羊草(Leymus chinensis)生殖生态学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在综述了植物生殖生态学的研究进展及理论意义的基础上,将这一生命科学中的热门学科的方法运用于对内蒙古草原的重要牧草——羊草的研究,旨在揭示其结实率低的生殖原因,提高其种子产量,以满足畜牧业生产和沙漠化治理中的需要。主要运用激光共聚焦显微镜等先进技术对羊草的生殖过程进行探讨,观测了羊草的雌雄配子体结构与发育过程、花粉生活力和寿命、柱头可授时间和花粉流密度分布等指标,并综合分析了这些因素与羊草结实率的关系,获得了一些直接影响羊草结实的数据资料,这为进一步研究和生产实践提供了必要的理论依据。
Leymus chinensis, a member of the family gramineae, is a perennial rhizome grass. Grasslands dominated by L. chinensis are widely distributed at the eastern end of the Eurasian steppe, the high palatability of L. chinensis and herbage production superior both in quality and quantity make the grasslands ideal for grazing and forage production. As it is an economically and ecologically important grass, this species has received considerable attention. One of the toughest problems faced for man-made propagation is its low sexual reproductivity, yet the causes of low fecundity of this species are uncertain. To better understand the causes of low fecundity, many aspects of the reproductive ecology in L. chinensis were studied. The main result are as follows.
    The flowers of I. chinensis are hermaphroditic and arranged in compound spikes Each flower has one pistil surrounded by 3 anthers. The mature pistil has two laterally feathery stigmas and a hairy ovary. Each anther has two microsporangia, each bearing two chambers. The ovary has one locule, containing one ovule. The ovule is anatropous, unitegmic and tenuinucellar. The ovary is superiorly positioned with basal placentation.
    Observed under the light microscope and laser scanning confocal microscopy, both of the megasporogenesis and female gametophyte are normal, and seldom abort. The archesporial cell originates from a single cell. It develops directly into megaspore mother cell. The dyad is formed after the first division, and meiosis II, resulting in a linear tetrad. Only the chalazal megaspore is functional and the upper three megaspores degenerate. The nucleus of the functioning megaspore divides to form nuclei. Subsequent divisions result in 4 and 8-nucleate stages, thus the development of
    IV
    
    
    the female gametophyte conforms to the Polygonum type. In a mature embryo sac, the egg apparatus consists of a egg cell with a vacuole and two synergids at the micropylar end. The two polar nuclei were at the lower middle part of the embryo. The number of nuclei in each antipodal cell increases up to tens before fertilization.
    Stained with TTC the pollen viability of L. chinensis was only 62.4%. Laser scanning confocal microscopy (LSCM) observations showed that, approximately 53.1% of the pollen germinated on the surface of the stigma, and the pollen tubes grew down the style all these readily visualized by staining callose in the pollen tubes with aniline blue. TTC tests showed that the pollen could survive about 3 h at room temperature.
    The pistil receptivity of L. chinensis lasted for about 3 h after anthesis. The number of pollen grains reaching the stigma (pollination success) gradually increased during the period of receptivity. There were approximately 86.7% of pistils were pollinated with an average of 16.5 pollen grains per pistil by the end of the period of receptivity. There was no further more significant increase thereafter. The low viability and short longevity of the pollen may lead to low fecundity of L. chinensis. The pollen-ovule ratio (P/O) was 79332/1. The flowers usually dehisce synchronously or basipetally within a spike between 14:00 h and 18:00 h on June 26 to June 30, and the highest density of pollen flow was occurred on June 28. High variability was found in pollen density among different times within an individual day and different positions within a spike. The climax of pollen dispersion occurred at 16:00 h to 17:00 h, during which 56.1% of the total pollen during the 4 h collection period were obtained. Among different positions in a spike, the highest pollen density was in the middle position.
    
