纤维素乙醇及乳酸耦合炼制过程与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维原料是规模生物炼制的潜在原料,目前以纤维生物炼制过程成本较高。本论文以糠醛渣(FR)、木薯渣(CR)两种工业废弃物为主要原料,以玉米作为辅助原料,通过生物方法转化为乙醇和乳酸(本文中均为L(+)-乳酸),开发混合原料和产品联产两种策略来提高过程效率和过程经济,从木质素、纤维素酶和发酵微生物相互作用出发探讨相应的促进机理。主要结论如下:
     FR为原料采用混菌发酵方式联产乙醇和乳酸,乙醇在54h前生成。产品组成受温度和底物浓度影响,温度、底物浓度和接种质量比都会影响纤维素转化率。混菌发酵能取得较高纤维利用率,9%FR经过混菌发酵120h,得到乙醇9.02g/L和乳酸18.9g/L,酸醇摩尔比1.07,纤维素利用率86.8%。混菌发酵需要添加额外营养,序列发酵混合原料,在乙醇发酵和乳酸发酵之间加入一定处理能实现零化学品消耗联产。序列发酵120h,得到乙醇22.4g/L和47.6g/L乳酸,比混菌发酵提高148%和152%,酸醇摩尔比1.08,多糖利用率86.9%。
     脱除木质素和添加表面活性剂都能降低木质素的负面影响。碱性过氧化氢脱除FR木质素,脱除度80.2%,乙醇转化率提高最高(72.1%),脱除度37.3%,乳酸浓度提高最高(48.5%)。皂荚皂素具有比合成表面活性剂更高价效,利用酵母制得的蛋白类表面活性剂具有生物兼容性。酵母在121℃下处理30min,酵母64.4%氮、83%碳水化合物保存在固相中(YHS),仅有2.3%氮溶于液相(YHL)。YHL的溶质主要是具有和纤维素酶分子量相近的非催化蛋白质,这些蛋白易于被木质素吸附,其和纤维素酶形成的竞争性吸附是YHL酶促机理。糠醛渣水解体系中,最佳蛋白用量是11.8-23.5mg/g糠醛渣,该用量下每克木质素至少吸附0.63mgYHL氮,提高酶水解率14.4%。
     木质素、纤维素酶和发酵微生物存在以下相互作用:酵母对纤维素酶影响不大,乳酸菌会消耗纤维素酶,木质素和营养物质会缓解乳酸菌对纤维素酶的同化。苯环类抑制物对乳酸菌的抑制作用大于酵母。活酵母和活乳酸菌对彼此都会产生竞争,死酵母是乳酸菌的营养来源,二者虽然不代谢对方的发酵产品,但是各自代谢产品会抑制对方发酵活力。
     混合原料能极大提高转化率和产品浓度,过程主要影响因素取决于产品种类。混合原料乙醇过程底物比是过程主要影响因素。优化条件下,混合原料乙醇发酵乙醇浓度66.0g/L~73.1g/L,多糖利用率73.3%~90.3%。混合原料乳酸发酵,营养添加、底物比和碳氮比都是过程主要影响因素,可行的营养来源是水热处理酵母细胞。当碳氮比介于20-63时,乳酸浓度40.7g/L~79.5g/L,多糖利用率81.5%~87.1%。
Lignocelluloses are the most promising feedstocks for biorefinery, but the requirement for depolymerisation of cellulose makes cellulosic bioconversion cost-inefficient. In this study, industrial wastes, including cassava residues (CR) and furfural residues (FR), with corn were bio-converted into ethanol and L(+)-lactic acid. Integration process using multiple materials and producing multiple products were developed to cost-efficiently use these wastes. The main conclusions were as follows:
     A fermentation system using the mixed cultures of yeast and lactic acid bacteria (MSSF) was designed to mainly produce ethanol before54h and lactic acid after54h from FR. The substrate loading and temperature influence the acid/alcohol molar ratio. However, substrate loading, temperature and the cell mass ration have effect on the cellulose conversion ratio of MSSF, which is always higher than those of sole SSF. MSSF obtained9.02g/L of ethanol and18.9g/L of lactic acid at120h using substrate loading of9%, corresponded to1.07of acid/alcohol molar ratio and86.8%of cellulose conversion ratio. One bottleneck of MSSF is the need of nutrient addition. The sequential production of ethanol and lactic acid can be improved by using starchy materials and cellulosic materials. Some treatment added between ethanol fermentation and lactic acid fermentation makes nutrient addition unnecessary. Under the selected conditions, the integrated process using mixed materials coproduce22.4g/L ethanol and47.6g/L lactic acid at120h, corresponded to acid/alcohol ratio of1.08and a polysaccharide utilization ratio of86.9%.
