现代塑料加工应用,2002,14(6):20~23.
    [11]Cullum B M, Griff in G D, Miller G H, et al. Intracellular meseurements in mammary carcinoma cells using fiber-optic nanosensors[J]. Anal Biochem,2000,277: 25~32.
    [12]Stockle R, Fokas L, Deckert V, et al. High-quality near-field optical by tube etching[J].Appl Phys Lett,1999,75:160~162.
    [13]Bui J D, Zelles T, Lou H J, et al. Probing intracellular dynamics with near-field optics[J]. J Neurosci Methods.1999,89:9~15.
    [14]Vo-Dinh T, Cullum B M. Biosensors and biochips. Advances in biological and medical diagnostics[J]. Trese-nius J Anal Chem.2000(366):540~541.
    [15]Vo-Dinh T, Alarie J P, Cullam B, et al. Antibody based nanoro be for measurement of a fluorescent analyze in a single cell[J].Nat Biotechmol,2000(18): 764~767.
    [16]李曦,刘连利,王莉莉.纳米二氧化硅的研究现状与进展[J].渤海大学学报(自然科学版),2006,27(4):304~308.
    [17]M. P. J. peeters, M. R. Bohmer. Optical Application of (Pigmented) Sol-Gel coat ings[J]. Journal of Slo-Gel sciences and Technology,2003,26:57~62.
    [18]H. schmidt, G. Jonschker, S. Goedicke, M. Mennig. The Sol-Gel Process as a basic Technology for Nanoparticle-Dispersed Inorganic-organic conposites[J]. Journal of Sol-Gel sciences Technology,2002,19,39~51.
    [19]Fayna Mammeri, Laurence Rozfs, Clement Sanchez. Mechanical Properties of SiO2-PMMA Based Hybrid Organic-Inorganic Thin Films[J]. Journal of Sol-Gel sciences Technology,2003,26:413"417.
    [20]施利毅等编.纳米科技基础[M].上海:华东理工大学出版社,2005.153~195.
    [21]周瑞发,韩雅芳,陈祥宝编著[M].北京:国防工业出版社,2003.430~435.
    [22]霍玉秋,闫玉涛,刘晓霞等.单分散纳米Si02的制备及其作为润滑油添加剂的摩擦学性能研究[J].摩擦学学报,2005,25(1):34~38.
    [23]霍玉秋,闫玉涛,翟玉春.纳米Si02润滑油添加剂的摩擦学性能研究[1].材料导报,2004.18(4):101~103.
    [24]李小红,李庆华,张冶军等.一种可反应性纳米Si02的制备和表征及其摩擦磨损性研究[J].摩擦学学报,2005,25(6):499~503.
    [25]彭志刚,张伟,曾金芳.纳米SiO2粒子对环氧粘结剂力学性能影响研究[J].固体火箭技术,2002(4):35~39.
    [26]张化萍.划时代的建筑材料[J].专家论坛,2001(1):71~74.
    [27]张密林,丁立国,景晓燕等.纳米二氧化硅的制备、改性与应用研究进展[J].应用科技,2004,31(06):64~66.
    [28]梁建功,宋春华,伺冶柯.PH荧光纳米传感器的研制及表征[J].分析化学,2005,33(8):1119~1121.
    [29]张娟,徐静娟,陈洪渊.基于SiO2纳米粒子固定辣根过氧化物酶的生物传感器[J].高等学校化学学报,2004,25(4):61~67.
    [30]丁立国.纳米二氧化硅的制备与应用研究[D].哈尔滨:哈尔滨工程大学化工学院,2003.
    [31]张宁,熊裕华.溶胶-凝胶法制备纳米二氧化硅[J].南昌大学学报(理科版),2003,27(3):267~269.
    [32]殷志明,姚熹,吴小倩等.溶胶-凝胶法制备纳米二氧化硅和多孔二氧化硅膜[J].硅酸盐学报,2002,30(6):766~770.
    [33]李东平.纳米二氧化硅的制备与表征[J].化学丁程师,2007,8:63~64.
    [34]郭宇,吴红梅,尹桂丽.溶胶-凝胶法制备纳米二氧化硅[J].天津化工,2005,19(1)34~35.
    [35]Roger A. Assink,Bruce D. kay. J. Non-Cryst. Solids,1988(99):359~371.
    [36]解小玲,张跃东,许并社.纳米二氧化硅的制备研究[J].动能材料,2007,增刊(38)2066~2068.
    [37]Arriagada F J, nsseo-Asare K. Synthesis of nanosize silica in aerosol OT reverse microemulsions[J]. Journal of Colloid and Interface Science,1995, 170(1):8-17.
    [38]Chang C L, Fogler H S. Kinetics of silica particle formation in nonionic W/O microemulsions from TEOS[J]. AICHE Journal,1996,42(11):3153~3163.
    [39]朱振峰,李晖,朱敏.微乳液法制备无定型纳米二氧化硅[J].无机盐工业,2006,38(6):14~16.
    [40]骆峰,阮建明,万千.微乳液法制备纳米二氧化硅粉末[J].粉末冶金材料科学与工程,2004,9(4):72~77.
    [41]聂王焰,徐洪耀等.微乳液法制备纳米二氧化硅[J].安徽大学学报(自然科学版)2007,31(6):70~73.
    [42]刘立泉,何永等.纳米二氧化硅粉体的制备[J].电子元件与材料,2000,19(4):28~32.
    [43]李曦,刘连利,王莉丽.沉淀-超声法制备纳米二氧化硅[J].化学世界,2007,12:705~708.
    [44]王英,马亚鲁.湿化学法制备超细二氧化硅粉体材料[J].无机盐工业,2003,35(6)8~11.
    [45]许坷敬,杨新春,段贤峰等.多孔纳米SiO2微粉的制备与表征[J].硅酸盐通报,2001,1:58~62.
    [46]郭英凯,赵燕禹等.纳米二氧化硅的制备[J].盐业与化工,2007,36(4):29~31.
    [47]王海波.超重力法制取纳米级二氧化硅[J].中国照明电器,2003(09):8~9.
    [48]贾宏,郭楷,郭奋等.用超重力法制备纳米二氧化硅[J].材料研究报,2001,15(1):120~124.
    [49]Li feng, Yu Xianghua, Pan Hongjun, et al. Syntheses of MO2 (M=Si,Ce, Sn) nanoparticles by solid-state reactions at ambient temperature [J]. Solid State Sciences,2000(2):767~772.
    [50]侯贵华,罗驹华,陈景文.稻壳制备高纯高表面积SiO2的研究[J].化学世界,2004,9(9):458~469.
    [51]王小红,李晓杰等.爆轰法制备纳米MnFe2O4粉体的实验研究[J].高压物理学报,2007,21(2):173~177.
    [52]李晓杰,陈涛等.偏钛酸爆轰合成纳米TiO2研究[J].功能材料,2005,36(9)1391~1393.
    [53]欧阳欣.气相爆燃与爆轰法制备纳米二氧化钛研究[D].辽宁:大连理工大学运载工程与力学学部,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700