用户名: 密码: 验证码:
RFID导电油墨的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着物联网和RFID技术的快速发展, RFID电子标签的需求量越来越大,其应用形式也越来越广泛。RFID标签天线作为电子标签的关键组件,大多采用传统的蚀刻工艺制造,然而其在制造过程中会造成大量金属废弃物污染环境。RFID导电油墨制备电子标签的方法具有成本低、效率高、无污染等特点,是RFID标签天线制造技术的发展方向。本文以丝网印刷用RFID导电油墨为研究对象,从RFID导电油墨中导电相银粉的制备和应用、导电油墨粘结剂体系的设计和性能以及导电油墨流变学研究三个方面对RFID导电油墨进行了系统的研究。
     采用机械球磨法制备了不同片径的片状银粉,研究了原料球形银粉粒径对球磨工艺和片状银粉性能的影响。结果表明,银粉片径先随着球磨时间的增大而增大,片状化程度达到极限时,片径反而减小,而原料球形银粉粒径越小,达到完全片状化的时间越短;在球磨工艺相同时,原料球形银粉粒径越小,球磨后的片状银粉越不规则。采用不锈钢辅助醇热法高浓度、大规模制得低长径比的适合丝网印刷工艺的一维银线;研究了不同种类的银粉对导电油墨导电性能、粘度以及溶剂释放性能的影响规律。
     设计了一种热固性-热塑性高分子共混粘结剂体系,其中热固性树脂为环氧树脂,热塑性树脂为PVB(聚乙烯醇缩丁醛);通过对环氧树脂粘结剂体系固化行为的研究和溶剂体系的选择,初步确定了导电油墨的固化工艺为鼓风干燥箱内120℃固化至少30min;研究了导电油墨中银粉含量、粘结剂树脂组分对固化膜体积电阻率、附着力、抗弯折性能和印刷特性的影响。结果表明,导电油墨中银粉含量越高,固化膜导电性能越好,但脆性越大;粘结剂体系中PVB含量越高,导电油墨固化膜抗弯折性能越好,附着力更强;高PVB含量的导电油墨在高剪切速率下的粘度较大,粘弹性中粘性组分也较大,使得印刷后的图案边缘不齐,出现毛刺现象。
     采用流变仪对导电油墨剪切稀化特性、动态屈服应力、触变性大小、触变结构的恢复速度和动态粘弹特性进行了测量。研究了导电油墨中银粉含量、银粉种类以及触变剂含量对导电油墨流变性能和抗沉降性能的影响情况;采用Cross和Herschel-Bulkley流变模型对测出的导电油墨粘度曲线进行拟合,得到了导电油墨的屈服应力、零剪切粘度、无穷大剪切粘度等流变参数,与流变仪实际测试结果基本符合,对导电油墨配方性能的预测和设计工作具有重要的指导作用。
With the rapid development of Internet of Things and RFID technology, the demand for RFID electronic label is growing and its application form extends with each passing day. As a key component of the electronic label, most of RFID electronic label antenna is prepared through traditional etching process. However, a large number of metal waste is produced in etching processing and may pollute the environment. Conductive ink printing method in RFID electronic tag preparation has the advantages of low cost, high efficiency, no pollution etc, which is the future development direction of RFID tag antenna manufacturing technology. The paper has chose screen printable RFID conductive ink as the object of study. A systematic study of RFID conductive ink was developed from three aspects: conductive phase silver powder preparation and application in conductive ink, the design of binder system in conductive ink and its performance, research on rheology of conductive ink.
     Different sheet sizes of flake silver powder were prepared by mechanically ball milling process. The effect of silver particle size on ball milling process and the properties of flake silver powder was studied. Silver flake diameter was increasing with milling time firstly. However, when the flaking process reached the limit, sheet size of flake silver powder decreased. The smaller sizes of silver particles, the shorter time sheet size reaching the limit and the more irregular flake silver powder with the same balling process. A steel-assisted polyol method has been proposed for high-concentration and large-scale preparation of screen printable 1D silver wires with low aspect ratios(10~20). Conductive properties, viscosity and solvent release property of conductive ink with different types of silver powder were investigated.
