纳米金刚石基复合电极材料制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米金刚石作为一种功能性碳材料,兼具金刚石和纳米材料的双重特性。它具有很高的机械强度,化学惰性和热稳定性,可以承受较强的电化学负荷,而且具有很强的抗中毒、抗污染能力,可以在强腐蚀的介质中长期稳定工作,在电分析领域有着很好的应用前景;另一方面它作为纳米材料,具有巨大的比表面积和较高的表面活性,是极具潜力的电催化剂载体材料。
     本文通过循环伏安曲线研究了纳米金刚石粉末电极的基本电化学性质。纳米金刚石粉末电极在KCl底液中电势窗口范围约为2.2 V,背景电流在10-6 A数量级上。典型氧化还原对[Fe(CN)_6]~(3-/4-)在纳米金刚石粉末电极上的电极反应属于准可逆反应,电极动力学过程属平面扩散控制的传质过程。
     通过循环伏安曲线和稳态极化曲线考察了亚硝酸盐在纳米金刚石粉末电极上的氧化行为,结果表明纳米金刚石粉末电极对亚硝酸盐的检测限为1.2×10-4 mol/L。为了提高纳米金刚石电极对亚硝酸盐的检测能力,本文使用循环真空充气气相沉积法通过H_2还原TiCl_4在纳米金刚石表面沉积金属钛层,之后在空气中加热至500°C,使钛层氧化为锐钛矿晶型的二氧化钛涂层,获得纳米二氧化钛修饰的纳米金刚石。通过透射电子显微镜和拉曼光谱表征了纳米金刚石表面的二氧化钛涂层。TiO2/ND电极在亚硝酸盐溶液中的电化学性质表明表面修饰的二氧化钛涂层促进了亚硝酸盐的氧化,亚硝酸盐的检测限达到5.5×10-7 mol/L。
     采用恒电位沉积法在1.1 mmol/L H2PtCl6 + 0.5 mol/L H_2SO_4溶液中,-0.2 V电位下,电沉积1200 s,制备了纳米金刚石负载的铂催化剂。使用场发射扫描电子显微镜和X射线谱表征了样品的形貌和结构,纳米金刚石表面的铂颗粒尺寸在10 nm左右,分布均匀。Pt/ND催化剂对于甲醇氧化反应表现出了很好的催化性能。相同电沉积条件下,以爆轰合成的纳米金刚石为载体的Pt/ND5电极上的甲醇氧化峰电流高于以机械破碎制备的纳米金刚石为载体的Pt/ND100电极,前者表现出更好的催化性能。
     使用微波辅助乙二醇还原法制备了以纳米金刚石作为载体的铂催化剂,使用透射电子显微镜和X射线谱表征了样品的形貌和结构,铂颗粒尺寸为3~5 nm,比电沉积法制备的铂颗粒尺寸小,且尺寸非常均一,分布均匀。Pt/ND催化剂对于甲醇氧化反应表现出了良好的催化性能。相同载铂量时,比较于Pt/ND100和Pt/ND250,Pt/ND5表现出最好的电催化活性。
Nanodiamond, as a kind of functional materials, has both properties of diamond and nanomaterials. On the one hand, nanodiamond has high mechanical strength, thermal and chemical stability, so it can stably work in a strong corrosive solution, poisonous or high potential environments for a long time. These properties make it has potential to be a kind of good electrode material. On the other hand, as a kind of nanomaterials nanodiamond has large surface areas and high surface activity. So it has the potential to be a new catalyst support material.
     The electrochemical properties of nanodiamond powder electrode were studied by cyclic voltammetry. The results showed that nanodiamond powder electrode was electrochemically stable in KCl electrolytes, its potential window was 2.2 V and background current in magnitude was 1×10-6 A. The electrode reaction was quasi-reversible and diffusion-controlled in ferricyanide–ferrocyanide redox couple solution.
     The electrochemical properties of nanodiamond powder electrode toward nitrite oxidation were also studied with cyclic voltammetry and Tafel curves. The detection limit was 1.2×10~(-4) mol/L. Coating nanodiamond with Titania could improve the electrochemical activity of nanodiamond. Cycled vacuum-feeding chemical vapour deposition was utiltzed to coat nanodiamond with titanium from gaseous TiCl_4 and H_2, and then an oxidation treatment was carried out in the air. Titania coating was obtained on the surface of nanodiamond particles. The structure and the morphology of the TiO2/ND were characterized by Raman spectrum and Transmission Electron Microscopy. Anatase coated nanodiamond powder electrode could catalyse the oxidation of nitrite, and improve the detection limit to 5.5×10~(-7) mol/L.
