牙本质涎磷蛋白转基因小鼠模型的建立和相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙本质涎磷蛋白(dentin sialophosphoprotein,DSPP)包括牙本质涎蛋白(dentin sialoprotein,DSP)和牙本质磷蛋白(dentin phosphoprotein,DPP),属于非胶原蛋白,因最早被发现是由成牙本质细胞合成和分泌,一度被认为是牙本质的特异性蛋白而得名。近年来的研究表明,DSPP在其他组织和器官(如骨、软骨、内耳等)中也表达,只是表达水平相对较低而已,提示DSPP的功能可能并非局限于牙齿的发育和矿化。为进一步探讨DSPP在牙齿发育和矿化中的作用,并在此基础上对DSPP的功能做更加全面的研究,本研究在DSPP功能研究的在体模型的构建方面做了一些尝试,核心内容是建立DSPP的转基因和基因敲除小鼠系。本文是全面研究规划中的一部分,即DSP转基因小鼠模型、DSPP四环素调控性转基因小鼠体系、DSPP特异性启动子调控LacZ转基因小鼠模型的建立和DSPP基因敲除载体的构建以及胚胎干细胞基因打靶。
     一、DSP转基因小鼠模型的构建
     通过亚克隆将pcDNA3.1中的CMV启动子替换为cβ-actin启动子,构建载体pcDNA3.1-CX,然后将PCR获得的、末端带有HA-Tag的DSP基因编码序列克隆到pcDNA3.1-CX中,构建DSP转基因载体pcDNA3.1-CX-DSP;用显微注射的方法将BglII酶切线性化的载体DNA注射到小鼠受精卵的雄
    
     第四军医大学博士学位论文
    原核,移植到假孕母鼠的输卵管;仔鼠出生后,用PCR、基因组Southern
    杂交检测阳性小鼠,结果获得4只GO代小鼠(founder);阳性鼠分别传代
    开始建系。选其中一个单系进行了初步的分析,RTPCR显示转基因能在
    多个器官中表达。
    h、DSPP四环素调控性转基因小鼠体系的构建
     将pTetonNSE载体中的NSE启动子替换为启动于c p仓ctin,构建调控
    载体pTeton(X;将DSPP基因编码序列克隆到pTREZ中,构建受控载体
    pTREZ*SPP通过显微注射将线性化载体导入小鼠受精卵,制备GO代小
    鼠,经PCR、基因组Soutnern杂交检坝卜性小鼠,pTeton-CX手pTREZoS
    PP分别获 11只、10只GO代小鼠。阳性鼠分别传代开始建系。选pTet{n(
    X转基因小鼠一个单系进行了初步的分析,RTPCR结果表明小鼠多种器
    官中均可表达转录因子tTA。
    三、DSPP基因特异性启动子的克隆和pTNlPM工acZ转基因小鼠的构建
     据文献报道,在软件DNAstar辅助下设计一对引物,以小鼠基因组
    DNA为模板,PCR获得约1石 kb的片段,序列测定证实为DSPP基因特异性
    启动子;通过亚克隆构建了特异性启动子一LacZ转基因载体,命名为
    pTN-DPM工acZ,显微注射法制备pTN0PM*acZ转基因小鼠。经PCR筛
    选,共获得 12只GO代小鼠。
    四、DSPP基因敲除载体的构建和ES细胞基因打靶的尝试
     根据NCBI GenBank提供的序列,软件辅助设计并合成上、下游两条
    同源臂的两对引物:以用细胞基因组**A为模板,P*R获得上、下游两
    条同源臂;将同源臂测序确认后,和筛选标志按一定顺序克隆到载体
    pBluescript中,构建了G418筛选的们打靶载体和G418/GANC筛选的#2打
    靶载体;酶切和序列测定确认构建无误后,N。ti酶切使载体线性化用于ES
     3
    
     第四军医大学博士学位论文
    细胞基因打靶。共进行了 3次打靶,鉴定了 3 74个细胞克隆。虽然没有获得
    阳性克隆,但得到了一定的经验,为以后的研究打下了基础。
     DSP转基因小鼠模型、DSPP四环素调控性转基因小鼠体系、DSPP特
    异性启动子一LacZ转基因小鼠模型的建立以及DSPP基因敲除载体的构建
    和ES细胞基因打靶的尝试,为全面研究DSPP的功能奠定了基础。
Dentin sialophosphoprotein(DSPP), which was considered to be cleaved into dentin sialoprotein(DSP) and dentin phosphoprotein (DPP) at posttranscriptional level, belongs to non-collagenous protein(NCP), and got its name by the fact that it was first discovered to be secreted by odontoblasts and appear at the mineralization front of dentine. It was once regarded as the unique dentine-specific protein, but according to recent studies, it was also expressed in other tissues and organs, such as bone, cartilage, and even inner ear, which means that perhaps it was not a dentine-specific protein, and it might have other functions rather than involving in the mineralization process of tooth. To further the studies about the role of DSPP in the development and mineralization of tooth, and start the researches about the functions of DSPP in other tissues and organs, attempts of the generation of in vivo biomodel organism for the function analysis of DSPP were carried out. The most important task of the plan is to estab
    lish DSPP transgenic and knockout mice models. The followings were parts of this plan, including the generation of DSP transgenic mice, DSPP tetracycline-responsive transgenic mice system, the construction of DSPP knockout construct and the attempt on DSPP knockout by ES cell gene targeting.
    
