牙周再生片的开发及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来综合了细胞生物学、工程学、材料学和临床医学等领域的组织工程日益受到了人们的关注。纺织与它也有了新的融合。本论文研究对象是牙周引导组织再生技术(GTR)及牙周引导组织再生阻挡片。“牙周再生片”是一种发展的引导性组织再生器具,一般由可降解的生物材料制成,是一种能令齿骨膜再生的最新概念。目前的国内外研究主要针对不同材料牙周再生片的体内、体外降解性能和生物相容性的研究而缺乏对其物理机械性能和相关的编织工艺参数的分析,对牙周再生片降解性能的研究也没有涉及降解过程中其力学性能的变化趋势。材料、编织工艺和表面涂层浓度的改变对牙周再生片的力学性能和降解性能会产生一定的影响,目前的国内外研究尚缺乏对这方面的探讨。
     本课题研究不同材料、纱线粗细、编织密度和涂层对牙周再生片力学性能的影响,探讨较优的工艺参数组合,初步研究不同材料在体外模拟降解过程中的强力衰减速度和质量损耗周期。
     通过选用两种不同的可生物降解材料(PGA、PGLA),在纬平针组织的基础上,分别改变牙周再生片的骨架织物密度、涂层浓度等工艺参数,运用正交试验方法,探讨该牙周再生片的撕裂强力、拉伸断裂强力和初始模量,最终找出较优的工艺条件和参数。
     在正交试验的基础上进行两种不同原料牙周再生片的体外模拟降解试验。通过对两种牙周再生片强力、初始模量和质量的损耗率测定以及降解过程中表面形态的观察分析两种牙周片的结构特点和降解特性,找出更适用于生产牙周再生片的原料。
     通过本课题的研究,开辟牙周再生片新的研究方向,用正交试验法优选牙周再生片的工艺参数发现,内层骨架织物的原料、编织密度和表面涂层浓度对牙周片的力学性能均有高度显著的影响,且原料与编织密度之间的交互作用对牙周片的性能也有较大的影响。PGA和PGLA牙周再生片的降解都是通过酯键的水解来实现,是一个化学降解的过程。材
    
    料强力和初始模量的衰减比质量的损耗快得多,PGA牙周再生片强力和
    初始模量下降速度比较均匀,而PGLA牙周再生片强力和初始模量下降
    过程中有速度的突变点。
     由正交试验优选出力学性能较优的4号试样,其工艺条件为内层骨架
    纬平组织采用14texPGLA紧密编织,表面覆质量百分比浓度为3.5%的甲
    壳胺浆液。PGLA和PGA牙周再生片的体外降解试验结果显示:PGA牙
    周片的强力和初始模量衰减较PGLA牙周片快,但是质量保持的时间稍
    长。从外观上,PGLA牙周片降解过程中的形态保持比PGA牙周片好。
Nowadays, people pay more and more attention on tissue engineering, which combines cell biology, engineering, material science and clinical medicine, etc. Textile also has new development on it. This paper mainly discusses Guided Tissue Regeneration (GTR) and "GTR Barrier". "GTR Barrier" is a kind of apparatus that can guide the regeneration of tissue, which is made of biodegradable material. At present, most researches on it are focusing on its degradation properties in vivo and in vitro, but they don't relate to the change of the physical properties during the degradation. In addition, few researches are on how materials and techniques influence the physical properties and degradation properties of GTR Barrier, so this paper will do some work on it.
    In this paper, the influences of materials, yarn thickness, knitting density and coating on physical properties of GTR Barrier were studied. In addition, some elementary researches were taken on several degradation properties such as strength attenuation and mass loss of different materials in vitro.
    Two biodegradable materials (PGLA, PGA) were selected to knit single jersey fabrics with different density as skeletons of GTR Barriers. Orthogonal test was used to select optimum parameters of material, knitting density and coating by testing splitting strength, tensile strength and initial modulus of GTR Barriers. Through the test, the comparatively better technical parameters could be found.
    On the base of orthogonal test, two kinds of GTR Barriers of different materials were picked out to take degradation experiment in vitro. ' Comparing the ratio of strength attenuation and mass loss of these GTR Barriers and their appearance change in course of degradation to analyze their structure characters and degradation properties. Through the comparison, appropriate material used in GTR Barrier could be selected.
    Through the .researches, finding a new study direction on GTR Barrier. The result of orthogonal test shows the material, knitting density of skeleton
    
