高粱、玉米苗期抗旱生理与分子机制的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是农业生产中经常遇到的主要非生物因素逆境,严重影响着农作物的产量和分布,造成农业的减产和种植区域的限制,目前解决这一问题的方法之一是改善作物抗逆品质,培育或种植优良抗旱的作物和品种。由于抗旱性状是多基因作用的结果,目前,应用现代分子和遗传等生物工程方法对农作物品种进行的较单一的基因的改良还没有带来农业生产上实质性的突破,彻底解决粮食生产中存在的问题。所以,有必要进一步搞清植物的抗旱机理。高粱抗旱性较强,是研究抗旱机理的较好的实验材料,在大田生产和科研工作中,大家公认高粱的抗旱性状好于小麦、玉米等作物。本研究在阐述、总结前人对干旱机制研究进展和高粱抗旱研究的基础上,以高粱为研究对象,以较之抗旱性差的玉米为对照,开展了植物抗旱生理机制的比较研究。并在分子水平上,在遗传背景研究较多的玉米上首先阐明质膜水孔蛋白对植物抗旱作用,在此基础上,对遗传背景研究较少的高粱的质膜水孔蛋白进行了研究,进而在分子水平上进行了二者水孔蛋白抗旱机制的比较。得到了如下主要结果: 
    1.通过土壤自然干旱和复水实验,初步明确了渗透调节和抗氧化等耐旱途径是高粱和玉米所共有的,只是在主要渗透调节物质和抗氧化酶上存在物种间的差异。一般情况下,高粱的渗透调节物质主要是可溶性糖和可溶性蛋白,抗氧化酶主要是CAT,玉米的渗透调节物质则主要是脯氨酸、K+,抗氧化酶主要是SOD、POD。在抵御干旱胁迫和复水修复及生理功能恢复等方面,高粱表现出了较好的抗旱能力。另外,发现在同一物种不同抗旱性品种间也存在渗透调节和抗氧化上的差异,一般抗旱品种较抗旱性差的品种渗透调节能力和抗氧化能力更强;同时,发现在不同物种间的不同抗旱性品种上存在渗透调节物质和抗氧化酶在干旱或复水时变化趋势上的一致。表明植物抗旱是个复杂交织的网络体系。实验证实了高粱比玉米具有较高的水势,初步阐明了高粱在渗透调节和抗氧化上的耐旱机制。 
    2.在高粱上首次进行了水孔蛋白和抗旱关系的功能研究,并进行了和玉米间的物种比较,初步阐明了高粱在水孔蛋白分子水平上的抗旱机制。实验以遗传性背景研究较清楚的玉米为参照,结合玉米幼叶向基性生长,伸长区具有低水势下生长较快的特点,以玉米幼叶为实验材料,采用RT-PCR 和Western blotting 和in situ Western 等分子实验技术,初步明确了质膜水孔蛋白在玉米幼叶伸长生长和抗旱中的作用。之后结合运用到高粱水孔蛋白的研究上,说明了质膜水孔蛋白参与了高粱幼叶伸长生长和抗旱。并对高粱、玉米质膜水孔蛋白基因和蛋白水平上的差异进行了比较,在水孔蛋白抗旱机制上对高粱的抗旱机理得到了初步结论。
Drought is one major abiotic factor that adversely affects the crop production and distribution and account for the reduction in the yields of crops. At present, to improve the crop’s quality of water stress resistant ability through breeding anti-water stress plants or cultivars is one of the main methods to solve this problem. As the water stress resistant ability is controlled by multigenes, using modern molecular and gene technology to breed water stress resistant plant or genotype has not got the good result. So it is very important and necessary to give more attention to clear up the water stress resistant mechanism deeply. Sorghum is a model plant for researching the mechanism of water stress resistance. In this study, various sorghum cultivars were used as experimental materials to study the mechanism of water stress resistance and compared with maize, which water stress resistant ability is lower than sorghum while its geneology knowledge is more clear. In our study, we first compared the osmotic mechanism and antioxidant ability between sorghum and maize, and then on the base of revealing the function of aquaporin PIP1 in maize leaf growth and water stress resistant ability, we studied the role of the same type aquaporin in sorghum, and compared its change between sorghum and maize in the level of molecular mechanism. The main results are as follows: 
    1.Through the soil drought and recovered water experiment, we confirmed that the osmotic tolerance and antioxidant mechanism are all exit in sorghum and maize, while their main osmotic materials and antioxidant enzymes are different. In sorghum, the soluble sugar and protein are the main osmotic substance and CAT is the main antioxidant enzyme. In maize, it used the K+ and proline as the main osmotic materials and SOD and POD as the main antioxidant enzymes. We also found the difference in the osmotic tolerance and antioxidant ability between different genotype in sorghum or in maize, and the same mechanism change between sorghum and maize. So the anti-drought mechanism in the crop is a complex net. 
