用户名: 密码: 验证码:
矿山井筒硬岩深孔爆破模型试验与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在矿山井筒掘进施工中,主要采用钻眼爆破法。频繁且大规模的爆破作业在完成岩体开挖的同时,不可避免地会产生爆破振动效应,对井壁及周围岩体等产生不利影响。因此,既要充分发挥炸药爆炸所释放的能量,提高井筒工程的掘进速度和效率;又要对炸药的爆炸能量进行有效地控制,将围岩及支护结构等受爆破振动的影响控制在设计要求限度内。
     针对井筒掘进存在的上述问题,本文结合皖北煤电集团“朱集西矿井井筒与巷道硬岩段高效爆破技术研究”和“恒源煤矿千米深井硬岩段高效爆破与快速掘进关键技术研究”课题研究,在理论分析爆破地震波传播特性的基础上,进行了立井掏槽爆破两圈眼同时起爆、三圈眼延期起爆等不同爆破方案的模型试验研究,并对爆破振动、爆破应变等进行测试与分析;进行工程应用性验证,同时开展爆破振动效应的现场监测与分析,确保围岩及支护结构的稳定性。主要结论如下:
     (1)以矿山井筒为原型,根据相似理论建立相似准则,确定模型材料、几何形状及爆破参数。采用预留炮眼方法,设计二圈10个炮眼,三圈20个炮眼混凝土试件,进行齐发爆破、延期爆破等不同掏槽方案的模型试验。分析了爆破损伤对声波传播速度的影响规律,并根据声速的变化特征,判别混凝土试件的损伤程度。试验得出,同时起爆能够获得更多能量,掏槽深度大,产生的振动效应大,爆破损伤程度高;延期起爆能够充分利用自由面,掏槽体积大,爆破损伤程度小。
     (2)对不同掏槽爆破方案的模型试验进行爆破振动测试研究。得到的爆破振动信号水平横向振速最小,水平纵向和垂直方向振速较大且基本相等。同时起爆时峰值振动速度较大,可以获得较大的起爆能量,有利于掏槽爆破,增大槽腔体积与深度;延时起爆时峰值振动速度较小,可以获得较好的成型效果,有利于辅助眼及周边眼爆破,降低超、欠挖量。随着延期时间增大,各段起爆产生的波形彼此相互独立,峰值振速由各段起爆药量决定。在总药量一定情况下,合理的增加段数并控制最大段起爆药量是降低爆破振动强度的有效方法。对爆破振动信号进行了频谱分析,得出爆破试验在模型试件表面产生的振动信号频带较宽,主振频率突出。
     (3)对不同掏槽爆破方案的112个测点进行爆破应变测试分析。得到有效应变波形,将应变片电压值通过公式换算为应变值,得到电压信号与动应变的转换关系。分析了应变时间历程关系曲线的变化规律。
     (4)根据模型试验的研究结果,结合具体井筒工程实际,根据矿山井筒岩石性质、爆破器材性能及凿岩设备条件,优化爆破方案,提出深孔双阶同深掏槽方式,针对炮眼布置方式、炮眼直径、炮眼深度、装药量及微差起爆顺序等对爆破参数进行了优化设计。应用于井筒爆破掘进中,提高了井筒爆破效率及掘进速度,炮眼利用率达到91.7%,并降低了爆破振动对井壁及周围岩体的影响。经过实际应用,对矿山井筒爆破施工的快速掘进与安全具有重要的指导意义,取得了良好的社会和经济效益。
     (5)通过对爆破振动进行现场测试及分析,得出地震波传播衰减公式、爆破振动信号不同频带的能量分布特征,质点振动速度峰值及时刻与各段起爆的炸药量和延时具有相关性。采用延期爆破方式,控制最大段起爆药量,降低了爆破振动效应,提高爆破效率。
The drilling and blasting method is mainly used in the construction of mine shaft. Shaft lining and surrounding rock is subjected to negative impact because of the blasting vibration effect caused by frequent and large-scale blasting operation while completing the rock excavation. Blasting energy should not only be fully used to improve advancing speed and efficiency, but also be effective controlled to keep the vibration of surrounding rock and supporting structures within the limits.
