Smad3对牙本质涎磷蛋白基因表达调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙齿的发生源于上皮-间充质细胞的相互作用和相互诱导,从而激发成牙本质细胞和成釉细胞的分化、成熟、合成和分泌细胞外基质,然后羟基磷灰石晶体沉淀,矿化开始。牙本质形成和矿化是牙齿发育和牙齿损伤修复过程中的重要环节。目前研究证实,成牙本质细胞表达和分泌的牙本质非胶原蛋白,特别是牙本质涎蛋白(dentin sialoprotein,DSP)和牙本质磷蛋白(dentin phosphoprotein,DPP)被认为是牙本质特异性蛋白,在牙本质生物矿化、维持矿化组织稳定中发挥着关键的调控作用。这两种蛋白是由同一种蛋白—牙本质涎磷蛋白(dentin sialophosphoprotein,DSPP)基因的表达产物裂解而成,而且DSPP基因也是遗传性牙本质发育不全Ⅱ型和Ⅲ型的致病基因,表明DSPP基因的正确表达调控与牙本质形成和矿化密切相关。随着对DSPP基因和蛋白功能研究的进一步深入,DSPP基因的表达调控已经成为目前国内外研究的焦点。
     研究表明,DSPP基因的表达调控是一个多因素共同参与的、复杂的过程。其中,TGF-β1作为一种重要的生长因子,在成牙本质细胞分化、牙本质基质形成和矿化过程中均发挥着关键的调控作用,并且可以调控DSPP的表达。现在认为,Smad3是TGF-β1在细胞内的特异性信号分子,主要功能是将TGF-β1信号从胞浆转位至胞核内,调控目的基因的转录。但是Smad3是否能够将TGF-β1信号转位,从而调控DSPP基因的转录与表达,目前尚未见到相关报道。根据Smad3与其它基因的结合元件SBE的序列CAGAC(C/A),或者是其互补序列(T/G)GTCTG,推测其在DSPP启动子上也应该有相应的结合元件。现在已证实,转录因子Cbfal参与了DSPP的转录调控过程,但是Smad3能否和Cbfal协同作用,调控DSPP的表达,也未见到相关报道。因此研究Smad3对DSPP基因表达调控的
Tooth development begins because of the reaction and induction between epithelia and mesenchymal cells. This reaction induce odontoblast and enamaloblast to differente and maturate. These cells synthesize and secrete dentin extracellular matrix (ECM). Following this, hydroxyapatite crystal deposits in ECM and mineralizese. Dentin formation and mineralization both are important procedures in tooth development and repair. Many studies show that ECM acts as a key role in these procedures. In ECM, there are two dentin special proteins: dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). They regulate the procedure of dentin mineralization and help to preserve dentin stably. These two proteins are cleavage products expressed from a single transcription coded by dentin sialophosphoprotein (DSPP), and DSPP gene is a candidate gene for Dentinogenesis imperfecta Ⅱ /Ⅲ (DGⅠ-Ⅱ, DGⅠ-Ⅲ). So correct expression of DSPP is important during the dentin formation and mineralization.Research has shown the regulation of the expression of DSPP is a complex process influenced by many factors. Among these factors, TGF-β 1 as an important growth factor has been proved to be involved in the regulation of odontoblast differentiation, dentin formation and the expression of the DSPP. Up to date, Smad3 has been considered as specific signaling
    transcription factor? Its main function is transporting TGF-β 1 mRNA from cell plasma to cell nucleolus and regulating the transcription and expression of target gene. However, there is no research to show Smad3 is related to the transcription and expression of DSPP gene through the transduction of TGF-β 1 mRNA. According to the SBE of Smad3 [CAGAC(C/A)] or its complementary sequence [GTCTG(T/G)], it is reasonable to consider related SBE also exists in the promoter of DSPP. It has been proved that transduction factor Cbfal is involved in the regulation of the transduction and expression of DSPP, but there is no report on co-effect of Smad3 and Cbfal on the regulation of the expression of DSPP.So, it is helpful to understand the differentiation of odontoblast, the formation of the dentin and the molecules mechanism of the mineralization through the research of regulation of Smad3 to the DSPP. It will provide a new method and idea to prevent caries, pulpitis , DGⅠ-Ⅱ and DGⅠ-Ⅲ.This study used odontoblast line, MDPC-23, to construct DSPP promoter report gene vectors in order to evaluate how Smad3 regulates expression of DSPP, and the role of Smad signaling in odontoblast differentiation and ECM biosynthesis regulated by TGF-β1. Then EMSA was used to study