几类随机和确定性非线性偏微分方程的定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们知道许多数学模型都是在理想状态下建立的,然而现实环境通常存在很多不确定性因素,因此有必要在随机环境中考虑已有的模型.本文首先考虑一些重要的浅水波方程,包括:Camassa-Holm方程,Dullin-Gottwald-Holm方程组,b-famaily方程组,Degasperis-Procesi方程和Ostrovsky方程.接下来,分别考虑带随机化初值的Hartree方程和带随机势的Hartree方程.最后,我们考虑分数次布朗运动驱动的随机发展方程.通过对解的适定性,大偏差和随机吸引子的研究,讨论了随机效应对方程解的影响.具体结构如下:
     第1章给出本文研究的物理背景,研究现状和预备知识.在第一部分,我们回顾了Camassa-Holm方程,Dullin-Gottwald-Holm方程组,b-famaily方程组,Ostrovsky方程,Degasperis-Procesi方程等重要的浅水波方程,Hartree方程,和一般的发展方程的研究进展,指出本文的研究内容和意义所在.第二部分给出了文中将要用到的一些预备知识,包括随机Tto积分,对分数次布朗运动的轨道积分,随机动力系统和一些不等式.
     第2章,我们利用正则化方法得到带加法噪声的随机Camassa-Holm方程的适定性.首先,由压缩映射原理得到正则化方程,即随机高阶Camassa-Holm方程的适定性,其中的关键是得到:Bourgain空间Xs,b,b<1/2中的双线性估计.其次,我们得到正则化方程解的一致估计,从而可得它为一柯西列,由此得它的极限为随机Camassa-Holm方程的解.最后,我们指出当初值满足一定条件,随机Camassa-Holm方程的解将在有限时间爆破.
     第3章,我们利用第2章中的正则化方法得到Dullin-Gottwald-Holm方程组的适定性且在相应的空间中建立波的爆破准则和整体适定性.最后,我们得到Dullin-Gottwald-Holm方程组的孤立波解.
     第4章,我们考虑随机效应对b-family方程组的影响,即带乘法噪声的随机b-family方程组解的大偏差原理.这里,我们将再次用到正则化技术得到带乘法噪声的随机b-family方程组解的适定性.由弱收敛方法和随机控制理论,我们得到随机b-family方程组的解满足大偏差原理.
     第5章,不同于前面的正则化方法,我们利用迭代技术得到随机Degasperis-Procesi方程的局部适定性.最后,通过建立相应解精确的爆破准则,我们得到整体解的存在性.
     第6章,我们探讨带阻尼的随机Ostrovsky方程的长时间行为.首先,我们得到解的整体存在性,且形成随机动力系统.其次,由能量不等式,我们得到解的一致有界性.最后,因为考虑的区域为全空间,我们需要建立解的渐近紧性.已有文献由截尾估计得到渐近紧,这里我们将通过解的分解得到渐近紧,即将解分解为衰减部分和正则部分.
     第7章分为两部分.在第一部分,我们利用Burq和Tzvetkov在文献[11]中提出的随机化初值方法建立Hartree方程在超临界空间中解的适定性.文献[139]指出确定性Hartree方程在超临界空间中是不适定的,我们的结果在某种意义下提升了以上结果.第二部分,我们考虑带随机势的Hartree方程.由Strichartz估计和压缩映射原理得到随机Hartree方程在空间Lρ(Ω;C([0,τ];H8(Rn))∩Lq([0,τ];Ws,r(Rn))),其中中的局部适定性.由动量和能量方程,我们得到随机Hartree方程在H1(Rn)中的整体存在唯一性.由一般的变分等式,我们讨论了爆破解.
     第8章,我们考虑一类带分数次布朗运动的随机发展方程的随机吸引子的存在性.首先,我们在Holder连续函数空间中利用不动点定理证明解的存在唯一性且得出这些解产生一个随机动力系统.接下来,我们考虑当样本轨道满足特定性质时随机吸引子的存在性.这里,为了得到解的先验估计,我们需要建立离散形式的Grownall引理,从而得到离散形式的非自治动力系统解的吸收集和后拉吸引子的存在性.由此,我们将离散形式后拉吸引子的存在性推广到原始的连续非自治动力系统.最后,我们证明假设带Hurst参数H>1/2的分数次布朗运动的协方差小,则带分数次布朗运动的随机偏微分方程的随机吸引子存在.