     A thermoset-thermoplastic resin blend was designed. Epoxy resin was used as the thermosetting resin and PVB(Polyvinyl butyral) was used as the thermoplastic resin. The curing process was 120℃in blast drying box for 30min according to the curing behavior of epoxy binder system and chosed solvents. The effect of silver content, binder resin components in conductive ink on volume resistivity, adhesion, printing and anti-bending performance of cured films were investigated. The higher silver content of conductive ink, the better conductive property and the bigger brittleness of cured film; The higher PVB content of Binder system, the better bending resistant performance and stronger adhesive force of cued membrane. In addition, conductive ink with higher PVP content had higher viscosity and more viscous components, so the pattern printed had the irregular edges and appeared many burrs.
     Shear-thinning characteristics, dynamic yield stress, thixotropy, thixotropic structure recovery rate and dynamic viscoelastic properties were measured using a rheometer. Rheological properties and anti-settling performance of conductive ink with different silver content, different silver types and thixotropic agent content were studied. Yield stress, zero shear viscosity and infinite shear viscosity of conductive ink obtained by curve fitting of viscosity measurable using Cross and Herschel-Bulkley rheological model were proved right and would play great important roles in conductive formulation design.
引文
[1]国家科技部联合十五部委,中国射频识别(RFID)技术政策白皮书[M]. 2006.
    [2]刘斌强,刘哲珍. RFID电子标签漫谈[J].印刷世界, 2004, (6): 34-36.
    [3]张莉萍.电子标签可生产性及工艺选择性研究[D].复旦大学, 2007.
    [4]陈华君,林凡. RFID技术原理及其射频天线设计[J].厦门大学学报(自然科学版), 2005, (44): 312-315.
    [5]谈国祥. RFID标签天线技术研究[D].复旦大学, 2005.
    [6]唐宝玲.电子标签(RFID)天线的印制技术[J].印制电路信息, 2007, ( 6): 24-27.
    [7]莫黎昕.导电油墨构成与导电性能关系的研究[D].北京印刷学院. 2008.
    [8]莫黎昕.导电油墨在RFID中的应用研究[J].印刷技术,2008, (20): 22-24.
    [9]李瑞.网印导电油墨的种类及其应用[J].材料与设备, 2010, (6): 30-32.
    [10] Pike E, Seager C H. Percolation and conductivity:A computer study I and II [J]. Rev. Phys., 1974, 10(4B): 1421-1434,1435-1446.
    [11] Kirkpatrick S. Percolation and conduction [J]. Rev. Mod. Phys., 1973, 45(4): 574-588.
    [12] Mikrajuddin A, Shi F G, Chungpaiboonpatana S ,et al. Mater Sci Semicond Process[J], 1999, 2 (4): 309-319.
    [13] Lilei Ye, Zonghe Lai, Johan Liu, et al. Effect of Ag particle size on electrical conductivity of isotropically conductive adhesives [J]. IEEE Trans Electr Packg Manuf, 1999, 22(4): 299–302.
    [14] Li Li, James E. Morris. Electrical conduction models for isotropically conductive adhesive joints [J]. IEEE Trans Comp, Packg Manuf Technol, 1997, 20(1A): 3-8.
    [15] Ruschau G R, Yoshikawa S, Newnham R. E. Resistivities of conductive composites[J]. 1992, J Appl Phys 72(3): 953-959.
    [16] http://www.dupont.com.
    [17] http://www.acheson.com.
    [18] http://www.dowcorning.com.
    [19] Chen C, Wang L, Li R L, et al. Effect of silver nanowires on electrical conductance of system composed of silver particles[J]. J. Mater. Sci., 2007, 4(2): 3172-3176.
    [20]金宗莲,徐华蕊,赵斌. SP法制备球形的金属银超细粉体[J].上海金属, 2001, 23(2): 37-40.
    [21]魏智强,马军,冯旺军,等.等离子体制备银纳米粉末的研究[J].贵金属, 2004, 25(3): 29-32.