the binding site of Smad3 on DSPP promoter to explore the molecular mechanism of TGF-β1 action during odontoblast differentiation and ECM biosynthesis.The present study consists of three parts:Part one: Function of DSPP promoter Pdspp2.6In this part, we cloned a DSPP promoter from mouse genomic DNA through PCR method. This promoter segment is about 2.6kbp (-2525~+54bp). The amplified 2.6kbp segments were cloned into luciferase report gene vector pGL3 LUC-Enhancer. The orientation of this insert was verified by DNA sequencing and cutting with two different restrict enzymes.Then the pGL3LUC-Pdspp2.6 vector was transfect into MDPC-23 cell. After examination, the results demonstrated that pGL3LUC-Pdspp2.6 had low luciferase activity. When TGF-β1 was used to investigate the effect on DSPP,
    the result indicated that the DSPP promoter vector was regulated negatively by TGF-β1 in odontoblasts. With the Smad3 existing and over expression, TGF-β 1 had more negative regulation effect on DSPP.Following the study above, we continued the research on the coordination effect of Smad3 and Cbfal on pGL3LUC-Pdspp2.6 activity. Cbfal 's subtype- Osf2 and PEBP2αA -was used. The results demonstrated that Cbfal could inhibit pGL3LUC-Pdspp2.6 activity in MDPC-23. However, TGF-β1 can inhibit function of Cbfal. That is to say when Cbfal was affect by TGF-β1, pGL3LUC-Pdspp2.6 activity is higher than that without TGF-β1. This result leads to the conclusion indirectly that Cbfal can inhibit expression of DSPP. With Smad3 (wild type) used with Cbfal on pGL3LUC-Pdspp2.6, the results showed much higher inhibition than their single effect. When Osf2, subtype of cbfal, coordinated with Smad3△C, mutant type of Smad3, the results showed no change. But when PEBP2αA, another subtype of Cbfal coordinated with Smad3AC, TGF-β1 can regulate pGL3LUC-Pdspp2.6 activity. These results indicate that PEBP2αA and Osf2 have different function in the transcriptional regulation of DSPP.Part two: Regulation function of Smad3 on DSPP promoter segments Following part one research, in order to clarify the binding site of Smad3 on DSPP promoter, this part continued to construct pGL3LUC-Pdspp vector. First, three DSPP promoter segments, 235bp、 249bp and 464bp, were amplified by PCR. Then they were cloned into the pMD-18T vector by T4 ligase. The orientation of these inserts was verified. Second, the inserted fragments were recloned into pGL3 luciferase(LUC) enhanced expression vector. Then three luciferase report gene vector were constructed, pGL3LUC-Pdspp-410~-176bp, pGL3LUC-Pdspp-195~+54bp and pGL3LUC-Pdspp-410~+54bp. Orientation of all inserts respect to the pGL3LUC vector was verified by restriction enzymes digestion. Then these three vectors were transfected into MDPC-23 cell individually. The results demonstrate that pGL3LUC-Pdspp-410~-176bp and pGL3LUC-Pdspp-410~+54bp have higher promoting activity. As to the pGL3LUC-Pdspp-195~+54bp, although has
    basic promoter, it had low promoting activity. From these results we can conclude that there is one inhibit element at least in DSPP promoter locating in -195~+54bp region.To evaluate the effect of TGF-β1/Smad3 signal on the transcriptional regulation of DSPP, 10ng/ml TGF-β1 was used to evaluate luciferase activity of the three segments mentioned above. The results show that pGL3LUC-Pdspp-410~-176bp and pGL3LUC-Pdspp-410~+54bp can be regulated negatively more significantly by TGF-β1 than pGL3LUC-Pdspp-195 ~+54bp. From these results we can