As we know, many mathematical models were constructed under the ideal con-ditions. However, due to uncertainty in the modelling and external environment, this modelling could be subject to random fluctuations. Firstly, we consider some im-portant shallow water equations, including:the Camassa-Holm equation, the two-component Dullin-Gottwald-Holm system, the two-component b-famaily system, the Degasperis-Procesi equation and the Ostrovsky equation. Next, we consider the Hartree equation with the randomizated initial value and stochastic potential, respec-tively. At last, wo consier the general stochastic evolution equations with fractional Brownian motion. We investigate some characteristic of solutions, such as the well-posedness, large deviation principle and random attractors. The organization of this thesis is as follows:
     In Chapter1, some physical background and the preliminaries are given. In Section1, we recall the research progress of the Camassa-Holm equation, the two-component Dullin-Gottwald-Holm system, the two-component b-famaily system, the Degasperis-Procesi equation, the Ostrovsky equation, the Hartree equation and the general evolution equations, and point out the research contents and significance of the thesis. In Section2, we introduce some preliminary which will be used in the the-sis, including stochastic Ito integral, the stochastic integration for fractional Brownian motions defined pathwise and some inequalities.
     In Chapter2, the well-posedness of the stochastic Camassa-Holm equation with additive noise is proved by regularization method. Firstly, the well-posedness for the regularization equation, i.e., stochastic high-order Camassa-Holm equation is ob-tained by contraction mapping principle, where the key point is the the bilinear es-timates in Bourgain spaces Xs,b,b, b<1/2. Then, the consistency estimates for the solutions of the regularization equation are obtained, from which we can check that the solutions is a Cauchy sequence and the limit is the unique solution of the stochas-tic Camassa-Holm equation. At last, we point out that when initial value satisfies some conditions, the solution for the stochastic Camassa-Holm equation will blow-up at finite time.
     In Chapter3, we consider the well-posedness of the Dullin-Gottwald-Holm sys- tems by the regularization method in Chapter2, and construct the wave-breaking cri-teria and global well-posedness in the corresponding space. At last, we obtain the solitary-wave solutions of the Dullin-Gottwald-Holm systems.
     In Chapter4, we consider the influence of stochastic effects over two-component b-family system, i.e., the large deviation principle for the solutions of the stochastic two-component b-family system with multiplicative noise. We will also use the regu-larization method to get the well-posedness of the stochastic two-component b-family system. By weak convergence approach along with stochastic control, we can ob-tained the large deviation principle for the solutions of the stochastic two-component b-family system.
     In Chapter5, instead of the regularization method used in the previous chapters, we obtained the local well-posedness of the stochastic Degasperis-Procesi equation by the iterative technique. Then, we proved the global existence of the solutions by constructing the precise blow-up scenario.
     Chapter6is devoted to the long time behavior of the stochastic damped forced Ostrovsky equation. Firstly, the global existence of solution is obtained, and cre-ates a random dynamical system. Then, by the energy inequality, we can obtain the consistency estimates. Since the domain is R, we need to construct the asymptotic compactness of the solution. And the asymptotic compactness is usually proved by a tail-estimates. Here, the asymptotic compactness is checked by splitting the solutions into a decaying part plus a regular part.
     Chapter7is consists of two parts. In Section1, by the randomization of the initial value raised by Burq and Tzvetkov in [11], we can construct the existence of solutions of the Hartree equation in the supercritical spaces, where the authors in [139] obtained the ill-posedness. So, our result improves those in [11] in some sence. In Section1, we consider the Hartree equations with stochastic potential. By the Strichartz esti-mate and the contraction mapping principle, the local well-posedness of the stochastic Hartree equation in the space Lρ(Ω;C([0,τ]; Hs(Rn))∩L9([0,τ]; Ws'r(Rn))), with is obtained. By studying the evolution of mo-mentum and of the energy of the solution, the global existence and uniqueness for solution of the stochastic Hartree equation in H1(Rn) is proved. The blow-up solution is also discussed by generalizing the variance identity.
     Chapter8shows the existence of random attractors for a class of stochastic evo- lution equations with fractional Brownian motion. Firstly, we are able to prove the existence of a unique solution in Holder continuous functions space by the contraction mapping principle. Standard arguments then allow us to conclude that this solution is random or more precisely creates a random dynamical system. Next, we consider the existence of the random attractors, while the paths satisfy some specified conditions. Here, to obtain a priori estimates, we have to formulate a special Gronwall lemma for discrete time, then we can check the existence of a pullback attractor for a discrete non-autonomous dynamical system. It is not difficult then to extend the existence of a pullback attractor to the original continuous non-autonomous dynamical system. Fi-nally, we prove that provided that the covariance of the fractional Brownian motion with Hurst parameter H>1/2is small, then there exists a random attractor for the stochastic evolution equations with fractional Brownian motion.
