符合WLAN 802.11a/b/g/n标准无线收发机中混频器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着平板电脑、智能手机、电子书等手持式移动通信设备的日益普及,以及Internet应用程序和电子商务的快速发展,用户需要随时连接到高速无线网络。在无线局域网领域,新的技术和标准层出不穷,一方面,为了实现多种标准间相互兼容,灵活切换,多模多频WLAN终端不断发展;另一方面,WLAN信道情况愈加恶劣,对收发机射频级电路的设计提出了更为苛刻的性能指标要求。
     本文基于0.13μm CMOS工艺,设计了可支持IEEE 802.11a/b/g/n四种标准,应用在WLAN收发机的混频器电路,包括5-6GHz和2.4-2.5GHz两个频段的正交上、下混频器。本文取得的主要成果如下:
     (1)在对IEEE 802.11a/b/g/n无线局域网标准充分研究的基础上,分析了WLAN收发机的系统架构并对其中混频器模块的性能指标提出设计要求;
     (2)提出了一种正交有源下混频器结构(申请专利:互补折叠式射频正交CMOS下混频器,201010190546.X),可分别支持WLAN 802.11a和802.11b/g/n标准。该结构基于折叠形式的吉尔伯特结构,互补跨导级采用电流复用技术提高增益,开关级采用电流注入技术降低噪声,片上集成输入阻抗匹配网络,成功实现了线性度、增益、噪声性能之间的折衷;
     (3)研究了一种堆叠型正交吉尔伯特上混频器结构,可分别支持WLAN 802.11a和802.11b/g/n标准,重点分析了其中跨导管、电流注入管尺寸和直流偏置电流对上混频器增益、线性度性能的影响。片上集成输出阻抗匹配网络,方便与后级射频功率放大器或者射频测试仪器级联使用;
     (4)采用0.13μm RF CMOS工艺流片,对所设计的混频器芯片进行了功能和性能测试。2.4-2.5GHz正交下混频器转换增益约为4dB, IIP3达5dBm,噪声系数11.2dB; 2.4-2.5GHz正交上混频器转换增益大于3dB,OP1dB在4dBm左右,噪声系数13dB; 5-6GHz正交下混频器转换增益在5.5dB以上,ⅡP3达到11dBm,噪声系数12.8dB; 5-6GHz正交上混频器转换增益可以达到3dB, OP1dB约为2.5dBm,噪声系数17dB,满足802.11a/b/g/n收发机系统性能指标的要求。
     本论文研究受“核心电子器件、高端通用芯片以及基础软件产品”国家重大专项中《嵌入式多模、多频收发器关键IP核研究》项目(项目编号:2009ZX01034-002-002-001-02)资助。
With the growing popularity of the handheld mobile communication devices, such as tablet PCs, smart phones, e-books, and the rapid development of Internet applications and e-commerce, users need to connect to a wireless network at any time. In the field of wireless LAN, there are emerging new technologies and standards. On one hand, only multi-mode multi-band terminals can be used to realize flexible and convenient communication; on the other hand, the worse case of the wireless channel, makes more demanding performance requirements of the RF circuits in transceivers.
     In this thesis, a chip of mixers which applied in wireless LAN transceivers is designed and fabricated in 0.13μm CMOS process. The up/down conversion mixers cover 5-6GHz and 2.4-2.5GHz bands, and support IEEE 802.11a/b/g/n standards. The main achievements are shown as follows:
     (1) Based on thorough study of the 802.11a/b/g/n high-speed wireless LAN standards, the disadvantages and advantages of typical transceiver configuration are analysed, and detail design specifications of the mixers are given.
     (2) A quadrature down conversion active mixer structure (patent NO. 201010190546.X) is presented, which supports 802.11a and 802.11b/g/n standards respectively. The topology is based on the folded Gilbert mixer. Current-reuse techique is added in the complementary transconductance stage to enhance the conversion gain. Current bleeding technique in the switch stage decreases the noise figure. An on-chip input impedance matching network is also included. It realizes the trade-off among linearity, conversion gain and noise figure successfully.