    Much variation was observed in the fecundity in relation to different densities of pollen flow. In the whole period of pollination (June 26 to June 30), the variation of fecundity tended to be similar to that of pollen flow. Within an individual spike, the highest fecundity was found at the middle position. No seeds were produced if the spikes were wrapped with bags.
    The microgenesis and male gametophyte of L. chinensis are normal alth
引文
1.曹坤芳,1993.植物生殖生态学透视.植物学通报,10(2):15~23
    2.陈敏,王艳华,1985.栽培条件下羊草生物学特性的观察.中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第一集).北京:科学技术出版社,212~223
    3.陈小勇,历宁,沈浪,2001.浙江天童国家森林公园红凉伞交配系统研究.植物生态学报,25(2):161~165
    4.陈佐忠,1988.锡林河盆地的地形与气候.中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第三集).北京:科学技术出版社,13~22
    5.段晓刚,1986.羊草小孢子无丝分裂对花粉能育性的影响.中国草原,(2):57~58
    6.段晓刚,樊金铃,1984.羊草PMC减数分裂的研究.中国草原,(1):66~67.
    7.方炎明,1994.中国鹅掌楸天然与人工群体的生育力.植物资源与环境,3(3):9~13
    8.方炎明,1996.植物生殖生态学.济南:山东大学出版社.
    9.高雷明,黄银晓,林舜华,1999.CO_2倍增对羊草物候和生长的影响.环境科学,20(5):25~29.
    10.郭本兆,1987.中国植物志(第9卷,第3分册).北京:科学出版社.9(3):19
    11.郭继勋,1986.羊草草地营养元素的吸收、积累和归还.中国草原,(5):31~34
    12.何田华,葛颂,2001.植物种群交配系统、亲本分析以及基因流动研究.植物生态学报,25(2):144~154
    13.呼天明,祝廷成,1987.氮素在羊草~土壤中的分配及其季节动态的初步研究.生态学杂志,6(4):14~18.
    
    
    14.胡适宜,1982.被子植物胚胎学.北京:高等教育出版社.
    15.胡适宜,1993.植物学实验方法(一)花粉生活力的测定.植物学通报,10(2):60~62
    16.黄双全,郭友好,潘明清,陈家宽,1999a.鹅掌楸的花部特征与虫媒传粉.植物学报,41(3):241~248
    17.黄双全,郭友好,1999b.用花粉粒染色法标记虫媒植物的花粉流.植物学报,41(7):788~790
    18.黄泽豪,朱锦懋,母锡金,林金星,2002.羊草有性繁殖力低的成因研究进展,中国草地.24(6):55~60
    19.季良越,季洪强,罗福和,1997.玉米基因雄性不育系(ms_2/ms_2)小孢子败育的细胞学研究.作物学报,23(5):545~549
    20.李建东,1979.我国的羊草草原.吉林师范大学学报(自然科学版),(3):145~15l
    21.李永宏,汪诗平,1997.草原植物对家畜放牧的营养繁殖对策初探.中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第五集).北京:科学技术出版社,23~31
    22.李正理,1996.植物组织制片学.北京:科学出版社.
    23.刘公社,王志远主编,1999.北方农牧交错带可持续发展研究论文集.北京:中国科学技术出版社.
    24.刘书润,刘松龄,1988.内蒙古锡林河流域植物区系纲要.中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第三集).北京:科学技术出版社,227~268
    25.刘武林,1985.花粉的采集、贮藏和生活力的测定.植物学通报,3(3):8~12
    26.刘永胜,1996.水稻胚囊发育畸变的细胞学和遗传学研究,中科院植物研究所博士后出站报告.
    27.罗玉英,刘玉乐,李胜国,田波,1997.TA29-Barnase嵌合基因导入对烟草
    
    花药绒毡层及花粉发育的影响.植物学报,39(10):894~898
    28.马鹤林,宛涛,王风刚,1984.羊草结实特性及结实率低的原因.中国草原,(2):14~20
    29.潘国富,孙振雷,1986.羊草PMC减数分裂、花粉育性及结实性的研究.中国草原,(3):7~14
    30.奇文清,1996.濒危植物南川升麻生殖生物学的研究.北大博士毕业论文.
    31.任宏,刘永胜,孙敬三,1998.用共聚焦显微镜检术观察水稻胚囊发育,植物学报,40(9):786~789
    32.苏智先,1989.生殖生态学的现状与趋势.四川师范学院学报,10(3):248~252
    33.苏智先,1997.植物生殖生态学发展简史.四川师范学院学报,18(4):278~286
    34.苏智先,钟章成,1998.四川大头茶种群生殖生态学研究Ⅱ.生态学报,18(4):379~385
    35.苏智先,钟章成,1998.植物生殖生态学研究进展.生态学杂志,17(1):39~46
    36.苏智先,钟章成,杨万勤,黎云祥,1996.四川大头茶种群生殖生态学研究Ⅰ.生态学报,16(5):517~522
    37.孙桂贞,屠骊珠.1990.羊草的双受精作用与胚胎发育.内蒙古大学学报(自然科学版),2l(4):572~577
    38.孙敬三,钱迎倩,1987.植物细胞学研究方法.北京:科学出版社.
    39.谭敦炎,朱建雯,姚芳,田允温,1998.雪莲的生殖生态学研究.新疆农业大学学报,21(1):1~5
    40.宛涛,卫智军,1999.内蒙古草地现代植物花粉形态.北京:中国农业出版社.
    41.汪小凡,陈家宽,2001.小慈姑的开花状态、传粉机制与交配系统.植物生态学报,25(2):155~160
    42.王克平,1984.羊草物种分化的研究Ⅰ——野生种群的考察.中国草原,(2):32~36
    