     In order to solve the problem in shaft excavation, combining with projects "Research on Efficient Blasting Technology for Hard Rock Section of Shaft and Roadway in Zhujixi Coal Mine" and "Research on Key Technology of Efficient Blasting and Rapid Excavation for Hard Rock Section of Deep Shaft in Hengyuan Coal Mine", model tests for shaft cut blasting in two-circle simultaneous blasting and three-circle delay blasting were carried out based on theoretical analysis of blasting seismic wave propagating properties. Blasting vibration and strain tests were also carried out. Moreover, field monitoring and analysis of blasting vibration were presented in engineering application to ensure the stability of surrounding rock and supporting structures. Main conclusions are as follows:
     (1) According to similarity theory, similarity criterion for coalmine shaft was established; model material, model geometry and blasting parameters were also determined. Blasting holes were reserved during concrete pouring. Two-circle model contains ten blasting holes and three-circle model contains twenty blasting holes to implement simultaneous blasting and delay blasting. The influence of blasting to longitudinal wave velocity was also analysised and the damage degree is determined by longitudinal wave velocity changing. It was found that simultaneous blasting can generate more energy resulting in greater cavity depth, stronger vibration effect, and larger blasting damage; while delay blasting can make full use of free surface leading to greater cavity volume and lower blasting damage.
     (2) Vibration monitoring was conducted in all cut blasting tests. The results showed that vibration in horizontal was the smallest, and vibration in longitudinal and vertical were bigger and almost the same. Simultaneous blasting could generate larger vibration velocity and more blasting energy, which is good for cut blasting leading to great cavity volume and depth. While millisecond delay blasting could generate smaller vibration velocity and better shape, which is good for auxiliary and surrounding holes blasting, reduces overbreak and underbreak. With the delay time increasing, waveforms were independent to each other, peak vibration velocity was determined by dosage in different relays. When the total dosage was certain, an effective method in reducing and controlling blasting vibration was increasing the relays of detonation and limiting the dosage in simultaneous detonation. By spectral analyses of blasting vibration signals, vibration signal on specimen surface had a wider frequency band and main vibration frequency.
     (3) Dynamic strain in all cut blasting tests,112measuring points, were analyzed and effective strain waves were obtained by conversion of voltage signal to strain signal. The change rule of strain-time curve was also analyzed.
     (4) Based on the results of model tests, a cutting mode of double-row with the same depth was put forward according to rock properties, blasting equipment performance and drilling equipment condition. The blasting parameter was optimization designed considering the arrangement, diameter and depth of blasting holes, the charge and firing sequence. In engineering application, advance rate and efficiency was improved, blasting hole utilization reached91.7%, the vibration of shaft wall and surrounding rock was reduced. This would provide guidance for rapid excavation and safe construction of coalmine shaft achieving good social and economic benefits.
     (5) Through field test and analysis of blasting vibration, the propagation attenuation formula of seismic wave and the energetic distribution of signals with different frequency bands were obtained. The peak particle velocity and time are related to the charge of each interval and delay time. Delay blasting method and controlling maximum instantaneous charge were adopted to reduce the blasting vibration and to improve blasting efficiency.