    
    1. Generation of DSP transgenic mice
    pcDNA3.1 -CX was constructed by substituting CMV promoter of pcDNA3.l with c β -actin promoter, and the ultimate transgenic construct was established by cloning DSP coding sequence(with a HA-Tag linked to its C-terminal) into pcDNA3.1-CX. The transgenic DNA was linearized by BgIII digestion and then microinjected into the male pronucleus of the mouse zycotes. The tail DNA of pups was tested by PCR and Southern blot. 4 founders were characterized and breeding process was carried out. RT-PCR showed that the transgene was expressed in many organs.
    2. Generation of tetracycline-responsive transgenic mice system of DSPP
    The promoter of pTet-on-NSE was replaced by c β -actin promoter, which led to the construction of the tetracycline- responsive vector pTet-on-CX; and the DSPP transgenic vector pTRE2-DSPP, was constructed by subcloning DSPP coding sequence from pBlueScript-DSPP to pTRE2. Candidates of the transgenic mice were generated by microinjection and pups were screened by PCR and Southern blot. All together 11 and 10 founders were got, respectively; and breeding process was carried out. RT-PCR showed that the transgene pTet-on-CX could be expressed in many organs.
    3.Cloning of DSPP specific promoter and generation of DSPP-specific -promoter-LacZ transgenic mice.
    According to the sequence reported by MacDougall et al, primers for DSPP specific promoter were designed, and PCR was performed. A 1.6 kb fragment was obtained and it was confirmed to be DSPP specificpromoter by sequencing. DSPP-specific-promoter-LacZ transgenic construct was constructed by subcloning, and transgenic mice were produced by
    
    
    microinjection and screened by PCR. 12 founders were obtained.
    4. Attempts on DSPP knockout by ES cell gene targeting
    The primers were designed by the use of DNAstar software and were in accordance with the sequence provided by NCBI GenBank. Using genomic DNA of ES cells as template, PCR was performed to get the upper and lower homology arms of the targeting constructs. After characteration by sequencing, the homology arms were subcloned, together with the screening marker, e.g. hsv-tk-neo and PGK-TK, into pBluescript in a definite order. The ultimate constructs were confirmed by enzyme digestion and sequencing, and were linearized by NotI for the use of electrotransformation of the ES cells. Altogether 2 targeting constructs were constructed, 3 transformation experiments were performed and 374 ES cell clones were tested by PCR and Southern blot, no positive clone was found up to date.
    The generation of DSP and DSPP transgenic mice, and attempts on DSPP gene knockout make basis for further function analysis of DSPP.
引文
1. Butler WT, Ritchie, H. The nature and functional significance of dentin extracellular matrix protein. Iht J Der Biol. 1995; 39(1): 169-179.
    2. Linde A, Goldberg M. Dentinogenesis. Crit Rev Oral Biol Med. 1993; 4(5):679-728.
    3. Septier D, Torres-Quintana MA, Menashi S, et al. Inositol hexasulphate, a casein kinase inhibitor, alters the distribution of dentin matrix protein 1 in cultured embryonic mouse tooth germs. Eur J Oral Sci. 2001;109(3): 198-203.
    4. Veis A, Perry A. The phosphoprotein of the dentin matrix. Biochemistry. 1967; 6(8):2409-2416.
    5. Dickson IR, Dimuzio MT, Volpin D, et al. The extraction of phosphoproteins from bovine dentin. Calcif Tissue Res. 1975; 19(1):51-61.
    6. MacDougall M, Simmons D, Luan X, et al. Dentin phosphoprotein and dentin sailoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. J Bio Chem. 1997; 272(2):835-842.
    7.赵大为.牙本质磷蛋白.牙体牙髓牙周病学杂志.1995;5(3):187-189.
    8. Bultler WT. Dentin matrix proteins and dentinogenesis. Connect Tissue Res. 1995;33(1-3):59-65.
    9. Linde A.Differences between non-collagenous protein content of rat incisor and permanent bovine dentin. Scand J Dent Res. 1988; 96(3): 188-198.
    10. Linde A, Bhown M, Butler WT. Noncollagenous proteins of dentin. A
    
    re-examination of proteins from rat incisor dentin utilizing techniques to avoid artifacts. J Biol Chem. 1980; 255(12):5931-5942.
    11. Richardson WS, Munksgaard EC, Butler WT. Rat incisor phosphoprotein. The nature of the phosphate and quantitation of the phosphoserine. J Biol Chem. 1978, 253(22):8042-8046.
    12. Jonsson MS, Fredricsson S, Jontell M, et al. Isoelectric focusing of the phosphoprotein of rat-incisor dentin in ampholine and acid pH gradients. Evidence for carrier ampholyte-protein complexes. J Chromatogr. 1978; 157:235-242.
    13. Lee SL, Veis A, Glonek T. Dentin phosphoprotein: an extracellular calcium-binding protein. Biochemistry. 1977;16(13): 2971-2979.
    14. Butler WT, Bhown M, DiMuzio MT, et al. Multiple forms of rat dentin phosphoproteins. Arch Biochem Biophys. 1983; 225(1): 178-186.
    15. Crossley. Report 1089 at 1996 IADR meeting.
    16. George A, Bannon L, Sabsay B, et al. The carboxylterminal domain of phosphophoryn contains unique extended amino acid repeat sequences forming ordered carboxyl-phosphate interaction ridges that may be essential in the biomineralization process. J Biol Chem. 1996; 271(51): 32869-32873.
    17. Ritchie HH, Wang LH. Sequence determination of an extremely acidic rat dentin phosphoprotein. J Biol Chem. 1996;271 (36):21695-21698.
    18. Veis A, Wei K, Sfeir C, et al. Properties of the (DSS)n triplet repeat domain of rat dentin phosphophoryn. Eur J Oral Sci. 1998; 106 (Suppl 1 ):234-238.
    19. Ritchie HH, Wang LH, Knudtson K. A novel rat 523 amino acid phosphophoryn: nucleotide sequence and genomic organization. Biochim Biophys Acta. 2001;1520(3):212-222.
    