    Sorghum has higher water potential than maize, and has more effective  osmotic tolerance and antioxidant ability. It showed more tolerance to drought than maize. 2.We first report the role of aquaporin in sorghum, and compared its difference with maize. The sorghum water stress resistant mechanism was revealed in some extent in AQP. At first, using RT-PCR, Western blotting and in situ Western or so molecular technology, we studied the aquaporin PIP1 in maize leaf growth and its water stress resistance. In mRNA and protein level, We found the PIP1 play roles in maize leaf growth and maize water stress resistance, and showed different change in different maize genotype. Base on the maize experiment, we studied the function in sorghum and got the same conclusion. Then we compared the difference of PIP1 between sorghum and maize and found PIP1 gave much more function in maize than in sorghum at the protein level. The function of aquaporin  is one of the  water stress resistant mechanism in plant.
引文
[1] 唐先兵,赵恢武,林忠平.植物耐旱基因工程研究进展[J].首都师范大学学报(自然科学版),2002,23(3):47-51
    [2] 张劲松,陈受益.植物分子生理学进展:植物耐盐耐旱分子机制及其基因工程[M].北京.科技出版社. 1999:213-224
    [3] 山仑,陈培元主编.旱地农业生理生态基础[M].北京.科学出版社.1998
    [4] 邹琦.植物分子生理学进展:植物对水分胁迫的响应及其在旱作农业和抗旱育种中的应用[M].北京.科技出版社.1999: 223-244
    [5] 李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报1992,18(1):37-44
    [6] 汤章城,王育启,吴亚华等.钾在高粱水分亏缺时脯氨酸累积中的作用[J].植物生理学报,1984,10(3):209-215
    [7] 侯彩霞,汤章城.钾离子对盐诱导菠菜甜菜碱积累的影响[J].植物生理学报,1984,24(2):131-135
    [8] 倪吾钟,何念祖,林荣新.钾对大白菜的作用及其生理机制研究[J].植物营养与肥料学报,1997,3(2):117-122
    [9] 朱祝军,Settelmacher B, Thons K.钾局部供应对玉米根系生长和钾吸收速率的影响[J].植物学报,1994,36(5):358-363
    [10] 杨淑华,赵仲仁,么恩云.钾和菊酸钠诱导的离体黄瓜子叶生根过程中内源IAA 和ABA 含量变化[J].植物生理学通讯,1995,31(1):15-17
    [11] 侯建华,吕凤山.玉米苗期抗旱性鉴定研究[J].华北农学报,1995,10(3):89-93
    [12] 高爱丽,赵秀梅,秦鑫.水分胁迫下小麦叶片渗透调节与抗旱的关系[J].西北植物学报,1999,14(1):38-41
    [13] 肖用森,王正直,郭绍川.渗透胁迫下水稻中游离脯氨酸与膜脂过氧化的关系[J].武汉植物学研究,1996,14(4):334-340
    [14] 骆爱玲,刘家尧,马德钦等.转甜菜碱脱氢酶基因烟草叶片中抗氧化酶活性增高[J].科学通报,2000,45(18):1953-1956
    [15] 肖岗,张耕耘,刘凤华等.山菠菜甜菜碱醛脱氢酶基因研究[J].科学通报,1995,40(8):741-745
    [16] 许雯,苏梅好,朱亚芳等.甘氨酸甜菜碱增强青菜抗盐的作用[J].植物学报,2001,43(8):809-814
    [17] 张士功,高吉寅,宋景芝等.甜菜碱对NaCl 胁迫下小麦细胞保护酶活性的影响[J].植物学通报,1999,16(4):429-432
    [18] 孙文越,王辉,黄久常.外源甜菜碱对干旱胁迫下小麦幼苗膜脂过氧化作用的影响[J].西北植物学报,2001,21(3):487-491
    [19] 赵博生,衣艳君,刘家尧.外源甜菜碱对干旱/盐胁迫下的小麦幼苗生长和光合功能的改善[J].植物学通报,2001,18(3):378-380
    [20] 尹田夫,李云荫,胡荣海.水分胁迫下冬小麦叶片不同发育时期的渗透调节及其对延伸生长的影响[J].华北农学报,1990,5(增刊):30-37
    [21] 蒋明义,杨文英,徐江.渗透胁迫诱导水稻幼苗超氧化物歧化酶的影响[J].华北农学报,1990,5(3):9-13
    [22] 王宝山.生物自由基与生物膜伤害[J].植物生理学通讯,1988,2:12-16
    [23] 徐世昌,沈秀英.土壤干旱下玉米叶细胞膜脂过氧化和膜磷脂脱脂化反应以及膜超微结构的变化[J].作物学报,1994,20(5):564-569
    [24] 唐连顺,李广敏,商振清等.水分胁迫对玉米膜脂过氧化及保护膜的影响[J].河北农业大学学报,1992,15(2):34-40
    [25] 李广敏,唐连顺,商振清.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系[J].河北农业大学学报,1994,17(2):1-5
    [26] 张敬贤,崔四平,李俊明.干旱对不同抗旱小麦幼苗超氧化物歧化酶的影响[J].华北农学报,1990,5(3):9-13
    [27] 石碧,狄莹.植物多酚[M].北京.科学出版社.1999
    [28] 刘娥娥,汪沛宏,郭振飞.植物的抗旱诱导蛋白[J].植物生理学通讯,2001,37(2):155-160
    [29] 张林生,赵文明.LEA 蛋白与植物的抗旱性[J].植物生理学通讯,2003,39(1):61-66
    [30] 任晓米, 朱诚, 曾广文. 与种子耐脱水性有关的基础物质研究进展[J]. 植物学通报,2001,18(2):183-189
    [31] 俞嘉宁,山仑.LEA 蛋白与植物的抗旱性[J].生物工程进展,2002,22(2):10-14
    [32] 朱美君,陈珈,王学臣.玉米根细胞质膜水孔蛋白的鉴别、分布及其功能[J].科学通报,2000,45(2):407-411
    [33] 黄昊,苏维埃,汤章城.植物水孔蛋白基因PIP1a 在爪蟾卵母细胞中的表达和功能测定[J].植物生理学通讯,1998,34(6):448-450
    [34] 黄荣峰,朱美君,康蕴等.蚕豆保卫细胞质膜水通道蛋白的鉴定及其在气孔运动中的作用[J].植物学报, 2002,44(1):42-48
    [35] 卢庆善.高粱学[M].北京.中国农业出版社.1999
    [36] 王崇义,曹广才主编.北方旱地主要粮食作物优良品种[M].北京.中国农业科技出版社.1997
    [37] 上官周平.高粱抗旱机理的研究进展[J].国外农学:杂粮作物,1993,(1):35-38
    [38] 曹广才,王崇义,卢庆善.北方旱地主要粮食作物栽培[M].三象出版社1996
    [39] 裴冬,张喜英,王峻.高粱、谷子根系发育及其抗旱性研究[J].中国生态农业学报,2002,10(4):28-30