     Delignification and surfactant additions are two ways of reducing the negative effect of lignin on bioconversion. For Alkaline peroxide, a delignification degree of80.2%and37.3%were the optimum delignification degree for ethanol SSF and lactic acid SSF, respectively. Gleditsia Saponin had a better performance in improving ethanol SSF than Tween-20. Protein surfactants can be produced from yeast by hydrothermal treatment. After hydrothermal treatment at121℃for30min,64.4%of yeast nitrogen and83%of yeast carbonhydrate remained in YHS while only2.28%of yeast nitrogen was non-enzymatic proteins dissolved in YHL, which have close molecular weight with cellulases. Competitive adsorption of non-enzymatic proteins and cellulases on lignin is the reason for the enhancement of glucose yield by YHL. The optimum protein loading of FRs was ranged from11.8mg/g FRs to23.5mg/g FRs, resulting in that0.63mg of nitrogen in YHL was absorbed on1gram of lignin and the enzymatic hydrolysis of FRs was increased by14.4%.
     Different interactions exist between lignin, cellulases and microorganisms. The effect of yeast on cellulases is not significance while lactic acid bacteria(LAB) consumed cellulases as nutrients. Extra nutrients and lignin reduce the negative effect of LAB on cellulases. Yeast are more tolerated to phenolic components than LAB. LAB and yeast compete with each other in the fermentation by mixed culture, but dead yeast cells provide nutrients for LAB. Though LAB and yeast did not consume ethanol and lactic acid, the two products inhibit lactic acid fermentation and ethanol fermentation.
     Using multiple materials obviously increased the yield and the final product concentration of bioconversion process. Whatever the product is ethanol or lactic acid, substrate composition is one of main factors influencing processes using multiple materials. Under optimized conditions of ethanol fermentation using multiple materials, final ethanol concentration and polysaccharide utilization were ranged from66.0g/L to73.1g/L and from73.3%to90.3%, respectively. Nutrients, substrate composition and carbon/nitrogen ratio were the main factors influencing lactic acid fermentation using multiple materials. Yeast treated by hydrothermal treatment was proven to be an effective nitrogen sources. When carbon/nitrogen ratio was between20~63, final lactic acid concentration was ranged from40.7g/L to79.5g/L and polysaccharide utilization was ranged from81.5%to87.1%.
引文
[1]陈育如,欧阳平凯.蒸汽爆破预处理对植物纤维素性质的影响[J].高校化学工程学报,1999,13(3):234-239.
    [2]陈洪章,陈继贞,刘健,等.麦草蒸汽爆碎处理的研究——I.影响麦草蒸汽爆碎处理因素及其过程分析[J].纤维素科学与技术,1999,7(2):60-67.
    [3]冯月,蒋建新,朱莉伟,等.纤维素酶活力及混合纤维素酶协同作用的研究[J].北京林业大学学报,2009,1.
    [4]冯玉杰,李冬梅,任南琪.混合菌群用于纤维素糖化和燃料酒精发酵的试验研究[J].太阳能学报,2007,28(4):375-379.
    [5]王庆昭,郑宗宝,刘子鹤,等.生物炼制工业过程及产品[J].化学进展,2007,19(7)1198-1205.
    [6]王许涛,张百良,宋安东,等.蒸汽爆破技术在秸秆厌氧发酵中的应用[J].农业工程学报,2008,24(8):189-192.
    [7]王堃,蒋建新,宋先亮.蒸汽爆破预处理木质纤维素及其生物转化研究进展[J].生物质化学工程,2006,40(6):37-42.
    [8]蒋建新,刘圣英,马雅琦,等.蒸汽爆破预处理对沙柳组成及纤维结构性能影响研究[J].现代化工,2008,28(2):49-53.
    [9]李秋瑾,殷友利,苏荣欣,等.离子液体[BMIM] Cl预处理对微晶纤维素酶解的影响[J].化学学报,2009,67(1)
    [10]美国国家可再生能源实验室.现代生物能源技术[M].北京:科学出版社,2009.
    [11]孙亚东,孙冉,蒋建新,等.糠醛渣纤维乙醇SSF过程研究[J].现代化工,2008,28(12)48-52.
    [12]苏东海,孙君社.提高纤维素酶水解效率和降低水解成本[J].化学进展,2007,19(7)1147-1152.
    [13]中国科学院生命科学与生物技术局.2008工业生物技术发展报告[M].北京:中国科学出版社,2008:140-151.
    [14]Adams T A, Seider W D. Semicontinuous distillation for ethyl lactate production[J]. AIChE Journal, 2008,54(10):2539-2552.
    [15]Adsul M G, Varma A J, Gokhale D V. Lactic acid production from waste sugarcane bagasse derived cellulose[J]. Green Chemistry,2007,9(1):58-62.
    [16]Asthana N, Kolah A, Vu D T, et al. A continuous reactive separation process for ethyl lactate formation[J]. Organic process research & development,2005,9(5):599-607.
    [17]Agbor V B, Cicek N, Sparling R, et al. Biomass pretreatment:fundamentals toward application[J]. Biotechnology advances,2011,29(6):675-685.
    [18]Akerberg C, Zacchi G. An economic evaluation of the fermentative production of lactic acid from wheat flour[J]. Bioresource Technology,2000,75(2):119-126.
    [19]Alfani F, Gallifuoco A, Saporosi A, et al. Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw[J]. Journal of Industrial Microbiology and Biotechnology,2000,25(4):184-192.