    
    20. Gu K, Chang SR, Slaven MS,et al. Human dentin phosphophoryn nucleotide and amino acid sequence. Eur J Oral Sci. 1998; 106(6): 1043-1047.
    21. Ritchie HH, Ritchie DG, Wang LH. Six decades of dentinogenesis research. Historical and prospective views on phosphophoryn and dentin sialoprotein. Eur J Oral Sci. 1998;106 Suppl 1:211-20.
    22. Nakamura O, Gohda E, Ozawa M, et al. Immunohistochemical studies with a monoclonal antibody on the distribution of phosphophoryn in predentin and dentin. CalcifTissue Int. 1985; 37(5): 491-500.
    23. de Vries GI, Quarter E, Van Steirteghem A, et al. Characterization and immunocytochemical localization of dentine phosphoprotein in rat and bovine teeth. Archs Oral Biol. 1986;31(1): 57-66.
    24. Nawrot CF, Campbell DJ, Schroeder JK, et al. Dental phosphoproteininduced formation of hydroxyapatite during in vitro synthesis of amorphous calcium phosphate. Bioche Chem. 1976; 15(16):3445-3449.
    25. Fujisawa R, Takagi T, Kuboki Y, et al. Systematic purification of free and matrix-bound phosphophoryns of bovine dentin: Presence of matrix-bound phosphophoryns as a distinct molecular entity. Calcif Tissue Int. 1984;36(2):239-242.
    26. Hohling HJ, Amold S, Barckhaus RH, et al. Structural relationship between the primary crystal formations and the matrix macromolecules in different hard tissues. Discussion of a general principle. Connect Tissue Res. 1995; 33(1-3):171-178.
    27. Boskey AL. The role of extracellular matrix components in dentin mineralization. Crit Rev Oral Biol Med. 1991;2(3):369-387.
    28. Linde A, Lussi A. Mineral induction by polyanionic dentin and bone proteins at physiological ionic conditions. Connect Tissue Res.
    
    1989; 21(1-4): 197-202.
    29. Boskey A,Muresa S, Doty S, et al. Concentration dependant effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone Miner. 1990;11(1):55-65.
    30. Hunter G, Hauschka P, Poole A, et al. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J. 1996;317(Pt 1):5964.
    31. Butler WT. Dentin specific proteins. Methods Enzymol. 1987; 145: 290-303.
    32. Ritchie HH, Pinero GJ, Hou H, et al. Molecular analysis of rat dentin sialoprotein. Connect Tissue Res. 1995;33(1-3):73-79.
    33. Ritchie HH, Hou H, Veis A, et al. Cloning and sequence determination of rat dentin sialoprotein, a novel dentin protein. J Biol Chem. 1994;269(5):3698-3702.
    34. Ritchie HH, Li X. A noval rat dentin mRNA coding only for dentin sialoprotein. Eur J Oral Sci. 2001; 109(5):342-347.
    35. Yamakoshi Y, Hu JC, Liu S, et al. Characterization of porcine dentin sialoprotein (DSP) and dentin sialophosphoprotein (DSPP) cDNA clones. Eur J Oral Sci. 2003;111(1):60-67.
    36. Wada Y, Fujisawa Y, Nodasaka Y, et al. Electrophoretic gels of dentin matrix proteins as diffusion media or in vitro mineralization. J Dent Res. 1996;75(6):1381-1387.
    37. Feng JQ, Luan XH, Wallace J, et al. Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (DSPP) gene, which codes for both dentin sialoprotein and dentin phosphoprotein. J Biol Chem. 1998; 273(16):9457-9464.
    38. Gu K, Chang S, Ritchie HH, et al. Molecular cloning of a human dentin sialophophoprotein gene. Eur J Oral Sci. 2000; 108(1):35-42.
    