    
    43.王克平,1985.羊草物种分化的研究Ⅱ——实验地种群对比——1羊草授粉特征的测定.中国草原,(2):43~44
    44.王克平,1987.羊草物种分化的研究Ⅱ——实验地种群对比——2形态特征、生育特征调查.中国草地,(1):48~52
    45.王克平,罗璇,1987.羊草物种分化的研究Ⅲ——生态型差异的遗传基础分析、Ⅳ——土壤学、营养学、气象学分析.中国草地,(4):42~45
    46.王梦龙,1998.羊草结实特性的研究.中国草地,(1):18~20
    47.王钦丽,卢龙斗,吴小琴,陈祖铿,林金星,2002.花粉的保存及其生活力测定,植物学通报.19(3):365~373
    48.王仁忠,2000a.放牧影响下羊草种群生殖生态学的研究.应用生态学报,11(3):399~402
    49.王仁忠,2000b.羊草种群能量生殖分配的研究.应用生态学报,11(4):591~594
    50.王仁忠,祖元刚,聂绍荃,1999.羊草种群生物量生殖分配的初步研究.应用生态学报,10(5):553~555
    51.王仲礼,刘林德,田国伟,申家恒,1998.短柄五加开花后雌蕊的发育状态与受精作用的研究.植物学报,40(4):309~315
    52.杨持,杨理,1997.光强梯度对羊草无性系分化与生长的影响.应用生态学报,8(1):82~87
    53.杨持,杨理,1998.羊草无性系构件在不同环境下的可塑性变化.应用生态学报,9(3):256~268
    54.杨映根,郭奕明,郭毅,林金星,2001.羊草种子生产及提高种子萌发率的研究进展.种子,(5):40~42
    55.杨允菲,1989.水肥对羊草穗部器官及籽粒产量形状的影响.中国草地,(1):11~15
    
    
    56.杨允菲,1989.刈割对羊草种群生殖器官数量性状的影响.中国草地,(1):49~52
    57.杨允菲,刘庚长,张保田,1995.羊草种群年龄结构及无性繁殖对策的分析.植物学报,37(2):147~153
    58.杨允菲,杨利民,张宝田,李建东,2000.东北草原羊草种群结实特性与气候年变化的关系.植物学报,42(3):294~299
    59.杨允菲,祝廷成,1988.不同生态条件下羊草种群种子生产的探讨.生态学报,8(3):256~262
    60.杨允菲,祝廷成,1989.羊草种群种子生产的初步研究.植物生态与地植物学学报,13(1):73~78
    61.张大勇,姜新华,2001.植物交配系统的进化、资源分配对策与遗传多样性.植物生态学报,25(2):130~143
    62.张冬梅,沈熙环,何田华,2001.利用等位酶对油松无性系种子进行父本分析.植物生态学报,25(2):166~171
    63.张英涛,杨海东,陈朱希昭,1996.绒毡层研究进展.植物学通报,13(4):6~13
    64.张志良,1990.植物生理学实验指导.北京:高等教育出版社.
    65.赵传孝,杨根凤,张国瞳,李星林,1986.羊草种子发芽率的研究.中国草原.(5):54~56
    66.赵巧丽,屠骊珠,1993.羊草的小孢子发生和雄配子体形成.内蒙古大学学报(自然科学版),24(1):55~65
    67.祖元刚,唐艳,1998.高山红景天有性生殖过程及濒危原因的生态学分析.植物研究,18(3):336~340
    68. Aleemullah M, Haigh A M, Holford P, 2000. Anthesis, anther dehiscence, pistil receptivity and fruit development in the Longum group of Capsicum annuum. Australian Journal of Experimental Agriculture, 40:755~762
    