conclude that in the region -410~-176bp of DSPP promoter, binding site of TGF-β1's signal factor exists.Then wild type Smad3 and mutant type Smad3△C were coordinated with three promoter segments individually. The results show that Smad3 could inhibit promoting activity of pGL3LUC-Pdspp-410~-176bp and pGL3LUC- Pdspp -410~+ 54bp, but it could not inhibit the promoting activity of pGL3LUC- Pdspp -195~+54bp. This result indicates again there is one binding site of Smad3 at least locating in the region -410~-176bp of DSPP. Evidence collected from the experiment past indicates that basic promoter of DSPP is in the region of -95~+54bp, but through our experiment, we can find the -410~-176bp segment also has promoting activity, which indicates DSPP can start its transcriptional progress without basic promoting region.Part three: experimental localization of binding site of Smad3 to DSPP promoterFrom two parts discussed above, we knew the relationship between TGF-β1 and Smad3 during their regulation to DSPP and discovered the binding region of Smad3 exsisting in DSPP promoter.In this part, we first constructed the pMD-18T-Smad3 vector, then recloned Smad3 into the green fluorescent protein (pEGFP-Nl) expression vector. The orientation of insert was verified by cutting with two different restrict enzymes, and the new clone was named pEGFP-Smad3. Then, pEGFP-Smad3 expression vector was transfected into MDPC-23 cells. By the method of immunofluorescence, we discovered green fluorescence in the cell
引文
1. MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT. Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem. 1997 Jan 10;272(2):835-42.
    2. Feng JQ, Luan X, Wallace J, Jing D, Ohshima T, Kulkami AB, D'Souza RN, Kozak CA, MacDougall M. Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (Dspp) gene, which codes for both dentin sialoprotein and dentin phosphoprotein. J Biol Chem. 1998 Apr 17;273(16):9457-64
    3. Gu K, Chang S, Ritchie HH, Clarkson BH, Rutherford RB. Molecular cloning of a human dentin sialophosphoprotein gene. Eur J Oral Sci. 2000 Feb;108(1):35-42.
    4. Ritchie HH, Hou H, Veis A, Butler WT. Cloning and sequence determination of rat dentin sialoprotein, a novel dentin protein. J Biol Chem. 1994,269(5):3698-702.
    5. George A, Srinivasan RThotakura SR, Liu K, Veis A. Rat dentin matrix protein 3 is a compound protein of rat dentin sialoprotein and phosphophoryn. Connect Tissue Res. 1999;40(1):49-57.
    6. Bleicher F, Couble ML, Farges JC, et al. Senquential expression of matrix protein genes in developing rat teeth. Matix Biol, 1999:18(2):133-143
    7. Begue-Kirn C, Krebsbach PH, Bartlett JD, Butler WT. Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during routine dental differentiation. Eur J Oral Sci 1998,106:963-970
    8. Begue-Kirn C, Ruch JV, Ridall AL, Butler WT. Comparative analysis of mouse DSP and DPP expression in odontoblasts, preameloblasts, and experimentally induced odontoblast-like cells. Eur J Oral Sci 1998;106(suppl):254-259
    9. Sreenath TL, Cho A, MacDougall M, Kulkarni AB. Spatial and temporal activity of the dentin sialophosphoprotein gene promoter: differential regulation in odontoblasts and ameloblasts. Int J Dev Biol. 1999 Sep;43(6):509-16.
    10.江卫民.小鼠牙本质涎磷蛋白cDNA克隆、表达、纯化、抗体制备及其组织表达特异性研究。第四军医大学博士学位论文。1999年
    11. Papagerakis P, Berdal A, Mesbah M, Peuchmaur M, Malaval L, Nydegger J, Simmer J, Macdougall M. Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone. 2002 Feb;30(2):377-85.