    
    39. B(?)gue-Kirn C, Ruch JV, Ridall AL, et al. Comparative analysis of mouse DSP and DPP expression in odontoblasts, preameloblasts, and experimentally induced odontoblast-like cells. Eur J Oral Sci. 1998;106 Suppl 1:254-259.
    40. Qin C, Cook RG, Orkiszewski RS, et al.Identification and characterization of the carboxyl-terminal region of rat dentin sialoprotein. J Biol Chem. 2001; 276(2):904-909.
    41. Ritchie HH, Wang L. The presence of multiple rat DSP-PP transcripts. Biochim Biophys Acta. 2000;1493(1-2):27-32.
    42. Rowe PS, de Zoysa PA, Dong R, et al. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics. 2000; 67(1):54-68.
    43. Butler WT, Brunn JC, Qin C, et al. Extracellular matrix proteins and the dynamics of dentin formation. Connect Tissue Res.2002;43 (2-3):301-307.
    44. Xiao SX, Yu C, Chou XM, et al. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nature Genetics. 2001; 27(2):201-204.
    45.王英.遗传性牙本质发育不全Ⅱ型致病基因的定位与克隆.第四军医大学博士学位论文,2001.
    46. Zhang X, Zhao J, Li C, et al. DSPP mutation in dentinogenesis imperfecta shields type Ⅱ. Nat Genet. 2001; 27(2):151-152.
    47. Qin C, Brunn JC, Cadena E, et al. The expression of dentin sialophosphoprotein gene in bone. J Dent Res. 2002; 81(6):392-394.
    48.张蓉。牙本质涎磷蛋白在牙齿发育、矿化及牙髓损伤修复中作用的研究。第四军医大学博士学位论文,2001.
    49. Fujisawa R, Kuboki Y. Affinity of bone sialoprotein and several other bone and dentin acidic proteins to collagen fibrils. Calcif Tissue Int. 1992; 51(6):438-442.
    
    
    50. Traub W, Arad T, Weiner S. Origin of mineral crystal growth in collagen fibrils. Matrix. 1992; 12(4):251-255.
    51. Lussi A, Crenshaw MA, Linde A. Induction and inhibition of hydroxyapatite formation by rat dentine phosphoprotein in vitro. Arch Oral Biol. 1988; 33(9):685-691.
    52. Linde A, Lussi A, Crenshaw MA. Mineral induction by immobilized polyanionic proteins. CalcifTissue Int. 1989; 44(4): 286-295.
    53. Traub W, Jodalkin A, Arad T, et al. Dentin phosphophoryn binding to collagen fibrils. Matrix. 1992;12(3): 197-201.
    54. Boskey AL. Osteopontin and related phosphorylated sialoproteins effects on mineralization. Ann NY Acad Sci. 1995;760:249-256.
    55. MacDougall M, Thiemann F, Ta H,et al. Temperature sensitive simian virus 40 large T antigen immortalization of murine odontoblast cell cultures: establishment of clonal odontoblast cell line. Connect Tissue Res. 1995;33(1-3):97-103.
    56. Hanks CT, Sun ZL, Fang DN, et al. Cloned 3T6 cell line from CD-1 mouse fetal molar dental papillae. Connect Tissue Res. 1998;37(3-4): 233-249.
    57. Sun ZL, Fang DN, Wu XY, et al.Expression of dentin sialoprotein (DSP) and other molecular determinants by a new cell line from dental papillae, MDPC-23.Connect Tissue Res. 1998;37(3-4):251-261.
    58. Hanks CT, Fang D, Sun Z, et al. Dentin-specific proteins in MDPC-23 cell line. Eur J Oral Sci. 1998;106 Suppl 1:260-266.
    59. Lundgren T, Nilsson M, Ritchie HH,et al. Junctional proteins and Ca2+ transport in the rat odontoblast-like cell line MRPC-1. Calcif Tissue Int.2001 ;68(3): 192-201.
    60. Narayanan K, Srinivas R, Ramachandran A, et al. Differentiation of
    
    embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. PNAS. 2001 ;98(8):4516-4521.
    61. Hao J, Narayanan K, Ramachandran A, et al. Odontoblast cells immortalized by telomerase produce mineralized dentin-like tissue both in vitro and in vivo. J Biol Chem.2002;277(22): 19976-19981.
    62. MacDougall M, Selden JK, Nydegger JR, et al. Immortalized mouse odontoblast cell line MO6-G3 application for in vitro biocompatibility testing. Am J Dent. 1998; 11 Spec No:S 11-16.
    63. Costa CA, Vaerten MA, Edwards CA, et al. Cytotoxic effects of current dental adhesive systems on immortalized odontoblast cell line MDPC-23. Dent Mater. 1999; 15(6):434-441.
    64. Costa CA, Edwards CA, Hanks CT. Cytotoxic effects of cleansing solutions recommended for chemical lavage of pulp exposures. Am J Dent. 2001; 14(1):25-30.
    65. MacDougall M, Unterbrink A, Carnes D,et al. Utilization of MO6-G3 immortalized odontoblast cells in studies regarding dentinogenesis. Adv Dent Res. 2001; 15:25-29.
    66. Lezot F, Descroix V, Mesbah M, et al. Cross-talk between Msx/Dlx homeobox genes and vitamin D during tooth mineralization. Connect Tissue Res. 2002;43(2-3):509-514.
    67. Blin-Wakkach C, Lezot F, Ghoul-Mazgar S, et al. Endogenous Msx1 antisense transcript: in vivo and in vitro evidences, structure, and potential involvement in skeleton development in mammals. PNAS. 2001; 98(13):7336-7341.
    68. Rani CS, MacDougall M. Dental cells express factors that regulate bone resorption. Mol Cell Biol Res Conunun. 2000;3(3): 145-152.
    69. Papagerakis P, MacDougall M, Hotton D, et al. Expression of amelogenin
    