    [20]Alkasrawi M, Rudolf A, Liden G, et al. Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce[J]. Enzyme and Microbial Technology,2006,38(1):279-286.
    [21]Alkasrawi M, Eriksson T, Borjesson J, et al. The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol[J]. Enzyme and Microbial Technology, 2003,33(1):71-78.
    [22]Alonso D M, Bond J Q, Dumesic J A. Catalytic conversion of biomass to biofuels[J]. Green Chemistry,2010,12(9):1493-1513.
    [23]Altaf M D, Naveena B J, Venkateshwar M, et al. Single step fermentation of starch to 1 (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract-Optimization by RSM[J]. Process Biochemistry,2006,41(2):465-472.
    [24]Altaf M, Venkateshwar M, Srijana M, et al. An economic approach for 1-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources[J]. Journal of applied microbiology,2007,103(2):372-380.
    [25]Alfani F, Gallifuoco A, Saporosi A, et al. Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw[J]. Journal of Industrial Microbiology and Biotechnology,2000,25(4):184-192.
    [26]Alvira P, Tomas-Pejo E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:a review[J]. Bioresource Technology,2010, 101(13):4851-4861.
    [27]Aparicio S, Alcalde R. Insights into the ethyl lactate+water mixed solvent[J]. The Journal of Physical Chemistry B,2009,113(43):14257-14269
    [28]Bai F W, Anderson W A, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks[J]. Biotechnology advances,2008,26(1):89-105.
    [29]Ballesteros I, Oliva J M, Navarro A A, et al. Effect of chip size on steam explosion pretreatment of softwood[C]//Twenty-First Symposium on Biotechnology for Fuels and Chemicals. Humana Press, 2000:97-110.
    [30]Banerjee S, Mudliar S, Sen R, et al. Commercializing lignocellulosic bioethanol:technology bottlenecks and possible remedies[J]. Biofuels, Bioproducts and Biorefining,2010,4(1):77-93.
    [31]Berghem L E R, Pettersson L G. The mechanism of enzymatic cellulose degradation[J]. European Journal of Biochemistry,1974,46(2):295-305.
    [32]Benedict D J, Parulekar S J, Tsai S P. Esterification of lactic acid and ethanol with/without pervaporation[J]. Industrial & engineering chemistry research,2003,42(11):2282-2291.
    [33]Bayrock D P, Ingledew W M. Inhibition of yeast by lactic acid bacteria in continuous culture: nutrient depletion and/or acid toxicity?[J]. Journal of Industrial Microbiology and Biotechnology, 2004,31(8):362-368.
    [34]Birgit K.Biorefineries-industrial Processes and products.马延和译(上册),化学工业出版社,2007: 16-66.
    [35]Bozell J J. Feedstocks for the future-biorefinery production of chemicals from renewable carbon[J] CLEAN-Soil, Air, Water,2008,36(8):641-647.
    [36]Brandberg T, Karimi K, Taherzadeh M J, et al. Continuous fermentation of wheat-supplemented lignocellulose hydrolysate with different types of cell retention[J]. Biotechnology and bioengineering,2007,98(1):80-90.
    [37]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical biochemistry,1976,72(1): 248-254.
    [38]Bu L, Xing Y, Yu H, et al. Comparative study of sulfite pretreatments for robust enzymatic saccharification of corn cob residue[J]. Biotechnology for biofuels,2012,5(1):87.
    [39]Bustos G, Moldes A B, Cruz J M, et al. Evaluation of vinification lees as a general medium for Lactobacillus strains[J]. Journal of agricultural and food chemistry,2004,52(16):5233-5239
    [40]Bustos G, Moldes A B, Cruz J M, et al. Production of lactic acid from vine-trimming wastes and viticulture lees using a simultaneous saccharification fermentation method[J]. Journal of the Science of Food and Agriculture,2005,85(3):466-472.
    [41]Cai Y, Lai C, Li S, et al. Disruption of lactate dehydrogenase through homologous recombination to improve bioethanol production inThermoanaerobacterium aotearoense[J]. Enzyme and microbial technology,2011,48(2):155-161.
    [42]Cara C, Ruiz E, Ballesteros I, et al. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification[J]. Process Biochemistry,2006,41(2):423-429.
    [43]Cantarella M, Cantarella L, Gallifuoco A, et al. Effect of Inhibitors Released during Steam-Explosion Treatment of Poplar Wood on Subsequent Enzymatic Hydrolysis and SSF[J]. Biotechnology Progress,2004,20(1):200-206.
    [44]Cantarella M, Cantarella L, Gallifuoco A, et al. Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF[J]. Process Biochemistry,2004,39(11):1533-1542.
    [45]Cao S, Aita G M. Enzymatic hydrolysis and ethanol yields of combined surfactant and dilute ammonia treated sugarcane bagasse[J]. Bioresource technology,2013,131:357-364.
    [46]Chen K Q, Li J, Ma J F, et al. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber[J]. Bioresource technology,2011,102(2): 1704-1708.
    [47]Cheng K K, Zhang J A, Chavez E, et al. Integrated production of xylitol and ethanol using corncob[J]. Applied microbiology and biotechnology,2010,87(2):411-417.