    [40] 陈玉民,郭国双,王广光等编著.中国主要作物需水量与灌溉[M].水利电力出版社.1995
    [41] 张岁歧,山仑.根系吸水机理研究进展[J].应用与环境生物学报,2001,794:396-402
    [42] 马尚耀,严福忠,成慧娟.高粱的研究现状与展望[J].内蒙古农业科技,2002(6):8-9
    [43] 山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2(1):70-76
    [44] 张权中.水分胁迫对高粱和糜子幼苗光合及水分利用效率的影响[J].华北农学报,1990,5(增刊):100-105
    [45] 邹琦. 作物抗旱生理生化研究:植物细胞壁的弹性与塑性特征及其在抗旱性中的意义[M].山东科技出版社.1995
    [46] 李德全,邹琦,程炳藁. 作物抗旱生理生化研究:植物在水分胁迫下的渗透调节作用[M] 山东科技出版社.1995
    [47] 乙引,汤章城.渗透胁迫对高粱根K+吸收的影响[J].植物生理学报,1996,22(20):191-196
    [48] 贺志理,李锦树,汤章城.渗透胁迫对高粱根中K+累积的刺激作用[J].植物生理学报,1993,19(4):379-386
    [49] 王宝山,李德全,赵士杰等.等渗NaCl和KCl胁迫对高粱幼苗生长和气体交换的影响[J].植物学通报,1999,16(4):449-453
    [50] 石谷学,荒川圭太,高倍铁子.植物耐盐性的分子机构[J].植物的化学调节,1990,(25):149
    [51] 汤章城,王育启,吴亚华等.钾在高粱苗水分亏缺时脯氨酸积累中的作用[J].植物生理学报,1984,10:209-211
    [52] 王玉国,贺润喜,苗国园.不同高粱抗旱品种光合速率及水分利用效率的研究[J].生态农业研究,1998,6(1):20-22
    [53] 苏佩,山仑.水分胁迫条件下高粱种子的吸水机制及其可溶性糖代谢的变化[J].西北植物学报,1996,16(3):203-207
    [54] 苏佩,山仑.多变低水环境下高粱高产节水生理基础的研究[J].应用与环境生物学报,1997,3(4):305-308
    [55] 刘巧英,程保成,江宏等.高粱品种抗旱性鉴定的研究[J].陕西农业科学,1992(1):6-8
    [56] 许素莲,朴铁夫,叶长江.高粱DNA 导入小麦诱发变异的研究[J].农业与技术,2002,22(6):84
    [57] 汤文光,刘海军,曾贤杰等.我国高粱育种进展[J].作物学报,2002(4):208-210
    [58] 邹琦主编.植物生理学实验指导[J].北京.中国农业出版社.2001
    [59] 于秋菊,杜丽,胡鸢雷,林忠平.油菜质膜水孔蛋白BnPIP1基因启动子区的克隆及初步的功能分析[J].中国科学(C辑),2002.32:519-526
    [60] Johns M.M, Osmond C.B, Turner N.C. Accumulation of solutes in leaves of sorghum and sunflower in response to water deficits[J]. Plant Physiol,1980,7:193-205
    [61] Morgen J.W. Differences in osmotic regulation between wheat genotypes[J]. Nature, 1977,270:234-235
    [62] Doman D.C, Geiger D.R. Effect of exogenously supplied folius potassium on phlourn loading in Beta valgaris[J]. Plant Physiol,1979,64:528-533
    [63] Harevey H.P, Driessche R.D. Nitrogen and potassium effects on xylen cavitation and water-use effiency in poplants[J]. Tree Physiol,1999,19:943-950
    [64] Fricke W, Pahlich E. The effect of water stress on the vacuole compartmentation of proline in potato cell suspension culture[J]. Physiol Plant,1990 78:374-378
    [65] Delauney A.J, Verma DPS. Proline biosynthesis and osmoregulation in plants[J]. Plant J,1993,4(2):215-223
    [66] Savoure A, Jaona S. Isolation, Characterization and chromosomal location of a gene encoding the Δˊ-pytroline-5-carboxylate synthetase in Arabidopsia thaliana[J].FEBS Lett,1995,372:13-19
    [67] Yoshiba Y, Kiyosue T. A nuclear gene encoding mitochondril proline dehydrogenases an enzyme involved in proline metabolism is upregulated by proline but downregulated by degydration in Arabidopsis[J].Plant Cell,1996,8:1323-1335
    [68] Szoke A, miao GH et.al Subcellular location of Δˊ-pytroline-5-carboxylate redutassasse in root/nodule and leaf of soybean[J]. Plant Physiol,1992,99:1642-1694
    [69] Rentsch D, Himer B. Salt-stress-induced proline transpotaters and salt stress-repressed broad specificity amion acid permeassaes identified by suppression of a yeast amion acid permease-targating mutant[J].Plant Cell,1996,8:1437-1446
    [70] Kavikishor P.B, Hong Z et.al. Overexpression of Δˊ-pytroline-5-carboxylate synthetase roline production and confers osmotolerance in plants[J]. Plant Physiol,1995,108:1387-1394
    [71] Foolad M.R, Winicov I. Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis[J].Theor Appl genet,1993,87:184-192
    [72] Wincov I. New molecular approaches to improving salt tolerance in crop plants[J] Ann Bot.1998,82:703-710
    [73] Grieve C.M, Mass E.V. Betain accumulation in salt-stressed sorghum[J].Physiol plant,1984,61:167-171