    
    
    fabric and coating can remarkably influence the mechanical properties of GTR Barrier. In addition, the interaction between material and knitting density can also influence the result. The degradation courses of PGA and PGLA GTR Barriers in vitro are chemical degradation processes, which achieved by hydrolysis of ester bond. The attenuation of tensile strength is faster than mass loss. The degradation velocity of PGA film is uniform, but when it comes to PGLA film, there is a break point in attenuation of tensile strength and initial modulus during the degradation.
    In orthogonal test, the better GTR Barrier is 4# sample, which skeleton fabric is tightly knitted with 14tex PGLA, coated with 3.5% chitosan. The in vitro degradation experiment of PGA film and PGLA film shows that the attenuation of tensile strength and initial modulus of PGLA barrier is slower than that of PGA barrier, but its mass loss period is shorter. Judging from the appearance change during degradation, PGLA barrier has a better appearance retention than PGA barrier.
引文
[1]张晨,张东,高景恒.组织工程的研究现状.中国修复重建外科杂志.1997,11(3):164-167.
    [2]陈富林,毛天球.组织工程学的现在与未来.医学信息.1997,10(12):29-32.
    [3]孙勇.组织工程在病损组织替代中的应用.国外医学生物医学工程分册.1999,22(1):31-36.
    [4]王勤涛,吴织芬.牙周引导组织再生技术的理论基础和临床应用.实用口腔医学杂志.2001,17(1):77-79.
    [5]Nyman S, Lindhe J, Karring T, et al. New attachment following surgical treament of human periodontal disease. J Clin Periodontol. 1982, (9).. 290.
    [6]Gottlow J, nyman S, Karring T, et al. New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol. 1984, (11): 494.
    [7]中华人民共和国进口医疗器械注册证(牙周再生片).
    [8]Varunee Kerdvongbundit, BSC, DDs, GradDipClinsc, et al. A clinical comparison of the new attachment obtained by guided tissue regeneration and coronally positioned flap techniques in the management of human molar furca tion defects. Australia Dental Journal. 1999, 44(1): 31-39.
    [9]Gabriele Pecora, MD, DDS, et al. Barrier Membrance Techniques in Endodontic Micmsurgery. Microscopes in Endodontics. 1997, 41 (3): 1-16.
    [10]Igihaut J, Aukhil I, Simpson D.M. et al. Progenitor cell kinetics during guided tissue regeneration in experimental periodontal wound. J Periodontal Res 1998, 23: 107.
    [11]P.Robert, J.Mauduit, R.M. Frank et al. Biocompatibility and resorbability of a polylactic acid membrane for periodontal guided tissue regeneration. Biomaterials. 1993, 14(5): 353-358.
    [12]王梅编.聚合物(医用)腐蚀和降解机理.国外医学生物医学工程分册.1997,20(3):177-183.
    [13]何伟.上海第二医科大学口腔医学院94级硕士学位论文.
    [14]李超伦.可吸收材料体外降解实验和评价.口腔材料器械杂志.1998,7(3):149-151.
    [15]Flandroy P, Grandfils Ch, Daenen B, Snaps F, Heinen E et al. In vivo behavior of Poly(D,L)-lactide microspheres designed for hemoembolization. J Controlled Release. 1997, 47: 153-170.
    [16]Ali SAM, Doherty PJ, Williams DF. Molecular biointeractions of biomedicals polymers with extracellular exudates and inflammatory cell and their effects on the biocompatibility, in vivo. Biomaterials. 1994, 15: 779-785.
    [17]Tokiwa Y, Suzuki T. Hydrolysis of polyesters by lipases. Nature 1977, 270: 76-78.
    [18]几丁质体内外生物降解性和安全性的研究(技术资料).上海第二医科大学附属第九人民医院上海生物材料研究测试中心.2001.
    [19]牙周再生片临床研究报告.上海医科大学附属华山医院口腔科及四川华西口腔医学院.1998.
    