     (3) A stacked quadrature up conversion active Gilbert mixer, which supports 802.11a and 802.11b/g/n standards is studied. The influence of the transconductance transistor sizes and bias currents on the mixer performance are analysed. An on-chip output impedance matching network is included to be cascaded with PA and RF measurement equipments.
     (4) The chip is achieved on 0.13μm RF CMOS process. The measurement results are shown as follows:for the 2.4-2.5GHz down-mixer, conversion gain is 4dB, NF is about 11.2dB, and IIP3 is about 5dBm; for 2.4-2.5GHz up-mixer, conversion gain is above 3dB, OP1dB is about 4dBm, and NF is 13dB; for the 5-6GHz down-mixer, conversion gain is more than 5.5dB, IIP3 is as high as 11dBm, and NF is about 12.8dB; for the 5-6GHz up-mixer, conversion gain is as high as 3dB, OP1dB is about 2.5dBm, and NF is about 17dB. The results meet the specifications requied by the transceiver absolutely.
     This thesis'work is supported by project "Key IP cores design for the embedded multi-mode multi-band transceiver" under the state key item of "core electronic devices, high-end general chips and basic software product" (Project number: 2009ZX01034-002-002-001-02).
引文
[1]李莹,“中国WLAN解决方案市场2005-2009年分析与预测”.At: http://www.idc.com.cn/research/RF.jsp?nrf=RF05,2006.
    [2]Jagdish Rebello. Wireless Local Area Network Chipset Market to Double in 2011 Courtesy of Wi-Fi. At:http://www.isuppli.com/Mobile-and-Wireless-Communications/News/Pages, February 2011.
    [3]Institute of Electrical and Electronics Engineers (IEEE). Supplement to IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements, Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:Higher-Speed Physical Layer in the 5GHz Band. Piscataway, New Jersey,1999.
    [4]Institute of Electrical and Electronics Engineers (IEEE). Supplement to IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements, Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:Higher-Speed Physical Layer in the 2.4GHz Band. Piscataway, New Jersey,1999.
    [5]Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements, Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:Further Higher Data Rate Extension in the 2.4GHz Band. Piscataway, New Jersey,2003.
    [6]Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements, Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:Enhancements for Higher Throughput. Piscataway, New Jersey,2009.
    [7]J. C. Haartsen et al. "Bluetooth-A New Low-Power Radio Interface Providing Short-Range Connectivity", Proceedings of IEEE. vol.88, no.10, pp.1651-1661, 2000.
    [8]Francis Sideco. "Atheros Acquisition Enables Qualcomm to Compete with Broadcom in Connected Home Market", At:http://www.isuppli.com/ Mobile-and-Wireless-Communications/News/Pages, January 2011.
    [9]中关村留学人员企业开发出我国首枚国产无线局域网芯片“万通一号”,At: http://www.zgc.gov.cn/overseas/xwq_gjgc/47772.htm,2003.
    [10]I. Lo, Hong Yunpyo, O. Boric-Lubecke, "Low 1/f noise PMOS resistive mixer", Proc. Microwave Integrated Circuits Conference, pp.238-241,2009.
    [11]J. Deguchi, D. Miyashita, M. Hamada, "A 0.6V 380μm-14dBm LO-input 2.4GHz double-balanced current-reusing single-gate CMOS mixer with cyclic passive combiner", Proc. IEEE Solid-State Circuits Conference, pp.224-225, 2009.
    [12]S. G Lee, J.-K. Choi, "Current-reuse bleeding mixer", Electron. Lett., vol.36, no.8, pp.696-697, Apr.2000.
    [13]F. Mahmoudi, C.Salama, "8GHz, IV, high linearity, low power CMOS active mixer", Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., pp.401-404, Jun. 2004.
    [14]Stanley S. K. Ho, Carlos E. Saavedra. "A CMOS broadband low-noise mixer with noise cancellation", IEEE Transactions on Microwave Theory and Techniques, vol.58, no.5, pp.1126-1132, May 2010.
    [15]A. Y.-K. Chen, Y. Baeyens, Chen. Young-Kai, Lin. Jenshan, "A W-Band highly linear SiGe BiCMOS double-balanced active up-conversion mixer using multi-tanh triplet technique", IEEE Microwave and Wireless Components Letters, vol.20, no.4, pp.220-222, April 2010.