    [74] Hajibagheri M.A,Yao A.R, Flowers T.J et.al. Salinity resistance in Zea mays: fluxes of potassium, sodium and chloride, cytoplasmic concentration and microsomal membrane lipids[J]. Plant Cell environ,1989,12:133-142
    [75] Hanson A.D, Wyse R. Biosynthesis, transition and accumulation of betaine in sugar beet and its progenitors in relation to salinity[J].Plant Physiol, 1982,70:1191-1198
    [76] Weigle P, Weretilnyk E.A, Hanson A.D. Betain aldhyde oxidation by spinach chloroplasts[J].Plant Physiol, 1986,82:753-759
    [77] Ishitani M, Nakanura T, Han S.Y. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisig acid.Plant[J] Mol Biol,1995,27:307-315
    [78] Rhodes D. Hanson A.D. Quaternary ammonium and tertiary sulfonium compounds in higher plant. Annu Rev Plant Physiol[J] Plant Mol Biol,1993,44:357-384
    [79] Rathinasabspathi B, Bumet K, Russel B.L et.al. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycien betaine synthesis in plants: prosthetic group characterization and cDNA cloning[J].Proc Natl Acad Sci USA,1997,94:3454-3458
    [80] Russell B.L, Rathinasabspathi B, Hanson A.D. Osmotic stress induces expression of choline monooxygenase in sugar beet and Amaranth[J].Plant Physiol,1998,116:859-865
    [81] Weretilnyk E.A, Hanson A.D. Molecular cloning of a plant betaine aldehyde dehydrogenase, a eazyme implicated in adaption to salinity and drought.Proe[J] Natl Acad Sci USA,1990,87:2745-2749
    [82] Arakawa K,Katayama M, Takabe T. Lewelis of betaine and betaine aldehyde dehydrogenase ictivity in the green leaves and etiolated leaves and roots of barley[J].Plant Cell Physiol,1990,31:797-803
    [83] Nakamura T,Yokota S, Muramoto Y, et.al.Expression of a detaine aldehyde dehydrogenose gene in rice, a glycien betaine non-accumulator, and possible localization of its protein in peroxisomes[J].Plant J,1997,22:1115-1120
    [84] Rathinasabspathi B, Mcue K.F, Gage D.A et.al.Metabolic engineering of glycinebetaine synthesis: plant betaine aldehyde dehydrogenoses lackingtypical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance[J] Planta,1994,193:155-162
    [85] Mcoue K.F, Hanson A,D. Salt-inducible betaine aldehyde dehydrogenase from sugar bets: cDNA cloning and expression[J].Plant Mol Biol,1992,18:1-11
    [86] Mcoue K.F, Hanson A,D. Effects of soil salinity on the expression of betaine aldehyde dehydrogenase in leaves investigation of hydraulic, ionic and biochemical signals[J].Ast J Plant Physsiol,1992.19:555-564
    [87] Premachandra G.S.The measurement of cell membrane stability using polyethylene glycol as a drought tolerance test in wheat[J].Japan J Crop Science,1987,56(1):92-98
    [88] Mccord J.M, Fridovich I.[J] J Biol Chem.1969,224:6049-6055
    [89] Hightower R et.al[J].Plant Mol Biol,1991,17:1013-1021
    [90] Gray O.K Singh B.P.Physiological significance of ascorbic and acid in relation to drought resistance in rice (Oryza Satival)[J] Plant and Soil,1991,34,219-223
    [91] Senaratna et.al [J]Plant Physiology 1985,78:168-171
    [92] Leprince B.O et.al[J] New Phytol 1990,116:573-580
    [93] Price A.H Hendry Gaf [J]Biochem Soc Tran 1989,17:493-494
    [94] Huges DW, Galau GA,.Temporally molecular gene expression during cotyledon development[J]. Genet Dev, 1989,3:358-361
    [95] Dure ⅢL, Chlan CA. Developmental biochemistry of cotton seed embryogenesis and germination. ⅦPurufication and properties of principle storage protein[J] Plant Physiol,1981,68:180-186
    [96] Reid JL, Walker-Simmons MK. Group 3 late embryogenesis abundant proteins in desiccation-tolerant of wheat (Triticum aestivum L.)[J].Plant Physiol,1993,102:125-131
    [97] Colse TJ,KorttAA, Chandler PM. A cDNA-based comparison of dehydration-induced proteins(dehydrins) in barley and corn[J]. Plant Mol Biol,1989,13:95-108