引文
[1]钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529-534
    [2]柏建彪,曾宪桃,周英.井巷设计优化与施工新技术[M].徐州:中国矿业大学出版社,2008
    [3]李全生.我国井工煤矿开采技术现状和发展展望[J].煤矿开采,2002,7(3):1-5
    [4]许佳,王德胜.煤矿岩巷掘进爆破的现状和展望[J].矿业快报,2008,7(3):73-80
    [5]张雪亮,黄树棠.爆破地震效应[M].北京:地震出版社,1981
    [6]李翼祺,马素贞.爆炸力学[M].北京:科学出版社,1992
    [7]Wheeler R M. How millisecond delay periods may enhance or deduce blast vibration effects[J]. Mining Engineering,1988,40(10):969-973
    [8]Charles H D. Monitoring and control of blast effect[M]. Mining Engineering Handbook,1990
    [9]Rudenko D. Understanding blast vibration[J]. Pit & Quarry,1998,91(2):30-33
    [10]马芹永.冻土爆破性与可钻性试验及其应用[M].北京:科学出版社,2007
    [11]马芹永,韩博,卢小雨.立井井筒基岩段深孔爆破振动测试与分析[J].煤炭科学技术,2012,40(1):23-25
    [12]孟建.溪洛渡水电站出线煤矿井巷爆破振动效应研究[D].武汉:武汉理工大学硕士学位论文,2010
    [13]谢毓焘,王耀文.工业爆破地震效应[J].地球物理学报,1962,11(2):24-31
    [14]凌同华.爆破震动效应及其灾害的主动控制[D].长沙:中南大学博士学位论文,2004
    [15]林俊德.爆炸地震波的频率特性分析[J].岩石力学与工程学报,1996,15(增刊):476-480
    [16]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1984
    [17]张志呈.定向断裂控制爆破[M].重庆:重庆出版社,2000
    [18]郭学彬,肖正学,肖旺新,等.爆破地震波的频谱及测试系统的频响问题[A].第七届全国工程爆破学术会议论文集[C],2001:696~701
    [19]Bollinger G A.爆破振动分析[M].北京:科学出版社,1975
    [20]言志信,吴德伦,王漪,等.地震效应及安全研究[J].岩土力学,2002,23(2):201-203
    [21]唐海.地形地貌对爆破振动波影响的实验和理论研究[D].北京:中国科学院研究生院博士学位论文,2007
    [22]姚尧.爆震的放大效应与二元回归分析[J].爆破,1992.9(4):5-8
    [23]李保珍,王迪安.高程差与爆破振动强度及衰减规律之间关系的探讨[A].第六届全国工程爆破学术会议论文集[C],1997:778-783
    [24]陈寿如,宋光明,周凤南,等.两种质点振速预测公式的比较与选择[A].第七届全国工 程爆破学术会议论文集[C],2001:702-706
    [25]范磊,沈蔚.爆破振动频谱特性试验研究[J].爆破,2001,18(4):18-20
    [26]Torano J, Ramirez-Oyanguren P, Rodriguez R, et al. Analysis of the environmental effects of ground vibrations produced by blasting in quarries[J]. International Journal of Mining, Reclamation and Environment,2006,20(4):249-266
    [27]曹孝君.浅埋隧道爆破的地表震动效应研究[D].成都:西南交通大学博士学位论文,2006
    [28]陈士海,逢焕东.爆破灾害预测与控制[M].北京:煤炭工业出版社,2006
    [29]Hakan Ak, Adnan Konuk. The effect of discontinuity frequency on ground vibrations produced from bench blasting:A case study[J]. Soil Dynamics & Earthquake Engineering,2008, 28(9):686-694
    [30]P K Singh, M P Roy. Characterization of blast vibration generated from open-pit blasting at surface and in belowground openings[J]. Ming Technology,2008,117(3):122-127
    [31]Henrych J.爆炸动力学及其应用[M].北京:科学出版社,1987
    [32]高全臣.爆炸载荷在岩体中引起应力波的传播理论与试验研究[D].北京:中国矿业大学博士学位论文,1987
    [33]卢文波.岩石爆破中应力波的传播及其效应研究[D].武汉:武汉水利电力大学博士学位论文,1994