引文
[1]L. Arnold, Random Dynamical Systems, Springer, New York,1998.
    [2]M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with For-mulas, Graphs, and Mathematical Tables, New York:Dover,1972.
    [3]R. Azencott, Grandes deviations et applications, Ecole dete Probabilites de Saint-Flour Ⅷ-1978, Lecture Notes in Math.779 (1980),1-176.
    [4]A. Budhiraja, P. Dupuis, A variational representation for positive functionals of infinite dimensional Brownian motion, Probab. Math. Statist.20 (2000), 39-61.
    [5]A. Bressan, A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal.183 (2007),215-239.
    [6]A. Bressan, A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl.5 (2007),1-27.
    [7]E. S. Benilov, On the surface waves in a shallow channel with an uneven bot-tom, Stud. Appl. Math.87 (1992) 1-14.
    [8]J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations,1,11, Geom. Funct. Anal.3 (1993),107-156,209-262.
    [9]J. L. Bona, R. Smith, The initial value problem for the Korteweg-de Vries equa-tion, Phil. Trans. Roy. Soc. London A 278 (1975),555-601.
    [10]J. L. Bona, Y. A. Li, Decay and analyticity of solitary waves, J. Math. Pures Appl.76 (1997),377-430.
    [11]N. Burq, N. Tzvetkov, Random data Cauchy theory for supercritical wave equa-tions, Invent. Math.173 (2008),449-475.
    [12]P. Billingsley, Convergence of Probability Measures, Wiley series in probability and statistics:prabability and statistics, John Wiley and Sones, Inc., New York, 1999.
    [13]P. J. Byers, The initial value problem for a KdV-type equation and related bi-linear estimate, Dissertation, University of Notre Dame 2003.
    [14]P. W. Bates, H. Lisei, K. Lu, Attractors for stochastic lattice dynamical system, Stoch. Dyn.6(2006),1-21.
    [15]P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ-ential Equations 246 (2009),845-869.
    [16]W. Bryc, Large Deviations by asymptotic value method, Diffusion processes and related problems in analysis, Vol. I (Evanston, IL,1989),447-472, Progr. Probab.,22, Birkhauser Boston, Boston, MA,1990.
    [17]Z. Brzezniak, S. Peszat, Space-time continuous solutions to SPDEs driven by a homogeneous Wiener process, Studia Math.137 (1999),261-299.
    [18]Z. Brzezniak, Y. Li, Asymptotic compactness and absorbing sets for 2d stochas-tic Navier-Stokes equations on some unbounded domains, Trans. Amer. Math. Soc.358 (2006),5587-5629.
    [19]A. Constantin, On the Cauchy problem for the periodic Camassa-Holm equa-tion, J. Differential Equations 141 (1997),218-235.
    [20]A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math.181 (1998),229-243.
    [21]A. Constantin, J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J.47 (1998),1527-1545.
    [22]A. Constantin, J. Escher, Global existence and blow-up for a shallow water equation, Annali Scuola Norm. Sup. Pisa 26 (1998),303-328.
    [23]A. Constantin, J. Escher, Well-posedness, global existence and blowup phe-nomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math.51 (1998),475-504.
    [24]A. Constantin, W. A. Strauss, Stability of peakons, Commun. Pure Appl. Math. 53 (2000),603-610.
    [25]A. Constantin, L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys.211 (2000),45-61.
    [26]A. Constantin, Existence of permanent and breaking waves for a shallow water equation:a geometric approach, Ann. Inst. Fourier 50 (2000),321-362.
    [27]A. Constantin, J. Escher, On the blow-up rate and the blow-up of breaking waves for a shallow water equation, Math. Z.233 (2000),75-91.
    [28]A. Constantin, W. A. Strauss, Stability of the Camassa-Holm solitons, J. Non-linear Sci.12 (2002),415-422.
    [29]A. Constantin, B. Kolev, On the geometric approach to the motion of inertial mechanical systems, J. Phys. A 35 (2002), R51-R79.
    [30]A. Constantin, B. Kolev, Geodesicflowonthediffeomorphismgroupofthecircle, Comment. Math. Helv.78 (2003),787-804.
    [31]A. Constantin, R. Ivanov, On the integrable two-component Camassa-Holm shallow water system, Phys. Lett. A 372 (2008),7129-7132.