    [48]Clark J H, Budarin V, Deswarte F E I, et al. Green chemistry and the biorefinery:a partnership for a sustainable future[J]. Green Chemistry,2006,8(10):853-860.
    [49]Cullis I F, Mansfield S D. Optimized delignification of wood-derived lignocellulosics for improved enzymatic hydrolysis[J]. Biotechnology and bioengineering,2010,106(6):884-893.
    [50]Delgado P, Sanz M T, Beltran S. Pervaporation of the quaternary mixture present during the esterification of lactic acid with ethanol[J]. Journal of Membrane Science,2009,332(1):113-120.
    [51]Delgado P, Sanz M T, Beltran S. Pervaporation study for different binary mixtures in the esterification system of lactic acid with ethanol[J]. Separation and Purification Technology,2008, 64(1):78-87
    [52]Dererie D Y, Trobro S, Momeni M H, et al. Improved bio-energy yields via sequential ethanol fermentation and biogas digestion of steam exploded oat straw[J]. Bioresource technology,2011, 102(6):4449-4455
    [53]Erdei B, Barta Z, Sipos B, et al. Ethanol production from mixtures of wheat straw and wheat meal[J]. Biotechnology for Biofuels,2010,3:16.
    [54]Fang X U, Shen Y U, Zhao J, et al. Status and prospect of lignocellulosic bioethanol production in China[J]. Bioresource technology,2010,101(13):4814-4819.
    [55]Feng Y, Qi X, Jian H, et al. Effect of inhibitors on enzymatic hydrolysis and simultaneous saccharification fermentation for lactic acid production from steam explosion pretreated lespedeza stalks[J]. BioResources,2012,7(3):3755-3766.
    [56]Franceschin G, Sudiro M, Ingram T, et al. Conversion of rye straw into fuel and xylitol:a technical and economical assessment based on experimental data[J]. Chemical Engineering Research and Design,2011,89(6):631-640.
    [57]Fontenot Q, Bonvillain C, Kilgen M, et al. Effects of temperature, salinity, and carbon:nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater[J]. Bioresource Technology,2007,98(9):1700-1703.
    [58]Galbe M, Zacchi G. Pretreatment:The key to efficient utilization of lignocellulosic materials[J]. Biomass and Bioenergy,2012,46:70-78.
    [59]Garcia-Dieguez C, Salgado J M, Roca E, et al. Kinetic modelling of the sequential production of lactic acid and xylitol from vine trimming wastes[J]. Bioprocess and biosystems engineering,2011, 34(7):869-878.
    [60]Garcia V, Pakkila J, Ojamo H, et al. Challenges in biobutanol production:how to improve the efficiency?[J]. Renewable and sustainable energy
    reviews,2011,15(2):964-980.
    [61]Garde A, Jonsson G, Schmidt A S, et al. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis[J]. Bioresource Technology,2002, 81(3):217-223.
    [62]Gao M, Hirata M, Toorisaka E, et al. Study on acid-hydrolysis of spent cells for lactic acid fermentation[J]. Biochemical engineering journal,2006,28(1):87-91.
    [63]Gao M T, Hirata M, Toorisaka E, et al. Lactic acid production with the supplementation of spent cells and fish wastes for the purpose of reducing impurities in fermentation broth[J]. Biochemical Engineering Journal,2007,36(3):276-280.
    [64]Gao M T, Kaneko M, Hirata M, et al. Utilization of rice bran as nutrient source for fermentative lactic acid production [J]. Bioresource technology,2008,99(9):3659-3664.
    [65]Gao C, Ma C, Xu P. Biotechnological routes based on lactic acid production from biomass[J]. Biotechnology advances,2011,29(6):930-939.
    [66]Ge X Y, Qian H, Zhang W G. Improvement of 1-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp[J]. Bioresource technology,2009, 100(5):1872-1874.
    [67]Ge X Y, Qian H, Zhang W G. Enhancement of L-lactic acid production in Lactobacillus casei from Jerusalem artichoke tubers by kinetic optimization and citrate metabolism[J]. Journal of microbiology and biotechnology,2010,20(1):101-109.
    [68]Ghose TK. Measurement of cellulase activities[J]. Pure Appl Chem,1987,59(2):257-268.
    [69]Ghosh T K, Prelas M A. Ethanol[M]//Energy Resources and Systems. Springer Netherlands,2011: 419-493.
    [70]Gray K A, Zhao L, Emptage M. Bioethanol[J]. Current opinion in chemical biology,2006,10(2): 141-146.
    [71]Graves T, Narendranath N V, Dawson K, et al. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash[J]. Journal of Industrial Microbiology and Biotechnology,2006,33(6):469-474.
    [72]Graves T, Narendranath N V, Dawson K, et al. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash[J]. Applied microbiology and biotechnology,2007,73(5):1190-1196.
    [73]Green E M. Fermentative production of butanol-the industrial perspective[J]. Current opinion in biotechnology,2011,22(3):337-343.
    [74]Hattori T, Morita S. Energy crops for sustainable bioethanol production:which, where and how?[J]. Plant production science,2010,13(3):221-234.