    in odontoblasts. Bone. 2003;32(3):228-240.
    70. Lundquist P, Ritchie HH, Moore K, et al. Phosphate and calcium uptake by rat odomoblast-like MRPC-1 cells concomitant with mineralization. J Bone Miner Res. 2002; 17(10): 1801-1813.
    71. Lundquist P. Odontoblast phosphate and calcium transport in dentinogenesis. Swed Dent J Suppl. 2002;(154): 1-52.
    72. Thonemann B, Schmalz G. Immortalization of bovine dental papilla cells with simian virus 40 large t antigen. Arch Oral Biol. 2000;45(10):857-869.
    73. Thonemann B, Schmalz GBovine dental papilla-derived cells immortalized with HPV 18 E6/E7. Eur J Oral Sci. 2000;108(5):432-441.
    74. Gaikwad JS, Hoffmann M, Cavender A,et al.Molecular insights into the lineage-specific determination of odontoblasts: the role of Cbfal. Adv Dent Res. 2001;15:19-24.
    75. Chen S, Gu TT, Sreenath T, et al. Spatial expression of Cbfal/Runx2 isoforms in teeth and characterization of binding sites in the DSPP gene. Connect Tissue Res. 2002;43(2-3):338-344
    76. Unterbrink A, O'Sullivan M, Chen S, et aI.TGF beta -1 down regulates DMP-1 and DSPP in odontoblasts. Connect Tissue Res. 2002;43(2-3): 354-358.
    77. Hoffmann M, Olson K, Cavender A, et al. Gene expression in a pure population of odontoblasts isolated by laser-capture microdissection. J Dent Res. 2001.;80(11):1963-1967.
    78. Hoffmann M, Gaikwad J, Schmalz G, et al. Analysis of odontoblast gene expression using a novel approach, laser capture microdissection. Connect Tissue Res. 2002;43(2-3):376-380.
    79. Butler WT, Bhown M, Bmnn. JC, et al. Isolation, characterization and immunolocalization of a 53kDa dentin sialoprotein (DSP). Matrix.1992;
    
    12(5):343-351.
    80. B(?)gue-Kirn C, Smith AJ, Ruch JV, et al. Effects of dentin proteins, transforming growth factorβ1 and bone morphogenetic protein2 on the differentiation of odontoblast in vitro. Int J Dev Biol. 1992;36(4):491-503.
    81. B(?)gue-Kirn C, Smith AJ, Loriot M, et al. Comparative analysis of TGFβs, BMPs, IGF1, msxs, fibronectin, osteonectin and bone sialoprotein gene expression during normal and in vitro-induced odontoblast differentiation. Int J Dev Biol. 1994;38(3):405-420.
    82. Magloire H, Joffre A, Bleicher F. An in vitro model of human dental pulp repair. J Dent Res.1996;75(12):1971-1978.
    83. Murray PE, Lumley PJ, Ross HF, et al. Tooth slice organ culture for cytotoxicity assessment of dental materials. Biomaterials. 2000;21(16): 1711-1721.
    84. Chai Y, Bringas P Jr, Shuler C, et al. A mouse mandibular culture model permits the study of neural crest cell migration and tooth development. Int J Dev Biol. 1998; 42(1):87-94.
    85. Bronckers AL, Price PA, Schrijvers A, et al. Studies of osteocalcin function in dentin formation in rodent teeth. Eur J Oral Sci. 1998;106(3): 795-807.
    86. Bronckers AL, Bervoets TH, Woltgens JH. A morphometric and biochemical study of the pre-emptive development of hamster morlars in vivo. Archs oral Biol. 1982;27(10):831-840.
    87.高玉光.维甲酸对体外鼠磨牙牙胚发育影响及转化因子和纤连蛋白在牙胚发育过程中的表达.湖北医科大学博士论文,1998.
    88. Sreenath TL, Cho A, MacDougall M, et al. Spatial and temporal activity of the dentin sialoposphoprotein gene promoter: differential regulation in odontoblasts and ameloblasts. Int J Dev Biol. 1999: 43(6):509-516.
    
    
    89. Thyagarajan T, Sreenath T, Cho A, et al. Reduced expression of dentin sialophosphoprotein is associated with dysplastic dentin in mice overexpressing transforming growth factor-beta 1 in teeth. J Biol Chem. 2001;276(14):11016-11020.
    90. MacDougall M, Nydegger J, Gu TT, et al. Developmental regulation of dentin sialophosphoprotein during ameloblast differentiation: a potential enamel matrix nucleator. Connect Tissue Res. 1998; 39(1-3):25-37.
    91. Papagerakis P, Berdal A, Mesbah M, et al. Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone. 2002; 30(2):377-85.
    92.江卫民.小鼠牙本质涎磷蛋白 cDNA 克隆、表达、纯化、抗体制备及其组织表达特异性研究。第四军医大学博士学位论文。1999.
    93. Rajpar MH, Koch MJ, Davies RM, et al.Mutation of the signal peptide region of the bicistronic gene DSPP affects translocation to the endoplasmic reticulum and results in defective dentine biomineralization. Hum Mol Genet. 2002;11(21):2559-2565.
    94. Sreenath TL, Cho A, Thyagarajan T, et al. Odontoblast-specific expression of cre recombinase successfully deletes gene segments flanked by loxp sites in mouse teeth. Genesis. 2003;35(2):94-99.
    95. Jaenish R. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. PNAS. 1976;73 (4): 1260-1264.
    96. Kirk R, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987; 51(6):503-512.
    97. Gossen G ,Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. PNAS. 1992;89(12):5547-5551.
    98. Gu H, Zou YR, Rajewskey K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through
    