    12.张蓉.牙本质涎磷蛋白在牙齿发育、矿化及牙髓损伤修复中作用的研究.第四军医大学博士学位论文,2001年
    13. Xiao S, Yu C, Chou X, Yuan W, Wang Y, Bu L, Fu G, Qian M, Yang J, Shi Y, Hu L, Han B, Wang Z, Huang W, Liu J, Chen Z, Zhao G, Kong X. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet. 2001 Feb;27(2):201-4.
    14. Fisher LW, Jain A, Tayback M, Fedarko NS. Small Integrin Binding Ligand N-Linked Glycoprotein Gene Family Expression in Different Cancers. Clin Cancer Res. 2004 Dec 15; 10(24):8501-8511.
    15. Qin C, Brunn JC, Cadena E, Ridall A, Butler WT. Dentin sialoprotein in bone and dentin sialophosphoprotein gene expressed by osteoblasts. Connect Tissue Res. 2003;44 Suppl 1:179-83.
    16. Qin.C, J.C. Brunn, E. Cadena, A. Ridall, H. Tsujigiwa, H. Nagatsuka, N. Nagai, and W. T. Butler, The Expression of Dentin Sialophosphoprotein Gene in Bone. J Dent Res 2002, 81(6):392-394,
    17. Shiba H, Mouri Y, Komatsuzawa H, Ouhara K, Takeda K, Sugai M, Kinane DF, Kurihara H. Macrophage inflammatory protein-3alpha and beta-defensin-2 stimulate dentin sialophosphoprotein gene expression in human pulp cells. Biochem Biophys Res Commun. 2003 Jul 11;306(4):867-71.
    18. Mina M, Braut A. New insight into progenitor/stem cells in dental pulp using Colla1-GFP transgenes. Cells Tissues Organs. 2004; 176(1-3):120-33.
    19. Ogbureke KU, Fisher LW. Expression of SIBLINGs and their partner MMPs in salivary glands. J Dent Res. 2004 Sep;83(9):664-70.
    20. Gaikwad JS, Hoffmann M, Cavender A, Bronckers AL, D'Souza RN. Molecular insights into the lineage-specific determination of odontoblasts: the role of Cbfa1. Adv Dent Res. 2001 Aug;15:19-24.
    21. Chen S, Gu TT, Sreenath T, Kulkarni AB, Karsenty G, MacDougall M. Spatial expression of Cbfa1/Runx2 isoforms in teeth and characterization of binding sites in the DSPP gene. Connect Tissue Res. 2002;43(2-3):338-44.
    22. MacDougall M, Unterbrink A, Carnes D, Rani S, Luan X, Chen S. Utilization of MO6-G3 immortalized odontoblast cells in studies regarding dentinogenesis. Adv Dent Res. 2001 Aug;15:25-9.
    23. Unterbrink A, O'Sullivan M, Chen S, MacDougall M. TGF beta-1 downregulates DMP-1 and DSPP in odontoblasts. Connect Tissue Res. 2002;43(2-3):354-8.
    24. Thyagarajan T, Screenath T, Cho A et al. Reduced expression of dentin sialophosphoprotein is associated with dysplastic dentin in mice overexpressing transforming growth factor-pM in teeth. J Biol Chem,2001 April;276(14):l1016-20
    25. He WX, Niu ZY, Zhao SL, Jin WL, Gao f, Smith AJ. TGF-beta activated Smad signalling leads to a Smad3-mediated down-regulation of DSPP in an odontoblast cell line. Arch Oral Biol. 2004 Nov;49(11):911-8.
    26. Tsuboi T, Mizutani S, Nakano M, Hirukawa K, Togari A. Fgf-2 regulates enamel and dentine formation in mouse tooth germ. Calcif Tissue Int. 2003 Nov;73(5):496-501. Epub 2003 Sep 10.