    [34]闫长斌.爆破作用下岩体累积损伤效应及其稳定性研究[D].长沙:中南大学博士学位论文,2006
    [35]杨军,金乾坤,黄凤雷.岩石爆破理论模型及数值计算[M].北京:科学出版社,1999
    [36]刘殿书.岩石爆破破碎的数值模拟[D].北京:中国矿业大学博士学位论文,1992
    [37]Grady D E, Kipp M E. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1980, 17(2):147-157
    [38]Taylor L M, Chen E P, Kuszmaul J S. Micro-crack induced damage accumulation in brittle rock under dynamic loading[J]. Computer Method in Applied Mechanics and Engineering, 1986,55:301-320
    [39]Kuszmaul J S. A new constitutive model for fragmentation of rock under dynamic loading[A]. In:Proc. of 2nd International Symposium on Rock Fragmentation by Blasting[C]. Keystone, USA,1987,412-423
    [40]Thorne B J, Hommert P J, Brown B. Experimental and computational investigation of the fundamental mechanisms of cratering[A]. In:Proc.of 3rd International Symposium on Rock Fragmentation by Blasting[C]. Brisbane, Australia,1990,117-124
    [41]Yang R, Bawden W F, Katsabanis P D. A new constitutive model for blast damage[J]. International Journal of Rock Mechanics & Mining Science,1996,33(3):245-254
    [42]Liu Liqing, Katsabanis P D. Development of a continuum damage model for blasting analysis[J]. International Journal of Rock Mechanics & Mining Science,1997,34(2):217-231
    [43]Song J, Kim K. Micromechanical modeling of the dynamic fracture process during rock blasting[J]. International Journal of Rock Mechanics & Mining Sciences,1996,33(3):387-394
    [44]杨军,王树仁.岩石爆破分形损伤模型研究[J].爆炸与冲击,1996,16(1):5-10
    [45]MacKown A F. Perimeter controlled blasting for underground excavations in fractured and weathered rocks[J]. Bull. Assoc. Engg. Geol.1986,23(4):461-478
    [46]Ricketts T E. Estimating underground mine damage produced by blasting[A]. In:4th Mini. Symp. on Explosive and Blasting Res, Soc. Explosive Engg[C], Anaheim, California, 1988:1-156
    [47]Forsyth W W. A discussion on the blast induced over-break around underground excavations[J]. Fragblast,1993(4):161-166
    [48]Persson P A, Holmberg R & Lee J. Rock Blasting and Explosive Engineering[M]. CRC Press, Tokyo,1996
    [49]Nateghi R, Kiany M, Gholipouri O. Control negative effects of blasting waves on concrete of the structures by analyzing of parameters of ground vibration[J]. Tunneling & Underground Space Technology,2009,24(6):608-616
    [50]朱传云,喻胜春.爆破引起岩体损伤的判别方法研究[J].工程爆破,2001,7(1):12-16