    [32]A. Constantin, D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal.192 (2009) 165-186.
    [33]C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Springer-Verlag, Berlin,1977. Lecture Notes in Mathematics, Vol.580.
    [34]D. Cheban, P. E. Kloeden, B. Schmalfuss, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems, Nonlin-ear Dyn. Syst. Theory 2 (2002),9-28.
    [35]F. Chenal, A. Millet, Uniform large deviations for parabolic SPDEs and appli-cations, Stochastic Process. Appl.72(1997),161-186.
    [36]H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. The-ory Related Fields 100 (1994),365-393.
    [37]H. Crauel, A. Debussche, F. Flandoli, Random attractors, J. Dynam. Differen-tial Equations 9 (1997),307-341.
    [38]G. M. Coclite, K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal.223 (2006) 60-91.
    [39]J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness for the KdV in Sobolev spaces of negative index, Electron. J. Differential Equa-tions 26 (2001) 1-7.
    [40]J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness for Schrodinger equations with derivative, SIAMJ. Math. Anal.33 (2001),649-666.
    [41]J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Sharp global well-posedness for KdV and modified KdV on R and T, J. Amer. Math. Soc. 16(2003),705-749.
    [42]M. Chen, S. Q. Liu, Y. Zhang, A 2-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys.75 (2006),1-15.
    [43]M. H. Chang, Large deviations for the Navier-Stokes equations with small stochastic perturbations,Appl. Math. Comput.76 (1996),65-93.
    [44]P. L. Chow, Large deviation problem for some parabolic Ito equations, Comm. Pure Appl. Math.45 (1992),97-120.
    [45]P. L. Chow, Stochastic Partial Differential Equation, Chapman & Hall/CRC, Boca Raton, London, New York,2007.
    [46]R. Carles, Linear vs. nonlinear effects for nonlinear Schrodinger equations with potential, Contemp. Math.7 (2005),483-508.
    [47]R. Carles, Rotating points for the conformal NLS scattering operator, Dyn. Par-tial Differ. Equ.6 (2009),35-51.
    [48]R. Camassa, D. Holm, An integrable shallow water equation with peaked soli-tons, Phys. Rev. Lett.71(1993),1661-1664.
    [49]R. Camassa, D. Holm, J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech.31 (1994),1-33.
    [50]S. Cerrai, M. Rockner, Large deviations for stochastic reaction-diffusion sys-tems with multiplicative noise and non-Lipschitz reaction term, Ann. Prob.32 (2004),1100-1139.
    [51]T. Cazenave, Semilinear Schrodinger Equation. Courant Lecture Notes in Math. 10, New York University, Courant Institute of Mathematical Sciences, New York, Providence, RI:American Mathematical Society,2003.
    [52]T. Cazenave, Semilinear Schrodinger equations, in:Courant Lecture Notes, vol.10, American Mathematical Society,2003.
    [53]A. de Bouard, A. Debussche, Y. Tsutsumi, White noise driven Korteweg-de Vries equation, J Funct Anal 169 (1999),532-558.
    [54]A. de Bouard, A. Debussche, On the stochastic Korteweg-de Vries equation, J Funct Anal 154 (1998),215-551.
    [55]A. de Bouard, A. Debussche, A stochastic nonlinear schrodinger equation with multiplicative Noise, Comm. Math. Phys.205 (1999),161-181.
    [56]A. de Bouard, A. Debussche, The stochastic nonlinear Schrodinger equation in H1, Stochastic Anal. Appl.21 (2003),97-126.
    [57]A. de Bouard, A. Debussche, Blow-up for the stochastic nonlinear Schrodinger equation with multiplicative noise, Ann. Probab 33 (2005),1078-1110.
    [58]A. de Bouard, A. Debussche, The Korteweg-de Vries equation with multiplica-tive homogeneous noise, Stochastic differential equations:theory and applica-tions,113-133, Interdiscip. Math. Sci.,2, World Sci. Publ., Hackensack, NJ, 2007.
    [59]A. Degasperis, M. Procesi, Asymptotic integrability, in:Symmetry and Pertur-bation Theory, Rome,1998, World Sci. Publishing, River Edge, NJ,1999, pp. 23-37.
    [60]H. Dullin, G. Gottwald and D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett.87 (2001),4501-4504.
    [61]H. R. Dullin, G. A. Gottwald, D. D. Holm, Camassa-Holm, Korteweg-de Veris-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dynam. Res.33 (2003),73-79.