    [98] Zegzouti H, Jones B, Marty C et al. ER5, a tomato cDNA encoding an ethylene-response LEA-like protein: Characterization and expression in response to drought, ABA and wounding[J],Plant Mol Biol,1997,35(6):847-854
    [99] Hsing YC, Chen Z, Shih M et al. Unusual sequence of group 3 LEA mRNA inducible by maturation or soybean seeds[J].Plant Mol Bio, 1995,29:863-868
    [100] Franz G, Hatzopoulos P, Jones TJ et al.Molecular and genetic analysis of an embryonic gene, DC8, from Daucus carota L[J]. Mol Gen Genet,1989,218(1):143-151
    [101] Close TJ. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins[J]. Physiol Plant,1996,97:795-803
    [102] Dure L, Crouch M, Harada J. Common amino acid sequence domains among the LEA proteins of higher plant[J]. Plant Mol Biol, 1989,12:475-486
    [103] Close TJ. Dehydrins: A commonalty in the response of a plants to dehydration and low temperature[J]. Physiol Plant. 1997,100:291-296
    [104] Danyluk J,Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrance during cold acclimation of wheat[J]. Plant cell,1988,10:623-638
    [105] Ingram J, Bartels D. The molecular basis of dehydrationtolerance in plants. Annu Rev Plant Physiol[J] Plant Mol.Bio, 1996,47:377-403
    [106] Baker J,Steele C, Dure L III.Sequence and characterization of 6 Lea proteins and their genes from cotton[J]. Plant M olo.Biol, 1988,11:277-281
    [107] Hsing YC, Chen Z,Chow T. Nucleotide sequences of a soybean complementary DNA encoding a 50-Kilodalton late embryogenesis abundant protein[J]. Plant Physiol,1992,99:354-355
    [108] Curry J, Walker-simmons MK. Unusual Sequence of group 3 LEA(II) mRNA inducible by dehydration stress in wheat[J].Plant Mol.Bio, 1993,21:907-912
    [109] Dure L III. A repeating 11-mer amino acid motif and plant desiccation[J].Plant J.1993,3:363-369
    [110] Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R.Expression of a late embryoenesis an\bundant protein gene,HVA1, from barly confers tolerance to water deficit and salt stress in transgenic rice[J].Plant physiol.1996, 110:249-257
    [111] Maurel C. Chrispheels M.J Aquaporins molecular entry into plant water relations[J] Plant Physiol,2001,125:135-138
    [112] Borgnia M, Nielsen S, Engel A, Agre P. Cellular and molecular biology of the aquaporin water channels[J]. Annu Rev Biochem, 1999.68: 425-458
    [113] Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein[J]. Science, 1992.256: 385-387
    [114] Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S. Cloning and expression of apical membrane water channel of rat kidney collecting tubule[J]. Nature Lond, 1993.361: 549-552
    [115] Ray PM, On the theory of osmotic water movement[J]. Plant Physiol, 1960. 35: 783-795
    [116] Dainty J. Water relations of plant cells[J]. Adv Bot Res, 1963.1: 279-326
    [117] Gutknecht J. Membranes of Valonia ventricosa: apparent absence of water-filled pores. Science, 1967. 158: 787.788
    [118] Schuler I, Milon A, Nakatani Y, Ourisson G, Albrecht AM, Benveniste P, Hartman MA. Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers[J]. Proc Natl Acad Sci U S A, 1991. 88: 6926-6930
    [119] Maurel C, Tacnet F, Guclu J, Guern J, Ripoche P. Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity[J]. Proc Natl Acad Sci U S A, 1997. 94: 7103-7108
    [120] Henzler T, Steudle E. Reversible closing of water channels in Chara internodes provides evidence for a composite transport model of the plasma membrane[J]. J Exp Bot, 1995.46: 199-209