     Nanodiamond powder with average particle sizes of 5 and 100 nm (ND5 and ND100) were modified with Pt nanoparticles by electrodeposition from 1.1 mmol/L H2PtCl6+0.5 mol/L H_2SO_4 aqueous solution for 1200 s under -0.2 V. The structure and morphology of the composite were characterized by Field Emission-Scanning Electron Microscope and X-ray Diffraction. The results showed that Pt nanoparticles with particle sizes of 10 nm were well-dispersed on the facet surfaces of nanodiamond particles. The electrooxidation of methanol on Pt-modified nanodiamond powders was investigated by cyclic voltammetry, which indicated its good electrocatalytic activity. Compared with ND100, ND5 modified with Pt nanoparticles exhibited better electrocatalytic activity on the same deposition conditions.
     Pt-modified nanodiamond was prepared by a microwave heating polyol method. The structure and morphology of the composite were characterized by Transmission Electron Microscopy and X-ray Diffraction. It was found that the Pt nanoparticles were small and uniform in size, and highly dispersed on nanodiamond supports. The mean size of the Pt particles was 3~5 nm, which is smaller than that obtained by electrodeposition. The Pt-modified nanodiamond exhibited good electrocatalytic activity for methanol electrooxidation. Compared with Pt/ND100 and Pt/ND250, Pt/ND5 with same Pt loading exhibited a much higher electrocatalytic activity for methanol electrooxidation.
引文
1 W. L. Wang, G. Sánchez, M. C. Polo, R. Q. Zhang, J. Esteve. Nucleation and initial growth of diamond by biased hot filament chemical vapour deposition. Appl. Phys. A, 1997, 65: 241-249
    2 M. Hupert, A. Muck, J. Wang, J. Stotter, Z. Cvackova, S. Haymond, Y. Show, G. M. Swain. Conductive diamond thin-films in electrochemistry. Diamond Rela. Mater., 2003, 12: 1940-1949
    3 D. M. Gruen. Nucleation, growth, and microstructure of nanocrystalline diamond films. MRS Bull., 1998, 23(9): 32-35
    4 D. M. Gruen. Nanocrystalline diamond films. Annu. Rev. Mater. Sci., 1999, 29: 211-259
    5 R. F. Mamin, T. Inushima. Conductivity in boron-doped diamond. Phys. Rev. B., 2001, 63(3): 033201
    6 J. Xu, M. C. Granger, Q. Chen, J. W. Strojek, T. E. Lister, G. M. Swain. Boron-doped diamond thin-fiml electrodes. Anal, Chem., 1997, 69: 591A-597A
    7 G. M. Swain, A. B. Anderson, J. C. Angus. Applications of diamond thin films in electrochemistry. MRS Bull., 1998, 23: 56-60
    8只金芳,田如海.金刚石薄膜电极.化学进展, 2005, 17(1): 55-63
    9 Y. Maeda, K. Sato, R. Ramaraj, T. N. Rao, D. A. Tryk, A. Fujishima. The electrochemical response of highly boron-doped conductive diamond electrodes to Ce3+ ions in aqueous solution. Electrochim. Acta, 1999, 44(20): 3441-3449
    10 A. Fujishima, T. N. Rao, E. Popa, B. V. Sarada, I. Yagi, D. A. Tryk. Electroanalysis of dopamine and NADH at conductive diamond electrodes. J. Electroanal. Chem., 1999, 473(1-2): 179-185
    11徐忠良.基于壳聚糖席夫碱类衍生物修饰电极测定食品中的亚硝酸根离子.东华理工学院学报, 2007, 9(30): 56-58
    12高岐,张海燕.化学发光分析法测定食品中微量亚硝酸根.理化检验—化学分册, 2003, 39(9): 515-516
    13 P. N. Magee, J. M. Barnes. Carcinogenic nitroso compounds. Advances in Cancer Research, 1976, 10: 163-246
    14 S. S. Mirvish, M. Greenblatt, V. R. C. Kommineni. nitrosamide formation invivo: Induction of lung adenomas in swiss mice by concurrent feeding of nitrite and methyluren or ethyluren. NationalCancer Institute, 1972, 48(1311-1315):