    [51]S K Mandal, M M Singh, N K Bhagat, et al. Model for energy-based evaluation of blast waves to assess safety of structures[J]. International Journal of Mining, Reclamation and Environment,2007,21(2):111-125
    [52]S K Roy, R R Singh, T Kumar, et al. Studies into possible use of air decking in solid blasting in Indian underground coal mines[J]. Ming Technology,2008,117(2):83-92
    [53]Kuzu Cengiz, Guclu Erim. The problem of human response to blast induced vibrations in tunnel construction and mitigation of vibration effects using cautious blasting in half-face blasting rounds[J]. Tunneling & Underground Space Technology,2009,24(1):53-61
    [54]M Ataei. Evaluation of blast induced ground vibrations from underground excavation at Karoun 3 area[J]. Ming Technology,2010,119(1):7-13
    [55]卢云香.大坝治理工程爆破振动对坝体安全的影响分析[D].大连:大连理工大学硕士学 位论文,2012
    [56]韩博,马芹永.煤矿岩巷毫秒延期爆破振动测试与控制技术研究[J].煤炭学报,2013,38(2):209-214
    [57]平琦,马芹永,徐晓核.水库坝区竖井开挖爆破技术及振动测试分析[J].地下空间与工程学报,2009,5(3):577-581
    [58]D Deb, A K Jha. Estimation of blast induced peak particle velocity at underground mine structures originating from neighboring surface mine[J]. Ming Technology,2010, 119(1):14-21
    [59]熊代余,顾毅成.岩石爆破理论与技术新进展[M].北京:冶金工业出版社,2002
    [60]刘殿中.工程爆破使用手册[M].北京:冶金工业出版社,1999
    [61]李付胜.城市隧道掘进爆破数值模拟及震动效应控制研究[D].重庆:重庆大学硕士学位论文,2008
    [62]杨年华,林世雄.爆破振动测试技术探讨[J].爆破,2000,17(3):90-92
    [63]李彬峰.爆破振动的分析方法及测试仪器系统探讨[J].爆破,2003,20(1):81-84
    [64]薛里,施龙焱,孙付峰.地铁浅埋隧道爆破开挖振动控制研究[J].地下空间与工程学报,2012,8(4):791-795,814
    [65]Berta Giogio. Blating-induced vibration in tunneling[J]. Tunnel and underground space technology,1994,9(2):25-47
    [66]凌同华,李夕兵,戴塔根,等.基于小波变换的时-能密度法优选微差延期时间[J].重庆建筑大学学报,2006,28(2):36-39
    [67]叶海旺,石文杰,王二猛,等.金堆城露天矿生产爆破合理微差时间的探讨[J].爆破,2010,27(1):96-98
    [68]吴腾芳,王凯.微差爆破技术研究现状[J].爆破,1997,14(1):53-57
    [69]朱传云,卢文波,董振华.岩质边坡爆破振动安全判据综述[J].爆破,1997,14(4):15-17
    [70]陈寿如,谢圣权.最大段药量控制爆破降震在某采场中的应用研究[J].采矿技术,2003,3(4):28-30
    [71]张义平.爆破震动信号的HHT分析与应用研究[D].长沙:中南大学博士学位论文,2006
    [72]吕淑然.露天矿爆破地振效应与降振技术研究[J].有色金属,2003,55(3):30-32
    [73]方颜空,文永胜,顾亮业,等.浅析爆破地振波产生的原因及控制方法[J].矿业工程,2009,7(3):37-38
    [74]赵京林,李永刚.爆破振动的危害性及防治措施[J].现代矿业,2010,13(2):40-42
    [75]李夕兵,凌同华,张义平.爆破震动信号分析理论与技术[M].北京:科学出版社,2009
    [76]宋光明.爆破振动小波包分析理论与应用研究[D].长沙:中南大学博士学位论文,2001
    [77]凌同华,李夕兵.爆破振动信号不同频带的能量分布规律[J].中南大学学报,2004,34(2):310-315
    [78]杨军伟.爆破振动信号特征分析方法及其应用研究[D].湘潭:湖南科技大学硕士学位论文,2009
    [79]Ling T H, Li X B. Influence of maximum decking charge on intensity of blasting vibration[J]. Journal of Central South University of Technology,2006,13(3):286-289