    [121] Maurel C, Reizer J, Schroeder JI, Chrispeels MJ. The vacuolar membrane protein γ-TIP creates water specific channels in Xenopus oocytes[J]. EMBO J, 1993.12: 2241-2247
    [122] Steudle E, Peterson CA. How does water get through roots[J]. J. Exp Bot, 1998.49: 775-788
    [123] Heazler T, Steudle E Reversible closing of water channels in Chara internodes provides evidence for a composite tranpot modle of the plasma membrane[J].J Exp Bot 1995,46:199-209
    [124] Peterson G.M Canoll T.P Guhhiro W.B et.al Appearance of water channel in Xenopus ooctyes expressing red cell CHIP28 protein[J] Science,1992,256:385-387
    [125] Jung JS, Preston GM, Smith BL, Guggino WB, Agre P. Molecular structure of the water channel through aquaporin CHIP. The hourglass model[J]. J Biol Chem,1994.269: 14648-14654
    [126] Walz T,Hirai T,Murata K,etal.The three-dimensional structure of Aquaporin-1[J]. Nature,1997,387(6633):624-627
    [127] Schaffner AR. Aquaporin function, structure, and expression: are there more surprises to surface in water relations?[J] Planta, 1998.204: 131-139
    [128] Yamada S, Bohnert HJ. Expression of the PIP aquaporin promoter-MipA from the common ice plant in tobacco[J]. Plant Cell Physiol, 2000. 41: 719-725
    [129] Yamada S, Nelson DE, Ley E, Marquez S, Bohnert HJ. The expression of an aquaporin promoter from Mesembryanthemum crystallinum in tobacco[J]. Plant Cell Physiol, 1997.38: 1326-1332
    [130] Johnson KD, Herman EM, Chrispeels MJ. An abundant, highly conserved tonoplast protein in seeds[J]. Plant Physiol, 1989. 91: 1006-1013
    [131] Yamamoto YT, Taylor CG, Acedo GH, Cheng CL, Conkling MA. Characterization of cis-acting sequences regulating root-specific gene expression in tobacco[J]. Plant Cell, 1991.3: 371-382
    [132] Guenther J F, Roberts D M. Water-selective and multifunctional aquaporins from Lotus japonicus nodules[J]. Planta, 2000.210: 741-748
    [133] Sun MH, Xu W, Zhu YF, Su WA and Tang ZC. A simple method for in situ hybridization to RNA in guard cells of Vicia Faba L.: the expression of aquaporins in guard cells[J]. Plant Molecular Biology Reporter, 2001. 19: 129-135
    [134] Higuchi T, Suga S, Tsuchiya T, Hisada H, Morishima S, Okada Y, Maeshima M. Molecular cloning, water channel activity and tissue specific expression of two isoforms of radish vacuolar aquaporin[J]. Plant Cell Physiol, 1998. 39: 905-913
    [135] Karlsson M, Johansson I, Bush M, McCann M C, Maurel C, Larsson C, Kjellbom P. An abundant TIP expressed in mature highly vacuolated cells[J]. Plant J, 2000.21: 83-90
    [136] Maeshima M. TONOPLAST TRANSPORTERS: Organization and Function[J]. Annu Rev Plant Physiol Plant Mol Biol, 2001.52: 469-497.
    [137] Robinson DG, Sieber H, Kammerloher W, Schaffner AR. PIP1 aquaporins are concentrated in plasmalemmasomes of Arabidopsis thaliana mesophyll[J]. Plant Physiol, 1996. 111: 645-649
    [138] Johansson I, Larsson C, Ek B, Kjellbom P. The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential[J]. Plant Cell, 1996. 8: 1181-1191
    [139] Reizer J, Reizer A, Saier MH. The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathways of the evolution and proposed functional differentiation of the two repeated halves of proteins[J]. Crit Rev Biochem Mol Biol, 993.28: 235-257
    [140] Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R. Aquaporins constitute a large and highly divergent protein family in maize[J]. Plant Physiol, 2001.125: 1206-1215
    [141] Weig A, Deswarte C, Chrispeels MJ. The major intrinsic protein family of Arabidopsis has 23members that form three distinct groups with functional aquaporins in each group[J]. Plant Physiol, 1997.114:1347.