    [62]H. R. Dullin, G. A. Gottwald, D. D. Holm, On asymptotically equivalent shal-low water wave equations, Physica D 190 (2004),1-14.
    [63]H. H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech.127 (1998),193-207.
    [64]H. H. Dai, Y. Huo, Solitary shock waves and other travellingwaves in a general compressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456 (2000),331-363.
    [65]R. Danchin, Fourier analysis methods for PDEs, Lecture Notes,14 November, 2003.
    [66]R. Danchin, A few remarks on the Camassa-Holm equation, Diff. Int. Eq.14 (2001),953-980.
    [67]G. Da Prato, J. Zabczyk, Stochastic Equations in infinite Dimensions, Cam-bridge:Cambridge University Press 1992.
    [68]J. Q. Duan, A. Millet, Large deviations for the boussinsq equations, Stochastic Process. Appl.119 (2009),2052-2081.
    [69]P. Dupuis, R. S. Ellis, A weak convergence approach to the theory of large deviations, Wiley, New York,1997.
    [70]J. Escher, O. Lechtenfeld and Z. Y. Yin, Well-posedness and blow-up phenom-ena for the 2-component Camassa-Holm equation, Discrete Contin. Dynam. Systems 19 (2007),493-513.
    [71]J. Escher, Y. Liu, Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal.241(2006) 457-485.
    [72]J. Escher, J. Seiler, The periodic b-equation and Euler equations on the circle, J. Math. Phys.51 (2010) 053101-1-053101-6.
    [73]J. Escher, Y. Liu, Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J.56 (2007) 87-117.
    [74]B. Fuchssteiner, A. Fokas, Symplectic structures, their Baklund transforma-tions and hereditary symmetries, Phys. D 4(1981),47-66.
    [75]F. Flandoli, B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stock. Stock. Rep.59 (1996),21-45.
    [76]F. Flandoli, M. Gubinelli, E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math.180 (2010),1-53.
    [77]J. Feng, T. G. Kurtz, Large Deviations for stochastic process, American Math-ematical Society 2006.
    [78]J. Feng, D. Nualart, Stochastic scalar conservation laws, J. Funct. Anal.255 (2008)313-373.
    [79]M. I. Freidlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York,1984.
    [80]Y. Fu, Y. Liu, C. Z. Qu, Well-posedness and blow-up solution for a modified two-component periodic Camassa-Holm system with peakons, Math. Ann.348 (2010),415-448.
    [81]B. L. Guo, Z. H. Huo, The global attractor of the damped forced Ostrovsky equation, J. Math. Anal. Appl.329 (2007) 392-407.
    [82]C. X. Guan, Z. Y. Yin, Global existence and blow-up phenomena for an inte-grable two-component Camassa-Holm shallow water systems, J. Differential Equations 248 (2010),2003-2014.
    [83]C. X. Guan, Z. Y. Yin, Global weak solutions for a two-component Camassa-Holm shallow water systems, J. Funct. Anal.260 (2011),1132-1154.
    [84]C. X. Guan, Z. Y. Yin, Global weak solutions for a modified two-component Camassa-Holm equation, Ann. I. H. Poincare-AN 28 (2011),623-641.
    [85]G. L. Gui, Y. Liu, On the cauchy problem for the Ostrovsky equation with pos-itive dispersion, Comm. Partial Differential Equations 32 (2007) 1895-1916.
    [86]G. L. Gui, Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system,J. Funct. Anal.258 (2010),4251-4278.
    [87]G. L. Gui, Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z.268 (2011),45-66.
    [88]F. Guo, H. J. Gao, Y. Liu, Blow-up mechanism and global solutions for the two-component Dullin-Gottwald-Holm system, J. of the London Math. Soc.86 (2012),810-834.
    [89]J. Ginibre, Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation, SIAM J. Math. Anal.20 (1989),1388-1425.
    [90]J. Ginibre, T. Ozawa, Long range scattering for nonlinear Schrodinger and Hartree equations in space dimension n≥2, Comm. Math. Phys.151 (1993) 619-645.
    [91]J. Ginibre, G. Velo, Scattering theory in the energy space for a class of Hartree equations, Nonlinear wave equations (Providence, RI,1998),29-60, Contemp Math,263, Providence, RI:Amer Math Soc,2000.
    [92]J. Ginibre, G. Velo, Long range scattering and modified wave operators for some Hartree type equations, Rev. Math. Phys.12 (2000),361-429.