    Cre-loxP-Mediated gene targetting. Cell. 1993; 73(6): 1155-1164.
    99. Gordon JW, Scangos GA, Plotkin DJ, et al. Genetic transformation of mouse embryos by microinjection of purified DNA. PNAS. 1980;77(12): 7380-7384.
    100.Palmiter RD, Brinster RL, Hammer RE, et al. Dramatic growth of mice that developed from eggs microinjected with metallothionein-growth hormone fusion genes. Nature. 1982; 300(5893):611-615.
    101.Hammer RE, Pursel VG, Pexroad CE Jr.,et al.Production of transgenic rabbits,sheep and pigs by microinjection.Nature. 1985; 315(6021):680-683.
    102.Baldassarre H, Wang B, Kafidi N, et al. Production of transgenic goats by pronuclear microinjection of in vitro produced zygotes derived from oocytes recovered by laparoscopy. Theriogenology. 2003;59(3-4):831-839.
    103.刘红林等.精子介导外源 DNA 转移的研究进展.生物工程.1997;17(2):27-30.
    104.Lavitrano M, Camaioni A, Fazio VM, et al. Sperm cells as vectors for introducing foreign DNA into eggs:genetic transformation of mice. Cell, 1989,57(5):717-723.
    105.Rieth A, Pothier F, Sirard MA. Electroporation of bovine spermatozoa to carry DNA containing highly repetitive sequences into oocytes and detection of homologous recombination events. Mol Reprod Dev. 2000;57(4):338-345.
    106.Chang K, Qian J, Jiang M, et al. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer. BMC Biotechnol. 2002;2(1):5.
    107.Anthony CF, Teruhiko W. Mammalian transgenesis by intracytoplasmic sperm injection. Science. 1999; 284(5417): 1180-1183.
    108.黄为民,赖良学,乔桂林等。小鼠输精管内转染法建立人组织型涎溶
    
    酶原激活剂 (tPA) 乳腺定位表达生物反应器的研究。实验生物学报.1999;32(3):227-231。
    109.Gandolfi F. Spermatozoa, DNA binding and transgenic animals. Transgenic Res. 1998;7(3): 147-155.
    110.Gandolfi F. Sperm-mediated transgenesis. Theriogenology. 2000;53 (1): 127-137.
    111.Maione B, Lavitrano M, Spadafora C, et al. Sperm-mediated gene transfer in mice. Mol Reprod Dev. 1998;50(4):406-409.
    112.Wolf E, Schernthaner W, Zakhartchenko V, et al. Transgenic technology in farm animals--progress and perspectives. Exp Physiol. 2000;85(6): 615-625.
    113.Salter DW, Smith EJ, Hughes SH, et al. Transgenic chickens:insertion of retroviral genes into the chicken germ line. Virology. 1987;157(1): 236-240.
    114.Crittenden LB, Salter DW. Expression of retroviral genes in transgenic chickens. J Reprod Ferti(Suppl). 1990 ;41:163-167.
    115.Haskell RE, Bowen RA. Efficient prodution of transgenic cattle by retroviral infetion of early embryos.Mol Reprod Dev. 1995;40(3):386-390.
    116.Chan AW, Homan EJ, Ballou JC, et al. Transgenic cattle produced by reverse-transcribed gene transfer in oocyte. PNAS. 1998; 95(24): 14028-14033.
    117.Nagano M, Brinster CJ, Orwig KE, et al. Transgenic mice produced by retroviral transduction of male germ-line stem cells. PNAS. 2001 ;98(23): 13090-13095.
    118.Gossler A, Doetachman T, Kom R, et al. Transgenesis by means of blastocyst-derived embryonic stem celllines. PNAS. 1986; 83(23): 9065-9069.
    119.Robertson E, Bradley A, Kuehn M, et al. Germ-line transmission of genes
    
    introduced into cultured pluripotential cells by retroviral vector. Nature. 1986;323(6087):445-448.
    120.Evans MJ, Kaufman MH. Establishment in culture of pluripetential cells from mouse embryos. Nature. 1981; 292(5819): 154-156.
    121.Bradly A, Evans M, Kaufman MH, et al. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984; 309(5965):255-256.
    122.Thompson S, Clarke AR, Pow AM, et al. Germ line transmission and expression of a corrected HPRT gene produced gene targeting in embryonic stem cell. Cell. 1989;56(2):313-321.
    123.Brinster RL, Avarbock MR. Germ line transmission of donor Haplotype following spermatogonial transplantation PNAS. 1994;91(24): 11303-11307.
    124.Naito M, Tajima A, Yasuda Y, et al. Prodution of germ line chimeric chickens with high transmission rate of donor-derived gamete produced by transfer of primordial germ cells.Mol Reprod Dev. 1994; 39(2): 153-161.
    125.Piedrahita JA, Moore K, Oetama B, et al. Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biol Reprod. 1998;58(5): 1321-1329.
    126.Mueller S, Prelle K, Rieger N, et al. Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells. Mol Reprod Dev. 1999;54(3):244-254.
    127.Schnieke AE, Kind AJ, Richie WA, et al. Human factor Ⅸ transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science. 1997;278(5346):2130-2133.
    128.Cibelli JB, Stice SL, Golueke PJ, et al. Cloned transgenic claves produced from nonquiescent fetal fibroblasts. Science. 1998;280(5367): 1256-1258.
    