    [142] Quigley F, Rosenberg J M, Shachar-Hill Y, Bohnert H J. From genome to function: the Arabidopsis aquaporins[J]. Genome Biology, 2001. 3: 1-17
    [143] Suga S, Imagawa S, Maeshima M. Specificity of the accumulation of mRNAs and proteins of the plasma and tonoplast aquaporins in radish organs[J]. Plant Physiol, 2001. 125: 1591-1602
    [144] Suga S, Komatsu S, Maeshima M. Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings[J]. Plant Cell Physiol, 2002.43: 1229-1237
    [145] Matsuzaki T, Tajika Y, Tserentsoodol N, Suzuki T, Aoki T, Hagiwara H, Takata K. Aquaporins:a water channel family[J]. Anat Sci Int, 2002. 77: 85-93
    [146] Borgnia M, Nielsen S, Engel A, Agre P. Cellular and molecular biology of the aquaporin water channels[J]. Annu Rev Biochem, 1999.68: 425-458
    [147] Maurel C, Kado RT, Guern J, Chrispeels MJ. Phosphorylation regulates the water channel activity of the seed-specific aquaporin α-TIP[J]. EMBO J, 1995.14: 3028-3035
    [148] Tyerman SD, Niemietz CM, Bramley H. Plant aquaporins: multifunctional water and solute channels with expanding roles[J]. Plant Cell Environ, 2002.25: 173-194
    [149] Maurel C, Reizer J, Schroeder J I, Chrispeels M J,Saier MH Jr. Functional characterization of the Escherichia coli glycerol facilitator, GlpF, in: Xenopus oocytes[J]. J Biol chem, 1994.269: 11869-11872
    [150] Borgnia MJ, Agre P. Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli[J]. Proc Natl Acad Sci U S A, 2001. 98: 2888-2893
    [151] Rivers RL, Dean RM, Chandy G, Hall JE, Roberts DM, Zeidel ML. Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes[J]. J Biol Chem, 1997.272: 16256.16261
    [152] Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C. The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH[J]. Plant J, 2002. 30: 71-81
    [153] Santoni V, Vinh J, Pflieger D, Sommerer N, Maurel C. A proteomic study reveals novel insights into the diversity of aquaporin forms expressed in the plasma membrane of plant roots[J]. Biochem J, 2003. 373: 289-296
    [154] Hose E, Steudle E, Hartung W. Abscisic acid and hydrulic conductivity of maize root: a root cell and pressure probe study[J].Planta 2000,211:874-882
    [155] Zhang J, Zhang X, Liang J Exudation rate and hydraulic conductivity of maize root are enhanced by soil drying and abscisic acid treatment[J].New Phytol,1995,131:329-336
    [156] Quintero J.M,Fournier J.M, Benlloch M. Water transport in sunflower root systems effects of ABA, Ca+ status and HgCl2[J].J Exp Bot,1999,339:1607-1612
    [157] Zeuthen T, Kaerke DA. Transport of water and glycerol in Aquaporin 3 is gated by H+[J]. J Biol Chem, 1999.274: 21631-21636
    [158] Nemeth-Cahalan KL, Hall Je. pH and calcium regulate the water permeability of Aquaporin 0[J]. J Biol Chem, 2000. 275: 6777-6782
    [159] Yasui M, Hazama A, Kwon TH, Nielsen S, Guggina WB, Agre P. Rapid gating and anion permeability of an intracellular aquaporin[J]. Nature, 1999.402: 184-187
    [160] Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C. The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH[J]. Plant J, 2002. 30: 71-81
    [161] Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins[J]. Nature, 2003.425: 393-397
    [162] Liu Q, Umeda M, Uchimiya H. Isolation and expression analysis of two rice genes encoding the major intrinsicprotein[J]. Plant Mol Biol, 1994.26: 2003-2007
    [163] Yamada S, Komori T, Myers PN, Kuwata S, Kubo T, Imaseki H.. Expression of plasma membrane water channel genes under water stress in Nicotiana excelsior[J]. Plant Cell Physiol, 1997.38: 1226-1231
    [164] Johansson I, Larsson C, Ek B, Kjellbom P. The major integral proteins of spinach elaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential[J]. Plant Cell, 1996.8: 1181-1191
    [165] Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation[J]. Plant Cell, 1998. 10: 451-459
    [166] Guenther JF, Chanmanivone N, Galetovic MP, Wallace IS, Cobb JA, Roberts DM. Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals[J]. Plant Cell, 2003.15: 981-991
    [167] Suleyman I , Allakhverdiev, Sakamoto A et.al . Ionic and osmotic effects of NaCI-induced inactivation of photosystems I and Ⅱin Synechococcus sp[J]. Plant Physiol,2002,123:1047-1056
    [168] Netting AG. Ph, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions: cellular responses to stress and their implicaton for water relations[J]. Exp Bot,2000,51(343:147-158
    [169] Fotiadis D, Jeno P, Mini Tet al. Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes[J]. J Biol Chem, 2001,276(3):1707-1714
    [170] Li L, Li S, Tao Y, Kitagawa Y. Molecular cloning of a novel water channel from rice: its products expression in Xenopus oocytes and involvement in chilling tolerance[J]. Plant Sci, 2000.154: 43-51
    [171] Arocaa R, Tognonib F, Irigoyena JJ, Sánchez-Díaz M, Pardossic A. Different root low temperature response of two maize genotypes differing in chilling sensitivity[J]. Plant Physiol Biochem, 2001.39: 1067-1073
    [172] Melkonian J, Yu LX, Setter TL. Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance[J]. J Exp Bot. 2004 Aug;55(403):1751-60.
    [173] Aroca R, Amodeo G, Fernandez-Illescas S, Herman EM, Chaumont F, Chrispeels MJ. The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots[J]. Plant Physiol. 2005 Jan;137(1):341-53.
    [174] Jang JY, Kim DG, Kim YO, Kim JS, Kang H. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana[J]. Plant Mol Biol. 2004 Mar;54(5):713-25.