    [75]Hasunuma T, Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering[J]. Biotechnology advances,2012, 30(6):1207-1218.
    [76]Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund M F, et al. Bio-ethanol-the fuel of tomorrow from the residues of today[J]. Trends in biotechnology,2006,24(12):549-556.
    [77]Hoyer K, Galbe M, Zacchi G. Production of fuel ethanol from softwood by simultaneous saccharification and fermentation at high dry matter content[J]. Journal of Chemical Technology and Biotechnology,2009,84(4):570-577.
    [78]Hoyer K, Galbe M, Zacchi G. Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter[J]. Biotechnology for Biofuels,2010,3:14.
    [79]Hu J, Arantes V, Saddler J N. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase:is it an additive or synergistic effect?[J]. Biotechnology for biofuels,2011,4(1):1-14.
    [80]Inaba C, Maekawa K, Morisaka H, et al. Efficient synthesis of enantiomeric ethyl lactate by Candida antarctica lipase B (CALB)-displaying yeasts[J]. Applied microbiology and biotechnology, 2009,83(5):859-864
    [81]Jabbour D, Borrusch M S, Banerjee G, et al. Enhancement of fermentable sugar yields by a-xylosidase supplementation of commercial cellulases[J]. Biotechnology for biofuels,2013,6(1): 1-8.
    [82]Jeoh T, Ishizawa C I, Davis M F, et al. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility[J]. Biotechnology and Bioengineering,2007,98(1):112-122.
    [83]Jiang J, Tang Y, Wang K, et al. Influence of Steam Pretreatment Time on Chemical Composition and Simultaneous Saccharification and Fermentation for Ethanol From pruning Shrub Stalks[J]. Journal of Biobased Materials and Bioenergy,2011,5(2):258-264.
    [84]John R P, Nampoothiri K M, Pandey A. Fermentative production of lactic acid from biomass:an overview on process developments and future perspectives[J]. Applied Microbiology and Biotechnology,2007,74(3):524-534.
    [85]Kabel M A, Bos G, Zeevalking J, et al. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw[J]. Bioresource Technology, 2007,98(10):2034-2042.
    [86]Karp S G, Igashiyama A H, Siqueira P F, et al. Application of the biorefinery concept to produce L-lactic acid from the soybean vinasse at laboratory and pilot scale[J]. Bioresource technology, 2011,102(2):1765-1772.
    [87]Kim S, Dale B E. Global potential bioethanol production from wasted crops and crop residues[J]. Biomass and Bioenergy,2004,26(4):361-375.
    [88]Kim T H, Nghiem N P, Taylor F, et al. Consolidated Conversion of Hulled Barley into Fermentable Sugars Using Chemical, Thermal, and Enzymatic (CTE)Treatment[J]. Applied biochemistry and biotechnology,2011,164(4):534-545.
    [89]Kjeldahl J. A new method for the determination of nitrogen in organic matter[J]. Z. Anal. Chem, 1883,22:366.
    [90]Kristensen J B, Borjesson J, Bruun M H, et al. Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose[J], Enzyme and Microbial Technology,2007,40(4): 888-895.
    [91]Kristensen J B, Thygesen L G, Felby C, et al. Cell-wall structural changes in wheat straw pretreated for bioethanol production[J]. Biotechnol Biofuels,2008,1(5):1-9.
    [92]Kristensen J B, Felby C, J(?)rgensen H. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose[J]. Biotechnology for Biofuels,2009,2(1):11.
    [93]Kreuger E, Sipos B, Zacchi G, et al. Bioconversion of industrial hemp to ethanol and methane:The benefits of steam pretreatment and co-production[J]. Bioresource technology,2011,102(3): 3457-3465.
    [94]Kumar D, Murthy G S. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production[J]. Biotechnol Biofuels,2011,4(1):27.
    [95]Kumar L, Chandra R, Saddler J. Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings[J]. Biotechnology and bioengineering,2011,108(10):2300-2311.
    [96]Kumar L, Arantes V, Chandra R, et al. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility[J]. Bioresource technology,2012,103(1):201-208.
    [97]Kumar L, Tooyserkani Z, Sokhansanj S, et al. Does densification influence the steam pretreatment and enzymatic hydrolysis of softwoods to sugars?[J]. Bioresource Technology,2012,121:190-198.
    [98]Kumar R, Wyman C E. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments[J]. Biotechnology and Bioengineering,2009,103(2):252-267.
    [99]Kumar S, Singh S P, Mishra I M, et al. Recent advances in production of bioethanol from lignocellulosic biomass[J]. Chemical engineering &technology,2009,32(4):517-526.
    [100]Lammens T M, Potting J, Sanders J P M, et al. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents[J]. Environmental science & technology, 2011,45(19):8521-8528.
    [101]Li J, Zheng X Y, Fang X J, et al. A complete industrial system for economical succinic acid production by Actinobacillus succinogenes[J]. Bioresource technology,2011,102(10): 6147-6152.
    [102]Li J, Henriksson G, Gellerstedt G. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion[J]. Bioresource technology,2007,98(16): 3061-3068.