    
    129.Alexander B, Esmai IB, David TM, et al. Production of goat by somatic cell nuclear transfer. Nat Biotechnol. 1999; 17(5):456-461.
    130.国家自然科学基金委员会《情况交流(总第201期)》,02-4-26
    131.Smithies O, Gregg RG, Boggs SS, et al. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature. 1985;317(6034): 230-234.
    132.Wong EA, Capecchi MR. Analysis of homologous recombination in cultured mammalian cells in transient expression and stable transformation assays. Somat Cell Mol Genet. 1986; 12(1): 63-72.
    133.Doetschman T, Gregg RG, Maeda N, et al. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature. 1987;330(6148): 576-578.
    134.Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987;51(3): 503-512.
    135.Gardner RL, Brook FA. Reflections on the biology of embryonic stem (ES) cells. Int J Der Biol. 1997;41(2): 235-243.
    136.Capecchi MR. Altering the genome by homologous recombination. Science. 1989; 244(4910): 1288-1292.
    137.Smithies O. Animal models of human genetic diseases. Trends Genet. 1993; 9(4): 112-116.
    138.Colucci-Guyon E, Portier MM, Dunia I, et al. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell. 1994;79(4): 679-694.
    139.Schneider-Maunoury S, Topilko P, Seitandou T, et al. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell. 1993;75(6): 1199-1214.
    140.Tajbakhsh S, Rocancourt D, Buckingham M. Muscle progenitor cells
    
    failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature. 1996;384(6606): 266-270.
    141.Hanks M, Wurst W, Anson-Cartwright L, et al. Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science. 1995;269(5224): 679-682.
    142.Hanks MC, Loomis CA, Harris E, et al. Drosophila engrailed can substitute for mouse Engrailedl function in mid-hindbrain, but not limb development. Development. 1998; 125(22): 4521-4530.
    143.Wang Y, Jaenisch R. Myogenin can substitute for Myf5 in promoting myogenesis but less efficiently. Development. 1997; 124(13): 2507-2513.
    144.Saga Y. Genetic rescue of segmentation defect in MesP2-deficient mice by MesP1 gene replacement. Mech Dev. 1998,75(1-2): 53-66.
    145.Geng Y, Whoriskey W, Park MY, et al. Rescue ofcyclin D1 deficiency by knockin cyclin E. Cell. 1999; 97(6): 767-777.
    146.Suda Y, Nakabayashi J, Matsuo I, et al. Functional equivalency between Otx2 and Otx1 in development of the rostral head. Development. 1999; 126 (4): 743-757.
    147.Fassler R, Martin K, Forsberg E, et al. Knockout mice: How to make them and why. The immunological approach. Int Arch Allergy Immunol. 1995; 106(4):323-324.
    148.Tbase. 2001. The Transgenic/Targeted Mutation Database, http: //tbase.jax. org/.
    149.Rudnicki MA, Jaenisch R. The MyoD family of transcription factors and skeletal myogenesis. Bioessays. 1995; 17(3): 203-209.
    150.Horan GS, Ramirez SR, Featherstone MS, et al. Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of
    
    vertebrae transformed. Genes Dev. 1995;9(13): 1667-1677.
    151.Gossen M, Bonin AL, Bujard H. Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends in Biochemical Sciences. 1993; 18(12): 471-475.
    152.Palmiter RD, Norstedt G, Gelinas RE, et al. Metallothionein-human GH fusion genes stimulate growth of mice. Science. 1983; 222(4625): 809-814.
    153.Joseph H, Gorska AE, Sohn P, et al. Overexpression of a kinase-deficient transforming growth factor-t type Ⅱ receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell 1999;10(4): 1221-1234.
    154.Gonzalez FJ, Nebert DW. Evolution of the P450 gene superfamily: animal-plant 'warfare', molecular drive and human genetic differences in drug oxidation. Trends in Genetics. 1990;6(6): 182-186.
    155.Ryu DY, Levi PE, Fernandez-Salguero P, et al. Piperonyl butoxide and acenaphthylene induce cytochrome P450 1A2 and 1B1 mRNA in aromatic hydrocarbon-responsive receptor knock-out mouse liver. Molecular Pharmacology. 1996; 50(3): 443-446.
    156.Elferink J, Whitlock JP Jr. 2,3,7,8-Tetrachlorodibenzo-p-dioxin- inducible, Ah receptor-mediated bending of enhancer DNA. J Bio Chem. 1990; 265(10): 5718- 5721.
    157.Fujii-Kuriyama Y, Ema M, Mimura J, et al. Polymorphic forms of the Ah receptor and induction of the CYP1A1 gene. Pharmacogenetics. 1995; 5 Spec: S149- S153.
    158.Okino ST, Whitlock JP. Dioxin induces localised, graded changes in chromatin structure: implications for Cyplal gene transcription. Molecular and Cellular Biology. 1995;15(7): 3714-3721.
    