    15秦品章.关于修改食品添加剂硝酸盐、亚硝酸盐使用卫生标准的若干建议.中国预防医学杂志, 2005, 6(2): 150-151
    16刘平辉.一起超量使用亚硝酸盐引起食物中毒的调查报告.疾病监测, 2006, 21(4): 199
    17 Y. V. Pleskov, M. D. Krotova, V. G. Ralchenko, A. V. Khomich, R. A. Khmelnitskiy. Electrochemical properties of undoped CVD diamond films vacuum-annealed at 1775–1915 K. Diamond Relat. Mater., 2003, 12(10-11): 1957-1963
    18 W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, Jr., L. M. Smith, R. J. Hamers. DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater., 2002, 1: 253-257
    19 T. Strother, T. Knickerbocker, J. N. Russell, Jr., J. E. Butler, L. M. Smith, R. J. Hamers. Photochemical Functionalization of Diamond Films. Langmuir, 2002, 18(4): 968-971
    20 T. Knickerbocker, T. Strother, M. P. Schwartz, J. N. Russell, Jr., J. Butler, L. M. Smith, R. J. Hamers. DNA-modified diamond surfaces. Langmuir, 2003, 19(6): 1938-1942
    21 A. H?rtl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, M. Stutzmann. Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat. Mater., 2004, 3: 736-742
    22 J. Rubio-Retama, J. Hernando, B. López-Ruiz, A. H?rtl, D. Steinmüller, M. Stutzmann, E. López-Cabarcos, J. A. Garrido. Synthetic nanocrystalline diamond as a third-generation biosensor support. Langmuir, 2006, 22(13): 5837-5842
    23 P. S. Siew, K. P. Loh, W. C. Poh, H. Zhang. Biosensing properties of nanocrystalline diamond film grown on polycrystalline diamond electrodes. Diamond Relat. Mater., 2004, 14(3-7): 426-431
    24文潮,孙德玉,刘晓新,李迅,关锦清,周刚,郝兆印,金志浩.用纳米石墨作碳源在Fe粉作用下合成金刚石的研究.材料科学与工程, 2002, 20(2): 177-179
    25 P. S. DeCarli, J. C. Jamieson. Formation of diamond by explosive shock. Science, 1961, 133(3467): 1821-1822
    26李晓杰,张凯,董守华.高转化率冲击合成金刚石微粉.大连理工大学学报, 1994, 34(6): 743-744
    27 H. Hirai, S. Kukino, K.-i. Kondo. Predominant parameters in the shock-induced transition fromgraphite to diamond. Journal of Applied Physics, 1995, 78(5): 3052-3059
    28 G. P. Bogatyreva, M. N. Voloshin. Characterization and some properties of shock-wave diamond powders. Superhard materials, 1998, 4: 82-87
    29邵丙璜,张晓堤.爆炸合成纳米聚晶超硬材料及其制品的产业化前景.金刚石与磨料磨具工程, 2001, 6: 26-27
    30 W. Howard, M. Frenklach, K. E. Spear, e. al. Diamond powder formation from the gas phase. Messier, R., Glass, J. T., Butler, J. E.al, et. Proceedings of the second international conference on new diamond science and technology, Pittsburgh PA, 1991, Material Research Society, Year:
    31 V. V. Danilenko. On the history of the discovery of nanodiamond synthesis. Physics of the Solid State, 2004, 46(4): 595-599
    32 A. M. Staver, L. A.I., N. A. Gubareva. Ultradisperse diamond powders produced by explosion. Fizika Goreniya i Vzryva, 1984, 20(5): 100-103
    33 V. M. Titov, V. F. Anisichkin, I. Y. Mal'kov. Synthesis of ultradispersed diamond in detonation waves. Fizika Goreniya i Vzryva, 1989, 25(3): 117-126
    34 N. R. Gneiner, D. S. Phillips, J. D. Johnson, F. Volk. Diamond in detonation soot. Nature, 1988, 333: 440-442
    35 O. A. Schenderova, V. V. Zhirnov, D. W. Brenner. Carbon Nanostructures. Critical Reviews in Solid State and Materials Sciences, 2002, 27(3-4): 227-356
    36 B. H. Katherine. Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Phil. Trans. R. Soc. A, 2007, 365: 2845-2861