    [16]Hong-Yuan Yang, Jeng-Han Tsai, et al., "Design and Analysis of a 0.8-77.5GHz Ultra Broadband Distributed Drain Mixer Using 0.13μm CMOS Technology", IEEE Transactions on Microwave Theory and Techniques, vol.57, no.3, pp. 562-572,2009.
    [17]N. Shiramizu, T. Masuda, T. Nakamura, K. Washio, "Low-power K-Band pseudo-stacked mixer with linearity enhancement technique", Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp.59-62,2009.
    [18]M. Stuenkel, M. Feng, "A wideband high-linearity mixer in 0.5μm InP DHBT technology", Proc. IEEE Radio Frequency Integrated Circuits Symposium, pp. 525-528,2010.
    [19]李智群等,射频集成电路与系统,科学出版社,2008.
    [20]Dong-Ok Han, Jeong-Hoon Kim, Sang-Gyu Park, "A dual band CMOS receiver with hybrid down conversion mixer for IEEE 802.11a/b/g/n WLAN applications", IEEE Microwave and Wireless Components Letters, vol.20, no.4, April 2010.
    [21]T. Maeda, N. Matsuno, S. Hori, T. Yamase, T. Tokairin, et al., "A low-power dual-band triple-mode WLAN CMOS transceiver", IEEE Journal of Solid-State Circuits, vol.41, no.11, pp.2481-2490,2006.
    [22]Dong-ok Han, Jeong-Hoon Kim, Kwang-Du Lee, Sang-Gyu Park, Eung-Ju Kim, "A fully integrated dual band transceiver for IEEE 802.11a/b/g/j/n WLAN applications using hybrid up/down conversion architecture", Proceedings of IEEE International Symposium on Circuits and Systems, pp.2055-2058,2010.
    [23]A. Behzad, K. Carter, E. Chien, S. Wu, M. Pan, et al., "A Fully Integrated MIMO Multi-Band Direct-Conversion CMOS Transceiver for WLAN Applications (802.11n)", IEEE Journal of Solid-State Circuits, vol.42, no.12, pp.2795-2808, December 2007.
    [24]D. G. Rahn, M. S. Cavin, F. F. Dai, N. H. W. Fong, et al., "A fully integrated multiband MIMO WLAN transceiver RFIC", IEEE Journal of Solid-State Circuits, vol.40, no.8, pp.1629-1641,2005.
    [25]S. Gross, T. Maimon, F. Cossoy, M. Ruberto, G. Normatov, et al., "Dual-band CMOS transceiver with highly integrated front-end for 450Mb/s 802.11n systems", Proc. IEEE Radio Frequency Integrated Circuits Symposium, pp.431-434,2010.
    [26]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Second Edition, Cambridge University Press,2004.
    [27]B. Razavi, RFMicroelectronics, Englewood Cliffss, NJ:Prentice-Hall,1998.
    [28]唐守龙,“高性能CMOS混频器设计技术研究”,东南大学博士论文,2005.
    [29]J. Crols, M. S. J. Steyaert, "A 1.5GHz highly linear CMOS downconversion mixer", IEEE Journal of Solid-State Circuits, vol.30, no.7, pp.736-742,1995.
    [30]刘璐等,“CMOS混频器的设计技术”,电子器件,第28卷,第3期,第500-504页,2005年9月.
    [31]T. H. Meng, B. McFarland, D. Su, J. Thomson, "Design and implementation of an all-CMOS 802.11a wireless LAN chipset", IEEE Communications Magazine, vol.41, no.8, pp.160-168,2003.
    [32]M. Simon, P. Laaser, V. Filimon, H. Geltinger, D. Friedrich, Y. Raman, R. Weigel, "An 802.11 a/b/g RF transceiver in an SOC", Proc. IEEE Solid-State Circuits Conference, pp.562-622,2007.
    [33]池保勇,“无线局域网收发机射频前端的CMOS实现”,清华大学博士论文,2003.
    [34]D. K. Shaeffer, "The Design and Implementation of Low-Power CMOS Radio Receivers", Ph.D. Dissertion, Standford University,1998.
    [35]Rob Flickenger, Wireless Networking in the Developing World, Second Edition, Limehouse Book Sprint Team,2006.