    
    69. Antonia P, Solveig D L, Madina F, Daniel V, Georges P, Sandrine B, 2001. Five gametophytic mutations affecting pollen development and pollen tube growth in Arabidopsis thaliana. Genetics, 158:1773~1783
    70. Bassani M, Franchi G G, Pacini E, 1994. Humidity stress respones in pollen of anemophiious and entomophilous species. Grana, 33(3): 146~150
    71. Bawa K S, Webb C J, 1984. Flower, fruit and seed abortion in tropical forest trees: implications for the evolution of paternal and maternal reproductive patterns. American Journal of Botany, 71: 736~751
    72. Beny A, Mary P, Mason P, Leah K, 2001. The effect of high temperature and high atmospheric CO_2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination. Physiologia Plantarum, 112: 505~512
    73. Cruden R W, 1977. Pollen-ovule ratio: A conservative indicator of breeding systems in flowering plants. Evolution, 31: 32~46
    74. Elias Marianne, McKey Doyle, 2000. The unmanaged reproductive ecology of domesticated plants in traditional agroecosystems: an example involving cassava and a call for data. Acta Oecoiogica, 21(3): 223~230
    75. Fritz S E, Lukaszewski A J, 1989. Pollen longevity in wheat, rye and Triticale. Plant Breeding, 102:31~34
    76. Gelderen E V, Fossey A, Robbertse P J, 1994. The criteria of measurement of the inorganic acid test of pollen viability. South African Journal of Botany, 61: 253~259
    77. Gross C L, 1993. The reproductive ecology of Canavalia rosea (Fabaceae) on Anak Krakatau, Indonesia. Australian Journal of Botany, 41(4-5): 591~599
    
    
    78. Gudin S, Arene L, Pellegrino C, 1991. Influence of temperature and hygrometry on rose pollengermination. Advance in Horticulture Science, 5:96~98
    79. Hanson C H, Compbell T A, 1972. Vacuum-dried pollen of alfalfa (Medicago sativa L.) viable after eleven years. Crop Science, 12:874
    80. Holtsford T P, 1985. Nonfruiting hermaphroditic flowers of calochortus leichtlinii (Liliaceae): potential reproductive functions. American Journal of Botany, 72:1687~1694
    81. Hughes J W, Fahey T F, Bormann F H, 1988. Population persistence and reproductive ecology of a forest herb Aster acuminatus. American Journal of Botany, 75 (7): 1057~1064
    82. Johnston M O, 1991. Pollen limitation of female reproduction in Lobelia cardinalis and L. siphilitica. Ecology, 72: 1500~1503
    83. Kaye T, 1999. From flowering to dispersal: Reproductive ecology of an endemic plant, Astragalus australis var. olympicus (Fabaceae). American Journal of Botany. 86(9): 1248~1256
    84. Koyama T. 1987. Grasses of Japan and its neiphboring regions. Tokyo: Kodansha Ltd., 48~50
    85. Kumar A, Chowdhury R K, Dahiya O S, 1995. Pollen viability and stigma recetivity in relation to meteorological parameters in pearl millet. Seed Science and Technology, 23:147~156
    86. Lansac A R, Sullivan C Y, Johnson B E, Lee K W, 1994. Viability and germination of the pollen of sorghum (Sorghum bicolor). Annals of Botany, 74: 27~33
    87. Lovett D J, Lovett D L, 1998. Plant Reproductive Ecology: Patterns and Stranegies. New York: Oxford Univ. Press.
    
    
    88. Mayer E, Gottsberger G, 2000. Pollen viability in the genus Silene (Caryophyllaceae) and its evaluation by means of different test procedures. Flora, 195:349~353
    89. Morgen M T, Schone D J, 1997. The role of theory in an emerging new plant reproductive biology. Trends in Ecology and Evolution, 12:231~234
    90. Mulugeta D, Maxwell B D, Fay P K, Dyer W E, 1994. Kochia (Kochia scoparia) pollen dispersion, viability and germination. Weed Science, 42:548~552
    91. Nepi M, Franchi G G, Pacini E, 2001. Pollen hydration status at dispersal: Cytophysiological features and strategies. Protoplasma, 216:171~180
    92. Ottaviano E. Mulcahy D L, 1989. Genetics of angiosperm pollen. Advances in Genetics, 26:1~44
    93. Pandey N, Sharma C P, 2001. Iron deficiency induced changes in reproductive biology of green gram. Indian Journal of Plant Physiology, 6: 107~110
    94. Pinney K, Polito V S, 1990. Olive pollen storage and in vitro germination. Acta Horticultureae, 286:207~210
    95. Rao G U, Ajay J, Shivanna K R, 1992. Effects of high temperature stress on Brassica pollen: viability, germination and ability to set fruits and seeds. Annals of botany, 68:193~198
    96. Sato S, Katho N, lwai S, Hagimori M, 1998. Estabilishment of reliable method of in vitro pollen germination and pollen preservation of Brassica rapa. Euphytica, 103: 29~33
    97. Sedgley M, Harbard J, 1993. Pollen storage and breeding system relation to controlled pollination of four species of Acacia (Leguminosae: Mimosoideae). Australian Journal of Botany, 41:601~609
    