    37相英伟.超细金刚石粉末的显微结构和热稳定性.金刚石与磨料磨具工程, 1999, 110(5-9):
    38邹芹.纳米金刚石结构、表面状态分析及其处理方法. [燕山大学工学硕士学位论文]. 2004: 13-17
    39 W. Zhu, G. P. Kochanski, S. Jin. Low-field electron emission from undoped nanostructured diamond. Science, 1998, 282(20): 1471-1473
    40 H. Makita, N. Jiang, A. Hatta, T. Ito, A. Hiraki, K. Nishimura. Ultrahigh particle density seeding with nanocrystal diaomd particles. Thin Solid Films, 1996, 281-282(1-2): 279-281
    41三岛直志,深贝俊夫,河崎佳明et al.日本平728267
    42王光祖,张运生,郭留希,赵清国,刘杰.纳米金刚石的应用.金刚石与磨料磨具工程, 2003, 4: 41-44
    43 R. Stefan, S. G. Bairu. Diamond paste based electrodes for the determination of Pb(II) at trace concentration levels. Talanta, 2003, 63(3): 605-608
    44王艳华,王欧,林彬.前景广阔的新型化学能源--燃料电池.辽宁化工, 1998, 27: 9-12
    45 E. D. Geeter, M. Mangan, S. Spaepen, W. Stinissen, G. Vennekens. Alkaline fuel cells for road traction. J. Power Sources, 1999, 80(1-2): 207-212
    46 B. Bosio, P. Costamagna, F. Parodi, B. Passalacqua. Industrial experience on the development of the molten carbonate fuel cell technology. J. Power Sources, 1998, 74(2): 175-187
    47衣保廉.燃料电池--高效、环境友好的发电方式.化学工业出版社, 2000
    48 M. Straumann, M. Dupont, D. Buttin, J. C. Dubois. Fuel cell test bench design and manufacture By Marie Straumann, Marc Dupont, Daniel Buttin and Jean-Claude Dubois, Sodeteg, France. Fuel Cell Bulletin, 2000, 3(20): 11-13
    49 M. Waidhas, W. Drenckhahn, W. Preidel, H. Landes. Direct-fuelled fuel cells. J. Power Sources, 1996, 61(1-2): 91-97
    50 M. Baldauf, W. Preidel. Status of the development of a direct methanol fuel cell. J. Power Sources, 1999, 84(2): 161-166
    51 A. K. Shukla, M. K. Ravikumar, M. Neergat, K. S. Gandhi. A 5W liquid-feed solid-polymer-electrolyte direct methanol fuel cell with stainless steel. J. Appled Electrochem., 1999, 29: 129-132
    52魏昭彬,刘建国,乔亚光,周卫江,李文震,辛勤,衣宝廉,陈利康.直接甲醇燃料电池性能.电化学, 2001, 7(2): 228-233
    53 E. Antolini. Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Mater. Chem. Phys., 2003, 78(3): 563-573
    54 K.-Y. Chan, J. Ding, J. Ren, S. Cheng, K. Y. Tsang. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J. Mater. Chem., 2004, 14: 505-516
    55 A. E. Fischer, G. M. Swain. Preparation and characterization of boron-doped diamond powder. J. Electrochem. Soc., 2005, 152(9): B369-B375
    56 M. K. Ravikumar, A. K. Shukla. Effect of methanol crossover in a liquid-feedpolymer-electrolyte direct methanol fuel cell. J. Electrochem. Soc., 1996, 143(8): 2601-2606
    57 S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo. Order nanoporou arrays carbon supporting high dispersions of platinum nanoparticles. Nature, 2001, 412: 169-172
    58 Y. C. Liu, X. P. Qiu, Y. Q. Huang, W. T. Zhu, G. S. Wu. Influence of preparation process of MEA with mesocarbon microbeads supported PtRu catalysts on methanol electrooxidation. J. Appl. Electrochem., 2002, 32: 1279-1285
    59 E. S. Steigerwalt, G. A. Deluga, C. M. Lukehart. Pt-Ru/carbon fiber nanocomposites: synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance. J. Phys. Chem. B, 2002, 106(4): 760-766
    60 C. A. Bessel, K. Laubernds, N. M. Rodriguez, R. T. K. Baker. Graphite nanofibers as an electrode for fuel cell applications. J. Phys. Chem. B, 2001, 105(6): 1115-1118
    61 J. Prabhuram, T. S. Zhao, Z. K. Tang, R. Chen, Z. X. Liang. Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. J. Phys. Chem. B, 2006, 110: 5245-5252