    [80]Aldas G U, Ecevitoglu B. Waveform analysis in mitigation of blast-induced vibrations[J]. Journal of Applied Geophysics,2008,66(1/2):25-30
    [81]杨建国.小波分析及其工程应用[M].北京:机械工业出版社,2005
    [82]Morlet J. Wave propagation and sampling theory[J]. Geophysics,1982,47(2):203-236
    [83]中国生.基于小波变换爆破振动分析的应用基础研究[D].长沙:中南大学博士学位论文,2006
    [84]何军,于亚伦,梁文基.爆破振动信号的小波分析[J].岩士工程学报,1998,20(1):47-50
    [85]林大超,施惠基,白春华,等.爆炸地震效应的时频分析[J].爆炸与冲击,2003,23(1):31-35
    [86]林大超,施惠基,白春华,等.基于小波变换的爆破振动时频特征分析[J].岩石力学与工程学报,2004,23(1):101-106
    [87]凌同华,李夕兵.用小波变换识别微差爆破中的实际延迟时间[J].湖南科技大学学报(自然科学版),2004,19(2):21-23
    [88]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000
    [89]Charles K. An introduction to wavelets[M]. New York:Academic Press Inc,1992
    [90]Mallat S. A theory for multiresolution signal decomposition:The wavelet represention[J]. IEEE Transactions Pattern Anal Machine Intell,1989,11 (7):674-693
    [91]Daubechies I. The wavelet transform time-frequency localization and signal analysis[J]. IEEE Transactions on Information Theory,1990,36(5):961-1005
    [92]凌同华,李夕兵.单段爆破振动信号频带能量分布特征的小波包分析[J].振动与冲击,2007,26(5):41-43,151-152
    [93]凌同华,李夕兵.多段微差爆破振动信号频带能量分布特征的小波包分析[J].岩石力学与工程学报,2005,24(7):1117-1122
    [94]中国生,熬丽萍,赵奎.基于小波包能量谱爆炸参量对爆破振动信号能量分布的影响[J].爆炸与冲击,2009,29(3):300-305
    [95]徐学勇,冯谦,雷静雅.基于小波包变换的爆破震动信号能量分析方法[J].大地测量与地球动力学,2010,30(增Ⅱ):27-30,62
    [96]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society of London,1998,454A:903-995
    [97]陈银鲁.爆破震动信号的能量分析方法及其应用研究[D].杭州:浙江大学硕士学位论文,2010
    [98]张义平,李夕兵,赵国彦.爆破微差延时的EMD识别法[J].地下空间与工程学报,2006,2(3):488-490
    [99]史秀志,田建军,王怀勇.冬瓜山矿爆破振动测试数据回归与时频分析[J].爆破,2008,25(2):77-81
    [100]史秀志,董凯程,曾志林,等.基于二次型变换的深井爆破振动信号时频特征分析[J].爆破,2010,27(1):85-88
    [101]赵明生,张建华,易长平.基于单段波形叠加的爆破振动信号时频分析[J].煤炭学报,2010,35(8):1279-1282
    [102]赵明生,张建华,易长平.基于小波分解的爆破振动信号RSPWVD二次型时频分析[J].振动与冲击,2011,30(2):44-47
    [103]吴腾芳,王凯.微差爆破技术研究现状[J].爆破,1997,14(1):53-57
    [104]夏红兵,张定前.微差爆破技术在巷道掘进中的应用[J].煤矿爆破,2003(2):1-3
    [105]吴腾芳,王凯,倪荣福.微差爆破间隔时间计算模型的探讨[J].工程爆破,1997,3(4):59-62
    [106]李德林,王伟策,高振儒.中深孔微差爆破合理间隔时间的研究[J].爆破,1999,16(3):74-77
    [107]冯叔瑜.爆破工程[M].北京:中国铁道出版社,1980
    [108]徐全军,毛志远,张庆明.深孔微差爆破震动预报浅析[J].爆炸与冲击,1998,18(2):182-186
    [109]陶颂霖.凿岩爆破[M].北京:冶金工业出版社,1989
    [110]廖先葵.深孔爆破大规模干扰降震机理及其应用[J].爆破,1993(4):1-6
    [111]中国大百科全书军事编委会.中国军事百科全书[M].北京:中国大百科全书出版社,2007
    [112]刘耀鹏.火炸药产生技术[M].北京:北京理工大学出版社,2009
    [113]胡昌华,张军波.基于MATLAB的系统分析与设计-小波分析[M].西安:西安电子科技 大学出版社,2000