    
    159.Foussat J, Costet P, Galtier P, et al.The 4S benzo(a)pyrene-binding protein is not a transcriptional activator of Cyplal gene in Ah receptor-deficient (AHR-/-) transgenic mice. Arch Bio Biophy. 1998;349(2):349-355.
    160.Zaher H, Yang TJ, Gelboin HV, et al. Effect of phenobarbital on hepatic CYP1A1 and CYP1A2 in the Ahr-null mouse. Biochemical Pharmacology. 1998; 55(2): 235-238.
    161.Tomita S, Sinal CJ, Yim SH, et al. Conditional disruption of the aryl hydrocarbon receptor nuclear translocator (Arnt) gene leads to loss of target gene induction by the aryl hydrocarbon receptor and hypoxia-inducible factor 1 alpha. Mol Endocrinol.2000;14(10): 1674-1681.
    162.Jones SN, Jones PG, Ibarguen H, et al. Induction of the Cyplal dioxin-responsive enhancer in transgenic mice. Nucleic Acids Research. 1991;19(23): 6547-6551.
    163. Dunn SE, LeBlanc GA. Inhibition ofAcyl-CoA:cholesterol acyltransferase activity and reduction of serum LDL/VLDL cholesterol levels by glucobrassin derivatives. Biochemical Pharmacology. 1994;47(2):359-364.
    164.Bradlow HL, Sepkovic DW, Telang NT, et al. Multifunctional aspects of the action of indole-3-carbinole as an antitumour agent. Annals of the New York Academy of Sciences. 1999;889:204-213.
    165.Exon JH, South EH. Dietary indole-3-carbinol alters immune function in rats. Journal of Toxicology and Environmental Health Assessment 2000; 59(4): 271- 279.
    166.Kantachuvesiri S, Fleming S, Peters J, et al. Controlled hypertension, a transgenic toggle switch reveals differential mechanisms underlying vascular disease. J Biol Chem. 2001;276(39):36727-36733.
    
    
    167.No D, Yao TP, Evans RM. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. PNAS. 1996;93(8):3364-3351.
    168.Saez E, Nelson MC, Eshelman B, et al. Identification of ligands and coligands for the ecdysone-regulated gene switch. PNAS .2000;97(26): 14512-14517.
    169.Hoppe UC, Marban E, Johns DC. Molecular dissection of cardiac repolarization by in vivo Kv4.3 gene transfer. Journal of Clinical Investigation.2000; 105(8): 1077-1084.
    170.Gossen G, Bujard H.Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. PNAS. 1992;89(12):5547-5551.
    171.Herr W. The herpes simplex virus VP 16-induced complex: mechanisms of combinatorial transcriptional regulation. Cold Spring Harbor Symposia on Quantitative Biology. 1998;63: 599-607.
    172.Gossen M, Freundlieb S, Bender C, et al. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995;268(5218): 1766- 1769.
    173.Efrat S, Fusco-DeMane D, Lemberg H, et al. Conditional transformation of a pancreatic t-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. PNAS. 1995;92(8): 3576-3580.
    174.A-Mohammadi S, Alvarez-Vallina L, Ashworth LJ, et al. Delay in resumption of the activity of tetracycline-regulatable promoter following removal of tetracycline analogues. Gene Therapy. 1997; 4(9): 993-997.
    175.Furth PA, St-Onge L, Boger H, et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. PNAS. 1994;91(20): 9302-9306.
    176.Kistner A, Gossen M, Zimmermann F, et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. PNAS. 1996;93(20):10933-10938.
    
    
    177.Huettner CS, Zhang P, van Etten RA, et al. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nature Genetics. 2000;24(1): 57-60.
    178.Lee P, Morley G, Huang Q, et al. Conditional lineage ablation to model human disease. PNAS. 1998;95(19): 11371-11376.
    179.Schultze N, Burki Y, Lang Y, et al. Effecient control of gene expression by single step integration of the tetracycline system in transgenic mice. Nature Biotechnology. 1996; 14(4): 499-503.
    180.Kilby NJ, Snaith MR, Murray JAH .Site-specific recombinases: tools for genome engineering. Trends in Genetics. 1993; 9(12):413-421.
    181.Sauer B, Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. PNAS.1988; 85(14): 5166-5170.
    182.Lakso M, Sauer B, Mosinger B, et al. Targeted oncogene activation by site specific recombination in transgenic mice. PNAS. 1992;89(14):6232-6236.
    183.183. http://www. mshri.on.ca/nagy/cre.htm
    184.Metzger D, Clifford J, Chiba H, et al. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. PNAS. 1995 ;92(15):6991 - 6995.
    185.Kellendonk C, Tronche F, Monagha AP, et al. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Research. 1996; 24(8): 1404-1411.
    186.Brocard J, Feil R, Chambon P ,et al. A chimeric Cre recombinase inducible by synthetic, but not natural ligands of the glucocorticoid receptor. Nucleic Acids Research. 1998; 26(17): 4086-4090.
    187.B(?)gue-Kirn C, Krebsbach PH, Bartlett JD, et al. Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental
    
    differentiation. Eur J Oral Sci. 1998;106(5):963-970.
    188.郝建军,汪平,麻孙恺等。小鼠牙本质涎磷蛋白基因编码区的克隆及部分序列分析。中华口腔医学杂志.1999;34(6):367-369.
    189.Zhang HB, Hasty P, Bradley A, et al. Targeting frequency for deletion vectors in embryonic stem cells. Mol Cell Biol. 1994; 14:2404-2410.
    190.Mansour SL, Thomas KR, Capecchi MR, et al. Disruption of the proto-oncogene int-z in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature. 1988;336:348-353

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700