    62 Z. L. Liu, J. M. Lee, W. X. Chen, M. Han, L. M. Gan. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir, 2004, 20: 181-187
    63 G. S. Chai, S. B. Yoon, J. S. Yu, J. H. Choi, Y. E. Sung. Ordered porous carbon with tunable pore sizes as catalyst supports in direct methanol fuel cell. J. Phys. Chem. B, 2004, 108: 7074-7079
    64 G. Wu, Y. S. Chen, B. Q. Xu. Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation. Electrochem. Commun., 2005, 7(1237-1243):
    65 X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J. Power Sources, 2006, 158(1): 154-159
    66 N. Rajalakshmi, H. Ryu, M. M. Shaijumon, S. Ramaprabhu. Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material. J. Power Sources, 2005, 140: 250-257
    67 J. E. Huang, D. J. Guo, Y. G. Yao, H. L. Li. High dispersion and electrocatalytic properties of platinum nanoparticles on surface-oxidized single-walled carbon nanotubes. J. Electroanal. Chem., 2005, 577(1): 93-97
    68 A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39(4): 507-514
    69 A. K. Geim, K. S. Novoselov. The rise of graphene. Nature Materials, 2007, 6: 183-191
    70 H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, I. A. Aksay. Functionalized single graphene sheets derived fromsplitting graphite oxide. J. Phys. Chem. B, 2006, 110(17): 8535-8539
    71 M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, I. A. Aksay. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater., 2007, 19(18): 4396-4404
    72 R. Kou, Y. Shao, D. Wang, M. H. Engelhard, J. H. Kwak, J. Wang, V. V. Viswanathan, C. Wang, Y. Lin, Y. Wang, I. A. Aksay, J. Liu. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun., 2009, 11: 954-957
    73 S. Bong, Y. R. Kim, I. Kim, S. Woo, S. Uhm, J. Lee, H. Kim. Graphene supported electrocatalysts for methanol oxidation. Electrochem. Commun., 2010, 12: 129-131
    74 M. Hupert, A. Muck, J. Wang, J. Stotter, Z. Cvackova, S. Haymond, Y. Show, G. M. Swain. Conductive diamond thin-films in electrochemistry. Diamond Relat. Mater., 2003, 12(10-11): 1940-1949
    75 C. H. Paik, T. D. Jarvi, W. E. O'Grady. Extent of PEMFC cathode surface oxidation by oxygen and water measured by CV Electrochem. Solid-State Lett., 2004, 7: A82-A84
    76 K. H. Kangasniemi, D. A. Condit, T. D. Jarvi. Characterization of vulcan electrochemically oxidized under simulated PEM fuel cell conditions. J. Electrochem. Soc., 2004, 151(4): E125-E132
    77 J. Wang, G. M. Swain, T. Tachibana, K. Kobashi. Incorporation of Pt particles in boron-doped diamond thin films applications in electrocatalysis. Electrochem. Solid-State Lett., 2000, 3: 286-289
    78 J. Wang, G. M. Swain, T. Tachibana, K. Kobashi. Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis. J. Electrochem. Soc., 2003, 150: E24-E32
    79 E. Antolini. Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. J. Mater. Sci., 2003, 38(14): 2995-3005
    80 M. F. Mathias, R. Makharia, H. A. Gasteiger, J. J. Conley, T. J. Fuller, C. J. Gittleman, S. S. Kocha, D. P. Miller, C. K. Mittelsteadt, T. Xie, S. G. Yan, P. T. Yu. Two fuel cell cars in every garage. Electrochem. Soc. Interf., 2005, 14(3): 24-35
    81 C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang, M. L. Perry, T. D. Jarvi. A reverse-current decay mechanism for fuel cells. Electrochem. Solid-State Lett., 2005, 8(6): A273-A276