    
    [20]王曙中,等.高科技纤维概论.1999.中国纺织大学出版社.上海.191-192.
    [21]宋丽贞.生物高分子材料的进展.产业用纺织品.2000,6:1-3,8.
    [22]朱颖先,陈大俊,李瑶君.可生物降解纤维材料.合成纤维工业.2000,23(5):31-33.
    [23]王晨宏,李弘,王玉琴.聚乳酸类生物降解性高分子材料研究进展.离子交换与吸附.2001,17(4):369-378.
    [24]俞昊,张瑜,等.生物可降解聚酯纤维进展.合成纤维.1999,28(2):33-39.
    [25]严冰,赵耀明.聚丙交酯及可降解脂肪族聚酯类纤维的结构与生物降解性能.合成纤维.2000,5:16-19.
    [26]戈进杰.生物降解高分子材料及其应用.2002.化学工业出版社.北京.284-295.
    [27]王立,金大地,等.生物吸收材料外消旋聚丙交酯的降解动力学研究.中国娇形外科杂志.1999,6(6):434-436.
    [28]戈进杰.生物降解高分子材料及其应用.2002.化学工业出版社.北京.281-284.
    [29]赵耀明,黄俊豪,等.生物降解材料—聚乙交酯医用纤维的研究.华南理工大学学报(自然科学版).1994,22(6):71-79.
    [30]宋谋道,余艺华,等.乳酸、羟基乙酸均聚物及共聚物的合成与结构表征.离子交换与吸附.1995,11(3):245-252.
    [31]G..E.Visscher, R.L.Robin, H.V.Maulding et al. Biodegradation of and tissue reaction to 50:50 poly(DL-lactide-co-glycolide) microcapsules. J.Biomed. Master. Res. 1985, 19: 349-365.
    [32]L.R.Beck, T.R.Tice. Long Acting Steroid Contraception. 1983. Raven Press. New York. 175-199.
    [33]赵耀明,黄俊豪,等.生物降解医用材料——聚乙丙交酯的研究.合成纤维工业.1997,20(4):1-4.
    [34]蔡晴,等.乙交酯/丙交酯共聚物的体外降解行为及生物相容性研究.功能高分子学报.2000,13(3):249-254.
    [35]陈碧琼,孙康.甲壳素和壳聚糖纤维的发展及应用.化工新型材料.2002,5:20-22.
    [36]黄光佛,卿胜波,等.多糖类生物医用材料—甲壳素和壳聚糖的研究及应用.高分子通报.2001,3(6):43-49.
    [37]Kawase M, Michibayashi N, Nakashima Y, et al. Application glutraldehyde-crosslinked chitosan as seaffold for hepatocyte Attachment. Biol Pharm Bull. 1997, 20(6): 708-710.
    [38]王爱琴,等.医用壳聚糖膜的制备与性能研究.北京生物医学工程.1996,15(1):49-54.
    [39]孙坚,李明珠,徐军.壳聚糖膜的降解性及生物反应性研究.同济大学学报(医学版).2002,23(3):236-237,254.
    [40]曹宗顺,卢凤琦,等.壳聚糖膜的降解性研究.生物医学工程学杂志,1995,12(4):364-366.
    [41]庄昭霞,孙钦峰,杨玉山.壳聚糖生物膜生物降解和组织相容性的实验
    
    研究.山东医科大学学报.1996,34(4):337-339.
    [42]张钦峰,庄昭霞.壳聚糖膜促进牙周新附着的实验研究.山东医科大学学报.1998,36(4):301-303.
    [43]吴勇.牙周引导性组织再生术可降解屏障膜材料的研究.国外医学口腔医学分册.2000,27(6):348-351.
    [44]周长忍,丁珊.可降解材料的制备及应用研究进展.第二届全国组织工程学术大会论文汇编.
    [45]于伟东,储才元.纺织物理.2002.东华大学出版社.上海.72-74.
    [46]张丽芝 苏玉兰.产业用多功能涂层织物的开发和应用.产业用纺织品.1999,17(4):6~10
    [47]姚穆,周锦芳等.纺织材料学.1997.第二版.纺织工业出版社.北京.532-537.
    [48]关颖男,施大德.试验设计方法入门.1985.冶金工业出版社.北京.122-138.
    [49]本书编写组.正交试验设计法.1979.上海科学技术出版社.上海.24-54.
    [50]北京大学数学力学系概率统计组.正交设计法.1976.石油化学工业出版社.北京.17-51.
    [51]鄂征.组织培养和分子细胞学.1997.北京出版社.北京.57-76.
    [52]郭灿城.有机化学.2001.科学出版社.北京.324-334.
    [53]何九龄.高等有机化学.1987.化学工业出版社.北京.269-271.
    [54]邢其毅,徐瑞秋,等.基础有机化学(下册).1994(第二版).高等教育出版社.河北.596-600.
    [55]睦伟民,郑青建,等.聚乙交酯和聚乙丙交酯缝线的研制.合成纤维.1997;20(3):24-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700