    [22]赵斌,刘志杰,程起林,等.金属超细粉体制备方法的概述[J].金属矿山,1999, (4): 30-35.
    [23]郑丰,梁勇,李家麟,等.激光气相制备纳米银粒子方法和装置[P].中国专利: CN1359775A, 2002.
    [24]廖立,熊继,谢克难.液相还原法制备纳米银粉的研究[J].稀有金属材料与工程, 2004, 33(5): 558-560.
    [25]刘江,宋永辉,兰新哲.片状银粉的制备研究[J].有色金属, 2002, (增刊): 64-68.
    [26] Hu J, Han W R, Liu Z CH, et al. A new method for nano-silver powder preparation[J]. Proceeding of 99th International Symposiumon Precious Metals, 1999: 205-210.
    [27]魏剑英,韩周祥,赵玛,等.热分解法制备纳米银粉稀有金属材料与工程[J]. 2007, 36(11): 2049-2051.
    [28]李亚栋,贺蕴普,钱逸泰.银纳米粒子的制备及其表面研究[J].化学物理学报, 1999, 12(4): 465-467.
    [29]梁海春,容敏智,章明秋,等.微乳液法制备纳米银粒子的结构及其荧光现象研究[J].物理学报, 2002, 51(1): 49-54.
    [30]廖学红,李鑫.电化学制备纳米银[J].黄冈师范学院学报, 2001, 21(5): 58-59.
    [31]姚素薇,曹艳蕊,张卫国.光还原法制备不同形貌银纳米粒子及其形成机理[J].应用化学, 2006, 23(4): 438-440.
    [32]杨世富,朱如兴,石玉光.超细功能银粉的制备及应用[J].江苏冶金, 2003, 31(3): 14.
    [33]江建军,谈定生,刘久苗,等.葡萄糖还原制取超细银粉[J].上海有色金属, 2004, 25(1): 5-8.
    [34] Ivan Sondi, Dan V. Goia, Egon Matijevic. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles[J]. Journal of Colloid and Interface Science, 2003, 260: 75-81.
    [35]梁敏,唐霁楠,林保平.电子材料用球形超细银粉的制备[J].中国粉体技术, 2006, (3): 16-19.
    [36] C. Fischer, A. Heller, G. Dube.Preparation of silver powder with specific properties by reduction in organic medium. Reduction of silver carbonate by ethylene glycol[J]. Materials Research Bulletin, 1989, 24(10): 1271-1277.
    [37]秦智.高分散性球形银粉的制备技术研究[D].长沙:国防科学技术大学,2010.
    [38]于朝清,田茂江,江新丰,等.纳米光亮片状银粉的研制[J].电工材料, 2004, (2): 15-17.
    [39]周全法,李锋,朱雯.光诱导法制备纳米级片状银粉的研究[J].贵金属, 2003,24(1): 35-38.
    [40] Jin R., Cao Y., Mirkin C. A., et al. Photoinduced Conversion of silver Nanospheres to Nanoprisms. Science[J], 2001, 294(5548): 1901-1903.
    [41] Jin R., Cao Y. C., Hao E., et al. Controlling Anisotropic Nanoparticle Growth through Plasmon Excitation[J]. Nature, 2003, 425(6957): 487-490.
    [42] Sun Y., Mayers B., Xia Y. Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process[J]. Nano Letters, 2003, 3(5): 675-679.
    [43]梁焕珍, Kim D. J., Chung H. S..乙二醇中化学还原合成片状银粉[J].物理化学学报, 2003, 19(2): 150-153.
    [44] Chen S., Carrol D. L Synthesis and Characterization of Truncated Triangular Silver Nanoplates[J]. Nano Letters, 2003, 2(9):1003-1007.
    [45] Sun Y G, Gates B, Mayers B, Xia Y. Crystalline silver nanowires by soft solution processing[J]. Nano Lett., 2002, 2(2): 165–168.
    [46] Zheng X J, Jiang Z Y, Xie Z X, Xie S H, Mao B W, Zheng L S. Growth of silver nanowires by an unconventional electrodeposition without template[J]. Electrochemistry Communications, 2007, (9): 629-632.