    82 G. Sine, G. Foti, C. Comninellis. Boron-doped diamond (BDD)-supported Pt/Sn nanoparticles synthesized in mocroemulsion systems as electrocatalysts of ethanol oxidation. J. Electroanal. Chem.,2006, 595: 115-124
    83 G. R. Salazar-Banda, K. I. B. Eguiluz, L. A. Avaca. Boron-doped diamod powder as catalyst support for fuel cell applications. Electrochem. Commun., 2007, 9: 59-64
    84 G. R. Salazar-Banda, H. B. Suffredini, M. L. Calegaro, S. T. Tanimoto, L. A. Avaca. Sol-gel-modified boron-doped diamond surface for methanol and ethanol electro-oxidation in acid medium. J. Power Sources, 2006, 162: 9-20
    85 J. Wang, G. M. Swain. Fabrication and evaluation of platinum-diamond composite electrodes for electrocatalysis. J. Electrochem. Soc., 2003, 150(1): E24-E32
    86 Glesener et al. US No.6,267,866
    87 Swain et al. US 2006/0175953A1
    88 P. K. Bachmann, R. Messier. Emerging technology of diamond thin films. Chem. Eng. New., 1989, 67(20): 24-39
    89梁栋材. X射线晶体学基础.科学出版社, 1991
    90 F. Anson.电化学和电分析化学.北京大学出版社, 1983:14-16
    91杨辉,卢文庆.应用电化学.科学出版社, 2001:37-38
    92 N. G. Ferreira, L. L. G. Silva, E. J. Corat, V. J. Trava-Airoldi. Kinetics study of diamond electrodes at different levels of boron doping as quasi-reversible systems. Diamond Relat. Mater., 2002, 11(8): 1523-1531
    93 V. Fishe, D. Gandini, S. Laufer, E. Blank, C. Comninellis. Preparation and characterization of Ti/Diamond electrodes. Electrochim. Acta, 1998, 44(2-3): 521-524
    94 Y. D. Zhao, W. D. Zhang, Q. M. Luo, S. F. Y. Li. The oxidation and reduction behavior of nitrite at carbon nanotube powder microelectrodes. Microchem. J., 2003, 75(3): 189-198
    95 K. Honda, M. Yoshimura, R. Uchikado, T. Kondo, T. R. Rao, D. A. Tryk, A. Fujishima, M. Watanabe, K. Yasui, H. Masuda. Electrochemical characteristics for redox systems at nano-honeycomb diamond. Electrochim. Acta, 2002, 47(27): 4373-4385
    96 W. C. Chen, T. C. Wen. Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors. J. Power Sources, 2003, 117(1-2): 273-282
    97 A. J. Bard, L. R. Faulkner. Electrochemical Methods. Wiley, 1980:p.223
    98 W. J. Plieth, A. J. Bard. Encyclopedia of Electrochemistry of the Elements. 1978:p.428
    99 H. Gersicher, A. Heller. J. Phys. Chem., 1991, 95: 5261
    100王亚珍,陈飞,吴天奎. nano-TiO2修饰金电极对NO2-的电化学检测.江汉大学学报, 2005, 33(4): 26-28
    101曹广秀,刘朝辉,李贯良,陈淑敏.纳米二氧化钛光催化处理废水中亚硝酸根的研究.应用化工, 2004, 33(1): 40-42
    102莫畏,邓国珠,陆德祯.钛冶金.冶金工业出版社, 1979:14-15
    103 J. B. Zang, Y. H. Wang, H. Huang, W. Tang. Electrochemical behavior of high-pressure synthetic boron doped diamond powder electrodes. Electrochim. Acta, 2007, 52: 4398-4402
    104 L. H. Chen, J. B. Zang, Y. H. Wang, L. Y. Bian. Electrochemical oxidation of nitrite on nanodiamond powder electrode. Electrochim. Acta, 2008, 53: 3442-3445
    105 N. Zhu, Q. Xu, S. Li, H. Gao. Electrochemical determination of nitrite based on poly(amidoamine) dendrimer-modified carbon nanotubes for nitrite oxidation. Electrochem. Commun., 2009, 11(12): 2308-2311
    106 L. Jiang, R. Wang, X. Li, L. Jiang, G. Lu. Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem. Commun., 2005, 7(6): 597-601
    107 T. S. Liu, T. F. Kang, L. P. Lu, Y. Zhang, S. Y. Cheng. Au–Fe(III) nanoparticle modified glassy carbon electrode for electrochemical nitrite sensor. J. Electroanal. Chem., 2009, 632(1-2): 197-200