    [103]Li YH. (2011):A Laboratory Manual for Protein analysis and experiments. Beijing:Higher Education Press.(CHINESE)
    [104]Lin Y, Tanaka S. Ethanol fermentation from biomass resources:current state and prospects[J]. Applied microbiology and biotechnology,2006,69(6):627-642.
    [105]Linde M, Galbe M, Zacchi G. Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration J]. Enzyme and microbial technology,2007,40(5):1100-1107.
    [106]Linde M, Galbe M, Zacchi G. Bioethanol production from non-starch carbohydrate residues in process streams from a dry-mill ethanol plant[J]. Bioresource technology,2008,99(14): 6505-6511.
    [107]Lu Z, Lu M, He F, et al. An economical approach for D-lactic acid production utilizing unpolished rice from aging paddy as major nutrient source[J]. Bioresource Technology,2009,100(6): 2026-2031.
    [108]Lu Z, He F, Shi Y, et al. Fermentative production of L (+)-lactic acid using hydrolyzed acorn starch, persimmon juice and wheat bran hydrolysate as nutrients[J]. Bioresource technology,2010 101(10):3642-3648.
    [109]Ma J, Zhang M, Lu L, et al. Intensifying esterification reaction between lactic acid and ethanol by pervaporation dehydration using chitosan-TEOS hybrid membranes[J]. Chemical Engineering Journal,2009,155(3):800-809.
    [110]Ma J F, Jiang M, Chen K Q, et al. Succinic acid production with metabolically engineered E. coli recovered from two-stage fermentation[J]. Biotechnology letters,2010,32(10):1413-1418.
    [111]Macrelli S, Mogensen J, Zacchi G. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process[J]. Biotechnology for biofuels,2012,5(1):1-18.
    [112]Mandels M, Andreotti R, Roche C. Measurement of saccharifying cellulase[C]//Biotechnol. Bioeng. Symp.:(United States). Army Natick Development Center, MA,1976,6.
    [113]Makkar R S, Cameotra S S, Banat I M. Advances in utilization of renewable substrates for biosurfactant production[J]. AMB Express,2011,1(1):1-19.
    [114]Marques S, Alves L, Roseiro J C, et al. Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis[J]. Biomass and Bioenergy,2008,32(5):400-406.
    [115]Marques S, Santos J A L, Girio F M, et al. Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation[J]. Biochemical engineering journal,2008,41(3): 210-216.
    [116]Mascal M, Nikitin E B. High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl) furfural[J]. Green Chemistry,2010,12(3):370-373.
    [117]McCleary B V, Solah V, Gibson T S. Quantitative measurement of total starch in cereal flours and products[J]. Journal of Cereal Science,1994,20(1):51-58.
    [118]Mendes-Ferreira A, Mendes-Faia A, Leao C. Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry[J]. Journal of applied microbiology,2004,97(3):540-545.
    [119]Metzger J O, Eissen M. Concepts on the contribution of chemistry to a sustainable development. Renewable raw materials[J]. Comptes Rendus Chimie,2004,7(6):569-581.
    [120]Miura S, Arimura T, Itoda N, et al. Production of L-lactic acid from corncob[J]. Journal of bioscience and bioengineering,2004,97(3):153-157.
    [121]Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical chemistry,1959,31(3):426-428.
    [122]Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource technology,2005,96(6):673-686.
    [123]Moore W E, Johnson D B. Procedures for the chemical analysis of wood and wood products (as used at the US Forest Products Laboratory)[M]. Forest Products Laboratory, Forest Service, US Dept. of Agriculture,1967.
    [124]Mulligan C N. Environmental applications for biosurfactants[J]. Environmental pollution,2005, 133(2):183-198.
    [125]Nakatani T, Ishimaru Y, Iida I, et al. Micropore structure of wood:Change in micropore structure accompanied by delignification[J]. Journal of wood science,2008,54(3):252-255.
    [126]Narendranath N V, Power R. Effect of yeast inoculation rate on the metabolism of contaminating lactobacilli during fermentation of corn mash[J]. Journal of Industrial Microbiology and Biotechnology,2004,31(12):581-584.
    [127]Narendranath N V, Power R. Relationship between pH and medium dissolved solids in terms of growth and metabolism of Lactobacilli and Saccharomyces cerevisiae during ethanol production[J]. Applied and environmental microbiology,2005,71(5):2239-2243.
    [128]Nelson NA. A photometric adoption of Samogyi method for the determination of glucose. J Biol Chem,1944,153:375-380
    [129]Nikolau B J, Perera M, Brachova L, et al. Platform biochemicals for a biorenewable chemical industry[J], The Plant Journal,2008,54(4):536-545.
    [130]Christensen C H, Rass-Hansen J, Marsden C C, et al. The renewable chemicals industry[J]. ChemSusChem,2008,1(4):283-289.
    [131]Ohgren K, Vehmaanpera J, Siika-Aho M, et al. High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production[J]. Enzyme and Microbial Technology,2007,40(4):607-613.
    [132]Okano K, Tanaka T, Ogino C, et al. Biotechnological production of enantiomeric pure lactic acid from renewable resources:recent achievements, perspectives, and limits[J]. Applied microbiology and biotechnology,2010,85(3):413-423.