    [36]Vojan Vidojkovic, Johan van der Tang, Arjan Leeuwenburgh, et al., "A Low-Voltage Folded-Switching Mixer in 0.18-μm CMOS", IEEE Journal of Solid-State Circuits, vol.40, no.6, pp.1259-1264, June 2005.
    [37]徐萍,“多模多频无线收发机中混频电路的设计”,华东师范大学硕士论文,2010.
    [38]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill,2001.
    [39]M. T. Terrovitis, R. G Meyer, "Noise in Current-Commutating CMOS Mixers", IEEE Journal of Solid-State Circuits, vol.34, no.6, pp.772-783,1999.
    [40]Hooman Darabi, Asad A. Abidi, "Noise in RF-CMOS Mixers:A Simple Physical Model", IEEE Transactions on Solid-State Circuits, vol.35, no.1, pp.15-25, January 2000.
    [41]Jinsung Park, Chang-Ho Lee, Byung-Sung Kim, Joy Laskar, "Design and Analysis of Low Flicker-Noise CMOS Mixers for Direct-Conversion Receivers", IEEE Transactions on Microwave Theory and Techniques, vol.54, no.12, pp. 4372-4380, December 2006.
    [42]“噪声系数测量的三种方法”,http://china.maxim-ic.com/app-notes/index.mvp/ id/2875
    [43]Richard Li, Key Issues in RF/RFIC Circuit Design, Beijing:Higher Education Press,2005.
    [44]Chenyan Song, Ivy Lo, Olga Boric-Lubecke, "2.4GHz 0.18μm CMOS Passive Mixer with Integrated Baluns",2009.
    [45]S. K. Hampel, O. Schmitz, M. Tiebout, I. Rolfes, "Inductorless Low-Voltage and Low-Power Wideband Mixer for Multistandard Receivers", IEEE Transactions on Microwave Theory and Techniques, vol.58, no.5, pp.1384-1390,2010.
    [46]K.-H. Liang, H.-Y. Chang, "0.5-6GHz low-voltage low-power mixer using a modified cascode topology in 0.18μm CMOS technology", Microwaves, Antennas & Propagation, IET, vol.5, no.2, pp.167-174,2009.
    [47]Chien-Chang Huang, Wei-Ting Chen.,"Multi-band/multi-mode current folded up-convert mixer design", Asia-Pacific Microwave Conference, pp.759-762, 2006.
    [48]Fan Xiangning, Zhu Chisheng, Zhang Lei, "A 2.4GHz RF CMOS up-conversion mixer for wireless sensor networks nodes", International Conference on Wireless Communications & Signal Processing, pp.1-5,2009.
    [49]Fan Xiangning, Zhang Lei, Zhu Chisheng, Wu Rui, "Implementaion of an Improved Active CMOS Mixer with High Linearity for Wideband Wireless Systems", Proceedings of International Symposium on Signals, Systems and Electronics, vol.2, pp.1-4,2010.
    [50]Ming-Feng Huang, C. J. Kuo, Lee. Shuenn-Yuh, "A 5.25-GHz CMOS folded-cascode even-harmonic mixer for low-voltage applications", IEEE Transactions on Microwave Theory and Techniques, pp.660-669,2006.
    [51]Stanley S. K. Ho, Carlos E. Saavedra, "A CMOS Broadband Low-Noise Mixer With Noise Cancellation", IEEE Transactions on Microwave Theory and Techniques, vol.58, no.5, pp.1126-1132, MAY 2010.
    [52]Xuezhen Wang, Robert Weber, "A novel low power voltage LNA and mixer for WLAN IEEE 802.11a standard", RFIC Symposium, pp.231-234, Sept.2004.
    [53]S. H.-L. Tu, S. C.-H. Chen, "A 5.26GHz CMOS Up-Conversion Mixer for IEEE 802.11a WLAN", IEEE International Conference on Circuits and Systems for Communications, pp.820-823,2008.
    [54]Chang-Hsi Wu, Wen-Hui Huang, "A high-linearity up-conversion mixer utilizing negative resistor", International Symposium on Signals Systems and Electronics, vol.2, pp.1-4,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700