    [114]王宏禹.非平稳随机信号分析与处理[M].北京:国防工业出版社,1999
    [115]曹欣茂.世界爆破器材手册[M].北京:兵器工业出版社,1999
    [116]薛孔宽,赵式本,黄桂英.空腔爆破-降低爆破震动的有效途径[J].爆破,1987,4(4):23-28
    [117]赵新涛.城市岩体开挖爆破振动效应及安全控制研究[D].重庆:重庆大学博士学位论文,2010
    [118]庄表中,陈乃立,高瞻.非线性随机振动理论及应用[M].杭州:浙江大学出版社,1986
    [119]冯叔瑜,朱节忠,朱乃耀.土岩工程大量爆破及其设计[M].北京:冶金工业出版社,1968
    [120]Paul W N.对毫秒延时爆破振动的认识[J].世界采矿快报,1987(2):21-23
    [121]付天光.逐孔起爆技术应用基础研究[D].阜新:辽宁工程技术大学博士学位论文,2010
    [122]胡隶贤.地震工程学[M].北京:地震出版社,1988
    [123]言志信.结构拆除及爆破震动效应研究[D].重庆:重庆大学博士学位论文,2002
    [124]李造鼎.岩体测试技术[M].北京:冶金工业出版社,1993
    [125]飞思科技产品研发中心.小波分析理论与MATLAB7实现[M].北京:电子工业出版社,2005
    [126]张义平,李夕兵,赵国彦,等.爆破震动信号的时频分析[J].岩土工程学报,2005,27(12):1472-1477
    [127]宋光明.爆破振动小波包分析理论与应用研究[M].长沙:国防科技大学出版社,2008
    [128]袁文华.煤矿硬岩巷道不同阶微差掏槽爆破试验与应用研究[D].淮南:安徽理工大学博士学位论文,2010
    [129]马芹永.冻土爆破漏斗及冻土爆破性的模型试验研究[J].煤炭学报,1997,22(3):288-293
    [130]宗琦.立井冻土掘进爆破参数模型试验研究[D].合肥:中国科学技术大学博士学位论文,2004
    [131]秦绍兵,秦绍红.井下中深孔爆破模型试验的相似性研究[J].工程爆破,2001,7(2):9-12
    [132]中国建筑科学研究院.普通混凝土力学性能试验方法标准(GB/T 50081-2002)[S].北京:中国建筑工业出版社,2003
    [133]中华人民共和国国家标准编写组.爆破安全规程(GB6722-2011)[S].北京:中国标准出版社,2004
    [134]马芹永,蔡美峰.冻砂土爆破块度分布的分形研究[A].全国矿山建设学术会议论文选集[C],2002:127-130
    [135]周传波.深孔爆破一次成井模拟优化与应用研究[D].武汉:中国地质大学博士学位论文, 2004
    [136]夏祥.爆炸荷载作用下岩体损伤特征及安全阈值研究[D].武汉:中国科学院武汉岩土力学研究所,2006
    [137]中国建筑科学研究院.超声回弹综合法检测混凝土强度技术规程(CECS02:2005)[S].北京:中国建筑工业出版社,2005
    [138]陕西省建筑科学研究设计院,上海同济大学.超声法检测混凝土缺陷技术规程(CECS21:2000)[S].北京:中国建筑工业出版社,2000
    [139]孟吉复,惠鸿斌.爆破振动测试技术[M].北京:冶金工业出版社,1992
    [140]张丹.爆源因素对爆破地震强度分布特征的影响研究[D].成都:西南交通大学博士学位‘论文,2007
    [141]赵明生,梁开水,余德运,等.段数对爆破振动信号的时频特性影响分析[J].煤炭学报,2012,37(1):55-61
    [142]张丹,段恒建,曾福洪.分段爆破地震强度的试验研究[J].爆炸与冲击,2006,26(3):279-283
    [143]龙源,冯长根,徐全军,等.爆破地震波在岩石介质中传播特性与数值计算研究[J].工程爆破2000,6(3):1-7
    [144]张立国.爆破振动强度预测及其控制的研究[D].北京:北京科技大学博士学位论文,2005
    [145]林从谋.浅埋隧道掘进爆破振动特性、预报及控制技术研究[D].上海:同济大学博士学位论文,2005
    [146]马芹永,王长柏.井筒冻土爆破振动测试波形回归与频谱分析[J].安徽理工大学学报(自然科学版),2006,26(3):22-29
    [147]马芹永.冻土爆破特性与井筒冻土爆破设计[A].全国矿山建设学术会议论文选集[C],2003:268-272
    [148]宗琦,马芹永,王从平.立井冻土爆破的理论与实践[J].冰川冻土,2002,24(2):192-197
    [149]韩博,张乃宏.立井井筒基岩段深孔爆破技术参数优化分析[J].煤炭工程,2012,(3):29-31
    [150]中华人民共和国煤炭工业部.煤和岩石物理力学性质测定方法(GB/T 23561-2009)[S].北京:中国标准出版社,2009
    [151]马芹永,王长柏,徐辉东,等.立井人工冻结巨厚砾岩层爆破快速掘进技术[J].煤炭科学技术,2006,34(8):1-3
    [152]韩万东,马建兴.爆破振动对马家塔露天煤矿建筑物的影响[J].煤炭科学技术,2007, 35(12):65-67
    [153]王长柏.立井冻结砾岩爆破振动测试与数值分析[D].淮南:安徽理工大学硕士学位论文,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700