    [133]Olofsson K, Bertilsson M, Liden G. A short review on SSF-an interesting process option for ethanol production from lignocellulosic feedstocks[J]. Biotechnology for biofuels,2008,1(7): 1-14.
    [134]Olofsson K, Palmqvist B, Liden G. Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding[J]. Biotechnology for biofuels, 2010,3:17-17.
    [135]Ou M S, Mohammed N, Ingram L O, et al. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts[J]. Applied biochemistry and biotechnology,2009,155(1-3): 76-82.
    [136]Ozmihci S, Kargi F. Effects of feed sugar concentration on continuous ethanol fermentation of cheese whey powder solution (CWP)[J]. Enzyme and Microbial Technology,2007,41(6): 876-880.
    [137]Paramithiotis S, Gioulatos S, Tsakalidou E, et al. Interactions between Saccharomyces cerevisiae and lactic acid bacteria in sourdough[J]. Process biochemistry,2006,41(12):2429-2433.
    [138]Pereira C S M, Pinho S P, Silva V M T M, et al. Thermodynamic equilibrium and reaction kinetics for the esterification of lactic acid with ethanol catalyzed by acid ion-exchange resin[J]. Industrial & Engineering Chemistry Research,2008,47(5):1453-1463.
    [139]Plessas S, Bekatorou A, Gallanagh J, et al. Evolution of aroma volatiles during storage of sourdough breads made by mixed cultures of Kluyveromyces marxianus and Lactobacillus delbrueckii ssp. bulgaricus or Lactobacillus helveticus[J]. Food Chemistry,2008,107(2): 883-889.
    [140]Pryor S W, Karki B, Nahar N. Effect of hemicellulase addition during enzymatic hydrolysis of switchgrass pretreated by soaking in aqueous ammonia[J]. Bioresource Technology,2012.123: 620-626
    [141]Qi X, Tang Y, Jian H L, et al. Production of lactic acid by simultaneous saccharification and fermentation using steam pretreated Lespedeza stalks as inexpensive raw materials[J]. Advanced Materials Research,2011,152:1404-1411.
    [142]Rahikainen J, Mikander S, Marjamaa K, et al. Inhibition of enzymatic hydrolysis by residual lignins from softwood-study of enzyme binding and inactivation on lignin-rich surface[J]. Biotechnology and bioengineering,2011,108(12):2823-2834.
    [143]Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials[J]. science,2006,311(5760):484-489.
    [144]Rivas B, Torrado A, Rivas S, et al. Simultaneous lactic acid and xylitol production from vine trimming wastes[J]. Journal of the Science of Food and Agriculture,2007,87(8):1603-1612.
    Sarnthein-Graf C, La Mesa C. Association of saponins in water and water-gelatine mixtures[J]. Thermochimica acta,2004,418(1):79-84.
    [145]Sassner P, Zacchi G. Integration options for high energy efficiency and improved economics in a wood-to-ethanol process[J]. Biotechnology for Biofuels,2008,1(1):4.
    [146]Serrano-Ruiz J C, West R M, Dumesic J A. Catalytic conversion of renewable biomass resources to fuels and chemicals[J]. Annual Review of Chemical and Biomolecular Engineering,2010,1: 79-100.
    [147]Shen F, Kumar L, Hu J, et al. Evaluation of hemicellulose removal by xylanase and delignification on SHF and SSF for bioethanol production with steam-pretreated substrates [J]. Bioresource technology,2011,102(19):8945-8951.
    [148]Simpson RJ. (2009):Purifying Protein s for Proteomics:A Laboratory Manual (Ru BG, Trans.). Beijing:Chemical Industry Press, pp.622.(Original work published 2004)
    [149]Skinner K A, Leathers T D. Bacterial contaminants of fuel ethanol production[J]. Journal of Industrial Microbiology and Biotechnology,2004,31(9):401-408.
    [150]Sluiter A, Hames B, Ruiz R, et al. Determination of sugars, byproducts, and degradation products in liquid fraction process samples[J]. Golden, CO:National Renewable Energy Laboratory,2006.
    [151]Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass[J]. Laboratory Analytical Procedure,2008.
    [152]Smith A M. Prospects for increasing starch and sucrose yields for bioethanol production[J]. The Plant Journal,2008,54(4):546-558.
    [153]Sivakumar G, Vail D R, Xu J, et al. Bioethanol and biodiesel:Alternative liquid fuels for future generations[J]. Engineering in Life Sciences,2010,10(1):8-18.
    [154]Stenberg K, Galbe M, Zacchi G. The influence of lactic acid formation on the simultaneous saccharification and fermentation (SSF) of softwood to ethanol[J]. Enzyme and Microbial Technology,2000,26(1):71-79.
    [155]Stenberg K, Bollok M, Reczey K, et al. Effect of substrate and cellulase concentration on simultaneous saccharification and fermentation of steam-pretreated softwood for ethanol production[J]. Biotechnology and Bioengineering,2000,68(2):204-210.