    [93]J. Ginibre, G. Velo, Long range scattering and modified wave operators for some Hartree type equations II, Ann. Henri Poincare 1 (2000),753-800.
    [94]J. Ginibre, G. Velo, Long range scattering and modified wave operators for some Hartree type equations, III, Gevrey spaces and low dimensions, J. Differ-ential Equations 175 (2001),415-501.
    [95]M. J. Garrido-Atienza, K. Lu, B. Schmalfuss, Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion, Discrete Contin. Dyn. Syst. Ser. B 14 (2010),473-493.
    [96]M. J. Garrido-Atienza, B. Maslowski, B. Schmalfuss, Random attractors for stochastic equations driven by a fractional Brownian motion, International Journal of Bifurcation and Chaos,20 (2010),1-22.
    [97]M. J. Garrido-Atienza, B. Schmalfussss, Ergodicity of the Infinite Dimensional Fractional Brownian Motion, Journal of Dynamics and Differential Equations, 23(2011),671-681.
    [98]P. Guha, Euler-Poincare formalism of (two component) Degasperis-Procesi and Holm-Staley type systems, J. Nonlinear Math. Phys.14 (2007) 398-429.
    [99]O. A. Gilman, R. Grimshaw, Yu. A. Stepanyants, Approximate and numerical solutions of the stationary Ostrovsky equation, Stud. Appl. Math.95 (1995) 115-126.
    [100]V. N. Galkin, Yu. A. Stepanyants, On the existence of stationary solitary waves in a rotating fluid, J. Appl. Math. Mech.55 (1991) 939-943.
    [101]A. Himonas, G. Misiolek, Well-posedness of the Cauchy problem for a shallow water equation on the circle, J. Differential Equations 161 (2000),479-495.
    [102]A. Himonas, G. Misiolek, The initial value problem for a fifth order shallow water, in:Analysis, Geometry, Number Theory:The Mathematics of Leon Ehrenpreis, in:Contemp. Math., vol.251, Amer. Math. Soc, Providence, RI, 2000, pp.309-320.
    [103]D. Henry, Infinite propagation speed for the Degasperis-Procesi equation, J. Math. Anal. Appl.311 (2005) 755-759.
    [104]D. D. Holm, M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn.Syst.2(2003) 323-380.
    [105]D. D. Holm and M. F. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1-1 nonlinear evo-lutionary PDE, Phys. Lett. A 308 (2003),437-444.
    [106]J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI,1988.
    [107]N. Hayashi, Y. Tsutsumi, Scattering theory for the Hartree equations, Ann. Inst. H. Poincare Phys. Theorique 61 (1987),187-213.
    [108]Y. Han, F. Guo, H. J. Gao, On Solitary Waves and Wave-Breaking Phenomena for a Generalized Two-Component Integrable Dullin-Gottwald-Holm System, acceptted by Journal of Nonlinear Science.
    [109]Z. H. Huo, Y. L. Jia, Low regularity solutions for the Ostrovsky equation, Proc. Edinb. Math. Soc.49 (2006) 87-100.
    [110]P. Isaza, J. Mejia, Cauchy problem for the Ostrovsky equation in spaces of low regularity, J. Differential Equations 230 (2006) 661-681.
    [111]R. I. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Z. Naturforsch. A 61 (2006),133-138.
    [112]R. Ivanov, Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion 46 (2009),389-396.
    [113]R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech.455 (2002),63-82.
    [114]R. S. Johnson, On the solutions of the Camassa-Holm equation, Proc. R. Soc. London A 459 (2003) 1687-1708.
    [115]C. E. Kenig, G. Ponce, L. Vega, Oscillatory integrals and regularity of disper-sive equations, Indiana Univ. Math. J.40 (1991),33-69.
    [116]C. E. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J.71 (1993),1-21.
    [117]C. E. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, J. Amen Math. Soc.9 (1996),573-603.
    [118]D. J. Korteweg, G. de Vries, On the change of form of long waves adcancing in a rectangular channel, and on a new type of long stationary waves, Phil. Mag. 39 (1895),422-443.
    [119]G. Kallianpur, J. Xiong, Large deviations for a class of stochastic partial differ-ential equations, J. Differential Equations 248 (2010),1269-1296.
    [120]H. Koch, D. Tataru, LP eigenfunction bounds for the Hermite operator, Duke Math. J.128 (2005),369-392.
    [122]T. Kato, On the Korteweg-de Vries equation, Manuscripta Math.28 (1979), 89-99.