    [175] Ludevid D. Hofte H. Himelblau E. Chrispeels M J. The expression pattern of the tonoplastintrinsic protein γ-TIP in Arabidopsis thaliana is correlated with cell enlargement[J]. Plant physiol, 1992. 100: 1633-1639
    [176] Kaldenhoff R, Kolling A, Meyers J, Karmann U, Ruppel G, Richter G. The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plasmalemma[J]. Plant J, 1995.7: 87-95
    [177] Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress[J]. Plant Cell, 2003. 15: 439-447
    [178] Lopez F, Bousser A, Sissoeff I, Gaspar M, Lachaise B, Hoarau J, Mahe A. Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins[J]. Plant Cell Physiol. 2003 Dec;44(12):1384-95.
    [179] Dixit R, Rizzo C, Nasrallah M, Nasrallah J. The brassica MIP-MOD gene encodes a functional water channel that is expressed in the stigma epidermis[J]. Plant Mol Biol, 2001.45: 51-62
    [180] Azad AK, Sawa Y, Ishikawa T, Shibata H. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals[J]. Plant Cell Physiol. 2004 May;45(5):608-17.
    [181] Carvajal M, Cooke DT, Clarkson D T, Responses of weat plants to nutrient deprivation may involve the regulation of water-channel function[J]. Planta,1996,199:372-381
    [182] Kaldenhoff R, Grote K, Zhu J J,et al. Significance of plasmalemma Aquaporins for water transport in Arabidopsis thaliana[J]. Plant J,1998,14(1):121-128
    [183] Grote K, Gimmler H, Kaldenhoff R. Coulter counter cell size determination of protoplasts from Arabidopsis thaliana[J]. Protoplasma.1999,210:31-35
    [184] Kammerloher W, Fischer U, Piechottka G P,et al. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system[J]. Plant J,1994,6:187-199
    [185] Vera-Estrella R, Barkla B J, Bohnert H J, et al. Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant[J]. Planta,1999,207(3):426-435
    [186] Tamarappoo B K, Verkman A S, Defective Aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones[J]. J Clin Invest, 1998,101(10):2257-2267
    [187] Culter S R, Ehrhardt D W, Griffitts J S, et al. Random GFP: cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency[J]. Proc Natl Acad Sci USA,2000,97(7):3718-3723
    [188] Ma S, Quist TM, Ulanov A, Joly R, Bohnert HJ. Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death[J]. Plant J. 2004 Dec;40(6):845-59.
    [189] 84. Katsuhara M, Koshio K, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K. Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants[J]. Plant Cell Physiol, 2003. 44: 1378-1383
    [190] Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress[J]. Plant Cell, 2003. 15: 439-447
    [191] Franwis LE, Donovan J, Mass EV, Salinity effects on seed yield, growth and germination of grain sorghum[J]. 1984, (76):741-744
    [192] Kramper P.J Plant and soil water relationship: A modern synthesis[M]. McGraw Hill, NewYork,1969
    [193] Blum A. Genotypic responses in sorghum to drought stress:1. Response to soil moisture stress[J]. Crop Sci,1974,(14):361-364
    [194] Blum A. Genotypic response in sorghum to drought stress: 2.Leaf tissue water relation[J] Crop Sci, 1974(14):691-692
    [195] Wood A.J. Saneoka H, Rhodes D. Betain aldehyde dehydrogenase in sorghum. Molecular cloning and expression of two related genes[J]. Plant Physiol,1996,110:1301-1308
    [196] An-Ching Tang, John S.Boyer.Growth-inducted water potentials and the growth of maize leaves[J].Journal of Experimental Botany,53(368):489-503
    [197] Ohshima Y, Iwasaki I, Suga S, Murakami M, Inoue K, Maeshima M. Low aquaporin content and low osmotic water permeability of the plasma and vacuolar membranes of a CAM plant Graptopetalum paraguayense: comparision with radish[J]. Plant Cell Physiol 2001;42:1119-1129.
    [198] Chaumont F, Barrieu F, Herman EM, Chrispeels MJ. Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation[J]. Plant Physiol. 1998 Aug;117(4):1143-52.
    [199] Fetter K, Van Wilder V, Moshelion M, Chaumont F. Interactions between plasma membrane aquaporins modulate their water channel activity[J]. Plant Cell. 2004 Jan;16(1):215-28.
    [200] Park JH, Saler MH Jr. Phylogenetic Characterization of the MIP family of transmembrane channel proteins[J]. J Membr Biol. 1996 Oct;153(3):171-180.
    [201] Maurel C, Javot H, Lauvergeat V, Gerbeau P, Tournaire C, Santoni V, Heyes J. Molecular physiology of aquaporins in plants[J]. Int Rev Cytol. 2002;215:105-48. Review.
    [202] Murata K, Mitsuoka K, Hiral T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y. Structural determinants of water permeation through aquaporin-1[J]. Nature.2000,407:599-605.
    203] Suga S, Komatsu S, Maeshima M. Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings[J]. Plant Cell Physiol 2002; 43:1229-1237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700