    
    98. Silvertown J W, 1982. Introduction to plant population ecology. 1st edition. Longman.
    99. Sornsathaporkul P, Owens J N, 1998. Pollination biology in a tropical Acacia hybrid (A. mangium Willd. × A. auriculiformis A. Cunn. Ex Benth.). Annals of Botany, 81: 631~645
    100. Stanley R G, Linskens H F, 1974. Pollen: biology, biochemistry and management. New York: Springer, 65~66.
    101. Stenstrom A, 1999. Sexual reproductive ecology of Carex bigelowii, an arctic-alpine sedge. Ecography. 22(5): 305~313
    102. Stephenson A G, Betin R I, 1983. Male competition, female choice, and sexual selection in plants. In Pollination Biology. Ed L. Real. Academic Press: New York. 109~149
    103. Sutherland S, 1986. Patterns of fruit-set: what controls fruit-flower ratio in plants? Evolution, 40:117~128
    104. Sutherland S, 1987. Why hermaphroditic plants produce many more flowers than fruits: experimental tests with Agave mckelveyana. Evolution, 41:750~759
    105. Sutherland S, Delph L F, 1984. On the importance of male fitness in plants: patterns of fruit-set. Ecology, 65:1093~1104
    106. Tangmitcharoen S, Owens J N, 1997. Floral biology, pollination, pistil receptivity, and pollen tube growth of teak (Tectona grandis Linn f.). Annals of Botany, 79: 227~241
    107. Thomas H B, 2001. Environmental control of moisture content and viability in Schlumbergera truncata (Cactaceae) pollen. Journal of the American Society for Horticultural Science, 126:625~630
    
    
    108. Thompson F, Hermanutz L, Innes D J, 1998. The reproductive ecology of island populations ofdistyious Menyanthes trifolia (Menyanthaceae). Canadian Journal of Botany, 76(5): 818~828
    109. Wagner D, 2000. Pollen viability reduction as a potential cost of ant association for Acacia constricta. American Journal of Botany, 87:711~715
    110. Wang R Z, Ripley E A, 2000. Biomass and Energy Allocation of Leymus. chinensis in the Semi~Arid Songnen Plain of Northeast China. International Journal of Ecology and Environmental Sciences, 26:107~115
    111. Weiner J, 1988. The influence of competition on plant reproduction. In: Lovett Doust J. and Lovett Doust L. eds. Plant Reproductive Ecology: Patterns and Stranegies. New York: Oxford Univ. Press.
    112. Willson M F, 1979. Sexual selection in plants. American Naturalist, 131: 723~738
    113. Willson M F, 1983. Plant Reproductive Ecology. New York: John Wiley and Sons.
    114. Willson M F, Bertin R I, 1979. Flower visitors, nectar production, and inflorescence size of Asclepias syriaca. Canadian Journal of Botany, 57: 1380~1388
    115. Willson M F, Burley N. 1983. Mate choice in plants: tactics, mechanism, and consequence. Princeton University Press: Princeton, N. J.
    116. Willson M F, Price P W, 1977. The Evolution of inflorescence size in Asclepias. Evolution, 31: 495~511
    117. Xiao X, Wang Y, Jiang S, Ojima D S, Bonham C D, 1995. Internnual variation in the climate and above-groud biomass of Leymus chinensis steppe and Stipa
    
    grandis steppe in the Xilin river basin, Inner Mongolia. China Journal of Arid Environment, 31: 283~299
    118. Xing S P, Zhang Q, Hu Y X, Chen Z K, Lin J X, 1999. The mechanism of pollination in Platycladus orientalis and Thuja occidentalis (Cupressacese). Acta Bot Sinica, 41(2): 130~132
    119. Yin L J, Shi D C, Wang P, 1993. Growth adaptability and salt tolerance osmoregulation of Aneurolepidium chinensis grown on saline grassland. Acta botanica sinica, 35:619~629
    120. Zhang L X, Chang W C, Wei Y J, Liu L, Wang Y P, 1993. Cryopreservation of Ginseng Pollen. Hortscience, 28: 742~743.
    121. Zhu T C, Li J D, Yang D C, 1981. A study of the Ecology of Yang-cao (Leymus chinensis) grassland in northern China. Proceedings of the ⅩⅣ International Grassland Congress (held at Lexington, Kentucky, USA, June 15-24, 1981).Edited by J Allan Smith and Virgil W Hays. Westview Press: Boulder, Calorado.
    122. Zimmerman M, Pyke G H, 1988. Reproduction in Polemonium: assessing the factors limiting seed set. American Naturalist, 131: 723~738

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700