    [122]T. Kato, Quasi-linear equations of evolution, with applications to partial diOer-ential equations, in:Spectral theory and diOerential equations, Proceedings of the Symposium Dundee,1974, dedicated to Konrad Jrgens, Lecture Notes in Math, Vol.448, Springer, Berlin,1975, pp.25-70.
    [123]T. Kato, G. Ponce, Commutator estimayes and the Euler and Navier-Stokes equation, Commun. Pure Appl. Math.41 (1988),891-907.
    [124]J. U. Kim, On the Cauchy problem for the transport equation with random noise, J. Funct. Anal.259 (2010) 3328-3359.
    [125]J. U. Kim, On the stochastic quasi-linear symmertic hyperbolic system, J. Dif-ferential Equations 250(2011) 1650-1684.
    [126]D. Li, C. Miao, X. Zhang, The focusing energy-critical Hartree equation, J. Differential Equations 246 (2009),1139-1163.
    [127]F. Linares, A. Milanes, Local and global well-posedness for the Ostrovsky equation, J. Differential Equations 222 (2006) 325-340.
    [128]J. Lenells, Conservation laws of the Camassa-Holm equation, J. Phys. A 38 (2005),869-880.
    [129]J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation, J. Math. Anal. Appl.306 (2005) 72-82.
    [130]H. Lundmark, J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems 19(2003) 1241-1245.
    [131]Y. A. Li, P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations 162 (2000),27-63.49s
    [132]Y. Lei, Qualitative anasysis for the static Hartree-type equation, SIAM J. Math. Anal.45 (2013),388-406.
    [133]X. Liu, Y. Jin, The Cauchy problem of a shallow water equation, Acta Math. Sin. (Engl. Ser.) 30(2004),1-16.
    [134]Y. Liu, Z. Y. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys.267(2006) 801-820.
    [135]Z. W. Lin, Y. Liu, Stability of peakons for the Degasperis-Procesi equation, Comm. Pure Appl. Math.62(2009) 125-146.
    [136]B. Maslowski, D. Nualart, Evolution equations driven by a fractional Brownian motion, J. Funct. Anal.202 (2003),277-305.
    [137]B. Maslowski, B. Schmalfuss, Random dynamical systems and stationary so-lutions of differential equations driven by the fractional Brownian motion, Stochastic Anal. Appl.22 (2004),1577-1607.
    [138]C. Miao, G. Xu, L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data, J. Funct. Anal.253 (2007), 605-627.
    [139]C. X. Miao, G. X. Xu, L. F. Zhao, The Cauchy problem of the Hartree equation, J. Partial Differential Equations 21 (2008),22-44.
    [140]C. Miao, G. Xu, L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation in R1+n, Comm. Partial Differential Equations 36 (2011),729-776.
    [141]C. Miao, G. Xu, L. Zhao, Global well-posedness and scattering for the mass-critical Hartree equation with radial data, J. Math. Pures Appl.91 (2009),49-79.
    [142]G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys.24 (1998),203-208.
    [143]G. Misiolek, Classical solutions of the periodic Camassa-Holm equation, Geom. Funct. Anal.12 (2002),108-1104.
    [144]O. G. Mustafa, A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys.12 (2005) 10-14.
    [145]R. Michael, T. S. Zhang, X. C. Zhang, Large deviations for stochastic tamed 3D Navier-Stokes equations, Appl. Math. Optim.61 (2010),267-285.
    [146]Y. Matsuno, Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit, Inverse Problems 21 (2005) 1553-1570.
    [147]H. Nawa, T. Ozawa, Nonlinear scattering with nonlocal interactions, Comm. Math. Phys.146 (1992),259-275.
    [148]K. Nakanishi, Energy scattering for Hartree equations, Math. Res. Lett.6 (1999),107-118.
    [149]E. A. Olson, Well posedness for a higher order modified Camassa-Holm equa-tion, J. Differential Equations 246 (2009),4154-4172.
    [150]L. A. Ostrovsky, Nonlinear internal waves in a rotating ocean, Okeanologia 18 (1978)181-191.
    [151]S. Peszat, Large deviation estimates for stochastic evolution equations, Prob. Theory Rel. Fields.98 (1994),113-136.
    [152]G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal.46 (3) (2001),309-327.
    [153]J. Ren and X. Zhang, Schilder theorem for the Brownian motion on the diffeo-morphism group of the circle, J. Funct. Anal.224 (2005),107-133.
    [154]J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, UK,2001.