    [156]Macrelli S, Galbe M, Wallberg O. Effects of production and market factors on ethanolprofitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock[J]. Biotechnology for biofuels,2014,7(1):26.
    [157]Sun X, Wang Q, Zhao W, et al. Extraction and purification of lactic acid from fermentation broth by esterification and hydrolysis method[J]. Separation and purification technology,2006,49(1): 43-48.
    [158]Sun R, Song X, Sun R, et al. Effect of lignin content on enzymatic hydrolysis of furfural residues[J]. Bioresources,2010,6(1):317-328
    [159]Su Z, Bu L, Zhao D, et al. Processing of Lespedeza stalks by pretreatment with low severity steam and post-treatment with alkaline peroxide[J]. Industrial Crops and Products,2012,36(1):1-8.
    [160]Tang Y, Zhao D, Cristhian C, et al. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media[J]. Biotechnology for biofuels,2011,4(22):1-10.
    [161]Tang Y, Zhao D, Zhu L, et al. Simultaneous saccharification and fermentation of furfural residues by mixed cultures of lactic acid bacteria and yeast to produce lactic acid and ethanol[J]. European Food Research and Technology,2011,233(3):489-495..
    [162]Tang Y, Qi X, Jiang J X, et al. The effect of Gleditsia saponin on simultaneous saccharification and fermentation of furfural residue for ethanol production[J]. Advanced Materials Research, 2011,236:108-111.
    [163]Tang Y, Bu L, Deng L, et al. THE EFFECT OF DELIGNIFICATION PROCESS WITH ALKALINE PEROXIDE ON LACTIC ACID PRODUCTION FROM FURFURAL RESIDUES[J]. BioResources,2012,7(4):5211-5221.
    [164]Tang Y, Bu L, He J, et al.1 (+)-Lactic acid production from furfural residues and corn kernels with treated yeast as nutrients[J]. European Food Research and Technology,2013,236(2):365-371.
    [165]TAPPI Test Method T222 om-06 Acid-insoluble lignin in wood and pulp. In:Tappi test methods. Technical Association of the Pulp and Paper Industry, Atlanta
    [166]Tengborg C, Galbe M, Zacchi G. Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood[J]. Biotechnology Progress,2001,17(1): 110-117.
    [167]Tu M, Chandra R P, Saddler J N. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates [J]. Biotechnology progress,2007, 23(2):398-406.
    [168]Tu M, Zhang X, Paice M, et al. Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated lodgepole pine[J]. Biotechnology progress,2009,25(4):1122-1129.
    [169]Tu M, Saddler J N. Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood[J]. Applied biochemistry and biotechnology,2010,161(1-8): 274-287.
    [170]Vennestr(?)m P N R, Christensen C H, Pedersen S, et al. Next-Generation Catalysis for Renewables:Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production[J]. ChemCatChem,2010,2(3):249-258.
    [171]Wang L, Zhao B, Liu B, et al. Efficient production of l-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizingBacillus sp. strain[J]. Bioresource technology,2010,101(20):7908-7915.
    [172]Wasewar K, Patidar S, Agarwal V K. Esterification of lactic acid with ethanol in a pervaporation reactor:modeling and performance study[J]. Desalination,2009,243(1):305-313.
    [173]Watanabe I, Nakamura T, Shima J. A strategy to prevent the occurrence of Lactobacillus strains using lactate-tolerant yeast Candida glabrata in bioethanol production[J]. Journal of industrial microbiology & biotechnology,2008,35(10):1117-1122.
    [174]Wee Y, Kim J, Ryu H. Biotechnological production of lactic acid and its recent applications[J]. Food Technology and Biotechnology,2006,44(2):163.
    [175]Wingren A, Galbe M, Zacchi G. Techno-Economic Evaluation of Producing Ethanol from Softwood:Comparison of SSF and SHF and Identification of Bottlenecks[J]. Biotechnology progress,2003,19(4):1109-1117.
    [176]Wyman C E, Dale B E, Elander R T, et al. Coordinated development of leading biomass pretreatment technologies[J]. Bioresource technology,2005,96(18):1959-1966.
    [177]Yang B, Boussaid A, Mansfield S D, et al. Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates[J]. Biotechnology and bioengineering,2002,77(6):678-684.
    [178]Yu H L, Tang Y, Xing Y, et al. Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and hydrogen peroxide[J]. Bioresource technology, 2013,147:29-36.
    [179]Zhang M, Wang F, Su R, et al. Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment[J]. Bioresource technology,2010,101(13):4959-4964.
    [180]Zhang J, Zhu Z, Wang X, et al. Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN 1, and the consequent ethanol fermentation[J]. Biotechnology for biofuels,2010,3(1):26.
    [181]Zhang X Z, Sathitsuksanoh N, Zhu Z, et al. One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis[J]. Metabolic engineering,2011,13(4):364-372.
    [182]Zhao Y, Lu W J, Wang H T. Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology [J]. Chemical Engineering Journal,2009,150(2):411-417.
    [183]Zhao W, Sun X, Wang Q, et al. Lactic acid recovery from fermentation broth of kitchen garbage by esterification and hydrolysis method[J]. Biomass and Bioenergy,2009,33 (1):21-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700