    [47] Kundu S, Huitink D, Wang K, Liang H. Photochemical formation of electrically conductive silver nanowires on polymer scaffolds[J]. Journal of Colloid and interface Science, 2010, (344): 334-342.
    [48] Han Y J, Kim J M, Stucky G D. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15[J]. Chem. Mater., 2000, 12(2): 2068–2069.
    [49] Huang M H, Choudrey A, Yang P D. Ag nanowire formation within mesoporous silica[J]. Chem. Commun., 2000: 1063-1064.
    [50] Sun Y G, Gates B, Mayers B, Xia Y. Crystalline Silver nanowires by Soft Solution Processing[J]. Nano Lett., 2002, 2(2):165-168.
    [51] Figlarz M, Beaudoin B, Blin B, Lagier J P, Fievet F. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles[J]. SolidState Ionics., 1989, (32-33): 198-205.
    [52] Sun Y, Yin Y, Mayers B T, Herricks T, Xia Y. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone)[J]. Chem. Mater., 2002,14(11): 4736-4745.
    [53] Sun Y, Xia. Large-scale Synthesis of Uniform Silver Nanowires through a Soft, self-seeding, Polyol Process[J]. Y. Adv. Mater., 2002, (14): 833.
    [54] Zhang W J, Chen P, Gao Q S, Zhang Y H, Tang Y. High-Concentration Preparation of Silver Nanowires: Restraining in Situ Nitric Acidic Etching by Steel-Assisted Polyol Method[J]. Chem. Mater., 2008, 20(5): 1699-1704.
    [55] Lin J C, Wang C Y. Effect of surface properties of silver powder on the sintering ofits thick-film conductor[J]. Materials Chemistry and Physics, 1996, 45: 253.
    [56]黄培云.粉末冶金原理[M].北京:冶金工业出版社, 1982.
    [57] Ao Y W, Yang Y X, Yuan S L, et al. Preparation of spherical silver particles for solar cell electronic paste with gelatin protection[J]. Materials Chemistry and Physics, 2007, 104: 158-161.
    [58] S.B. Rane, P.K.Khanna, T.Seth, et al. Firing and processing effects on mirostructure of fritted silver thick film electrode materials for solar cells[J]. Materials Chemistry and Physics, 2003, 82: 237-245.
    [59] Zhang Z T, Zhao B, Hu L M. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes[J]. Journal of Solid State Chemistry, 1996, 121: 105-110.
    [60] Im S H, Lee Y T, Wiley B, et al. Large-scale Synthesis of Silver Nanocubes: The Role of HCl in Promoting Cube Perfection and Monodisperty[J]. Angew. Chem., 2005, 117(14): 2192-2195.
    [61] Wiley B, Sun Y, Mayers B, et al. Shape-controlled Synthesis of Metal Nanostructures: The Case of Silver[J]. Chem.- Eur. J., 2005, 11(2): 454-463.
    [62] Sun Y, Mayers B, Herricks T, et al. Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence [J]. Nano Lett., 2003, 3(7), 955-960.
    [63] Lee S M, Cho S N, Cheon J. Anisotropic Shape Control of Colloidal Inorganic Nanocrystals[J]. J. Adv. Mater., 2003, 15(5), 441-444.
    [64] Wiley B, Herricks T, Sun Y, et al. Polyol Synthesis of Silver Nanoparticles: Use of Chloride and Oxygen to Promote the Formation of Single-crystal[J]. Nano Lett., 2004, (4): 1733.
    [65] Smith D J, Petford-Long A K, Wallenberg L R, et al. Dynamic Atomic-level Rearrangements in Small Gold Particles[J]. Science, 1986, 233(4766): 872-875.
    [66]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社.2002.
    [67] Gebhard Schramm. A Practical Approach to Rheology and Rheometry[M]. Karlsruhe, Federal Republic of Germany: Gebrueder HAAKE Gmbh, 2000.
    [68]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社. 2003.
    [69]张恒.纳米组分对涂料流变性能及涂布性能的影响及机理研究[D].华南理工大学, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700