    [155]B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, In V. Reitmann, T. Riedrich, and N. Koksch, editors,International Seminar on Applied Mathematics Nonlinear Dynamics:Attractor Approxima-tion and Global Behaviour, (1992),185-192.
    [156]C. F. Sun, H. J. Gao, J. Q. Duan and B. Schmalfuss, Rare events in the Boussi-nesq system with fluctuating dynamical boundary conditions J. Differential Equations 248 (2010) 1269-1296.
    [157]R. Sowers, Large deviations for a reaction-diffusion system with non-Gaussian perturbations, Ann. Prob.20 (1992),504-537.
    [158]S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications. Gordon and Breach Science Publishers (Switzerland and Philadelphia, Pa., USA),1993.
    [159]S. S. Sritharan, P. Sundar, Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise, Stochastic Process. Appl.116 (2006),1636-1659.
    [160]L. Thomann, Random data Cauchy problem for supercritical Schroinger equa-tions, Ann. I. H. Poincare-AN 26 (2009),2385-2402.
    [161]H. Triebel, Interpolation theory, function spaces, differential operators, Amster-dam; New York:North-Holland Pub. Co.,1978.
    [162]L. X. Tian, G. L. Gui and Y. Liu, On the well-posedness problem and the scat-tering problem for the Dullin-Gottwald-Holm equation, Comm. Math. Phys. 257 (2005),667-701.
    [163]M. E. Taylor, Tools for PDE. Pseudodifferential Operators, and Layer Poten-tials, Math. Surveys Monogr., vol.81, Amercian Mathematical Society, Provi-dence, RI,2000. J. Anal. Math.67 (1995),281-306.
    [164]R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York,1997.
    [165]T. Tao, Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equation, Amer J Math 123 (2001),839-908.
    [166]N. N. Vakhania, V. I. Taireladze, S. A. Chobanyan, Probability and Distribution on Banach Space, Reidel, Dordrecht,1987.
    [167]S. R. S Varadhan, Asymptotic probabilities and difierential equations, Comm. Pure Appl. Math.19 (1966),261-286.
    [168]S. R. S. Varadhan, Large Deviations and Applications, SIAM, Philadelphia, 1984.
    [169]V. Varlamov, Y. Liu, Cauchy problem for the Ostrovsky equation, Discrete Con-tin. Dyn. Syst.10 (2004) 731-753.
    [170]V. O. Vakhnenko, E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation, Chaos Solitons Fractals 20(2004) 1059-1073.
    [171]B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equa-tion on unbounded domains, J. Differential Equations 246(2009),2506-2537.
    [172]G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York,1974.
    [173]H. Wang, S. B. Cui, Global well-posedness of the Cauchy problem of the fifth-order shallow water equation, J. Differential Equations 230 (2006),600-613.
    [174]G. L. Wang, B. L. Guo, Well-posedness of stochastic Korteweg-de Vries-Benjamin-Ono equation, Front. Math. China 5(2010),161-177.
    [175]Z. P. Xin, P. Zhang, On the weak solutions to a shallow water equation, Comm. PureAppl. Math.53 (11) (2000),1411-1433.
    [176]Z. P. Xin, P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Comm. Partial Differential Equations 27 (2002),1815-1844.
    [177]M. Yuen, Self-similar blowup solutions to the 2-component Degasperis-Procesi shallow water system, Commun Nonlinear Sci 16(2011),3463-3469.
    [178]X. Y. Yang, Y. S. Li, Global well-posedness for a fifth-order shallow water equation in Sobolev spaces, J. Differential Equations 248 (2010),1458-1472.
    [179]Z. Y. Yin, On the Cauchy problem for an intergrable equation with peakon solutions, Illinois J. Math.47 (2003)649-666.
    [180]Z. Y. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal.212(2004) 182-194.
    [181]Z. Y. Yin, Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J.53 (2004),1189-1209.
    [182]J. Zabczyk, On large deviations for stochastic evolution equations, Stochas-tic Systems and Optimization, Lecture Notes on Control and Inform. Sci., Springer, Berlin,1988.
    [183]M. Zahle, Integration with respect to fractal functions and stochastic calculus, Probab. Theory Related Fields 111(1998),333-374.
    [184]Peter E. Zhidkov, Korteweg-de Vries and Nonlinear Schrodinger Equations: Qualitative Theory, Lecture Notes in Math., vol.1756, Springer-Verlag,2001.
    [185]P. Z. Zhang, Y. Liu, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system, Int. Math. Res. Not. IMRN 11 (2010),1981-2021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700