    108 J. B. Zhang, Y. H. Wang, S. Z. Zhao, L. Y. Bian, J. Lu. Electrochemical properties of nanodiamond powder electrodes. Diamond Rela. Mater., 2007, 16: 16-20
    109 J.-H. Ye, P. S. Fedkiw. Electrodeposition of high-surface area platinum in a well adherent nafion film on glassy carbon. Electrochim. Acta, 1996, 41(2): 221-231
    110 T. Frelink, W. Visscher, J. A. R. Veen. Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol. J. Electroanal. Chem., 1995, 382(1-2): 65-72
    111 D. J. Guo, H. L. Li. Electrocatalytic oxidation of methanol on Pt modified single-walled carbon nanotubes. J. Power Sources, 2006, 160: 44-49
    112 W. X. Chen, J. Y. Lee, Z. Liu. Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications. Chem. Commun., 2002: 2588-2589
    113 Y. Y. Chu, Z. B. Wang, D. M. Gu, G. P. Yin. Performance of Pt/C catalysts prepared by microwave-assisted polyol process for methanol electrooxidation. J. Power Sources, 2009, 195(7): 1799-1804
    114 X. Ge, R. Wang, P. Liu, Y. Ding. Platinum-Decorated Nanoporous Gold Leaf for Methanol Electrooxidation. Chemistry of Materials, 2007, 19(24): 5827-5829
    115 W. H. Lizcano-Valbuena, D. C. Azevedo, E. R. Gonzalez. Supported metal nanoparticles as electrocatalysts for low-temperature fuel cells. Electrochim. Acta, 2004, 49(8): 1289-1295
    116 Z. Liu, L. M. Gan, L. Hong, W. Chen, J. Y. Lee. Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. J. Power Sources, 2005, 139(1-2): 73-78
    117 B. Yang, Q. Lu, Y. Wang, L. Zhuang, J. Lu, P. Liu. Simple and low-cost preparation method for highly dispersed PtRu/C catalysts. Chem. Mater., 2003, 15(18): 3552-3557
    118 Z. Liu, J. Y. Lee, W. Chen, M. Han, L. M. Gan. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir, 2004, 20(1): 181-187
    119 W. Chen, J. Zhao, J. Y. Lee, Z. Liu. Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation. Mater. Chem. Phys., 2005, 91(1): 124-129
    120 X. Li, W. Chen, J. Zhao, W. Xing, Z. Xu. Microwave polyol synthesis of Pt/CNTs catalysts: Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization. Carbon, 2005, 43(10): 2168-2174
    121 C. Bock, C. Paquet, M. Couillard, G. A. Botton, B. R. MacDougall. SIze-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J. Am. Chem. Soc., 2004, 126: 8028-8037
    122 R. Q. Yu, L. W. Chen, Q. P. Lin, J. Y. Lin, K. L. Tan, S. C. Ng, H. S. O. Chan, G. Q. Xu, T. S. A. Hor. Platinum depositon on carbon nanotubes via chemical modification. Chem. Mater., 1998, 10(718-722):
    123 R. V. Hull, L. Li, Y. C. Xing, C. C. CHusuei. Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. Chem. Mater., 2006, 18: 1780-1788
    124 M. Arenz, K. J. J. Mayrhofer, V. Stamenkovic, B. B. Bilzanac, T. Tomoyuki, P. N. Ross, N. M. Markovic. The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J. Am. Chem. Soc., 2005, 127: 6819-6829
    125 J. Zhao, P. Wang, W. Chen, R. Liu, X. Li, Q. Nie. Microwave synthesis and characterization of acetate-stabilized Pt nanoparticles supported on carbon for methanol electro-oxidation. J. Power Sources, 2006, 160: 563-569
    126 X. Ge, R. Wang, P. Liu, Y. Ding. Platinum-Decorated Nanoporous Gold Leaf for MethanolElectrooxidation. Chem. Mater., 2007, 19(24): 5827-5829

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700