    27. Narayanan K, Srinivas R, Ramachandran A, Hao J, Quinn B, George A. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad Sci USA. 2001 Apr 10;98(8):4516-21. Epub 2001 Apr 03.
    28. Baba O, Qin C, Brunn JC, Wygant JN, McIntyre BW, Butler WT. Colocalization of dentin matrix protein 1 and dentin sialoprotein at late stages of rat molar development. Matrix Biol. 2004 Oct;23(6):371-9.
    29. Ye L, MacDougall M, Zhang S, Xie Y, Zhang J, Li Z, Lu Y, Mishina Y, Feng JQ. Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem. 2004 Apr 30;279(18): 19141-8. Epub 2004 Feb 13.
    30. Saito T, Ogawa M, Hata Y, Bessho K. Acceleration effect of human recombinant bone morphogenetic protein-2 on differentiation of human pulp cells into odontoblasts. J Endod. 2004 Apr;30(4):205-8.
    31. Papagerakis P, MacDougall M, Berdal A. Differential epithelial and mesenchymal regulation of tooth-specific matrix proteins expression by 1,25-dihydroxyvitamin D3 in vivo. Connect Tissue Res. 2002;43(2-3):372-5.
    32. Chen S, Unterbrink A, Kadapakkam S, Dong J, Gu TT, Dickson J, Chuang HH, MacDougall M. Regulation of the Cell Type-specific dentin sialophosphoprotein gene expression in mouse odontoblasts by a novel transcription repressor and an activator CCAAT-binding factor. J Biol Chem. 2004 Oct 1;279(40):42182-91. Epub 2004 Jul 28.
    33. Narayanan K, Ramachandran A, Peterson MC, Hao J, Kolsto AB, Friedman AD, George A. The CCAAT enhancer-binding protein (C/EBP)beta and Nrf1 interact to regulate dentin sialophosphoprotein (DSPP) gene expression during odontoblast differentiation. J Biol Chem. 2004 Oct 29;279(44):45423-32. Epub 2004 Aug 12.
    34. Jontell M, Linde A. Non-collagenous proteins of predentine from dentinogenically active bovine teeth. Biochem J, 1983, 214(3):769-776
    35. Tagaki Y, Veis A. Isolation of phosphophoryn from human dentin organic matrix. Calcif Tissue Int, 1984 May;36(3):259-65.
    36. Gorter de Vries I, Quartier E, Van Steirteghem A, Boute P, Coomans D, Wisse E. Characterization and immunocytochemical localization of dentine phosphoprotein in rat and bovine teeth. Arch Oral Biol, 1986, 31(1):57-66
    37. Rahima M, Tsay TG, Andujar M, et al. Localization of phosphophoryn in rat incisor dentin using immunocytochemical techniques. J Bone Miner Res. 1995 Apr; 10(4):607-15.
    38. Marsh ME. Self-association of calcium and magnesium complexes of dentin phosphophoryn. Biochemistry. 1989 Jan 10;28(1):339-45.
    39. Zanetti M, de Bernard B, Jontell M, Linde A. Ca~(2+)-binding studies of the phosphoprotein from rat-incisor dentine. Eur J Biochem. 1981 Jan; 113(3):541-5
    40. Kuboki Y, Fujisawa R, Tsuzaki M, Liu CF, Sasaki S. Presence of lysinoalanine and histidinoalanine in bovine dentin phosphoprotein. Calcif Tissue Int. 1984 Jan;36(1):126-8.
    41. Stetler-Stevenson WG, Veis A. Type Ⅰ collagen shows a specific binding affinity for bovine dentin phosphophoryn. Calcif Tissue Int. 1986 Mar;38(3):135-41.
    42. Septier D, Torres-Quintana MA, Menashi S, George A, Goldberg M. Inositol hexasulphate, a casein kinase inhibitor, alters the distribution of dentin matrix protein 1 in cultured embryonic mouse tooth germs. Eur J Oral Sci. 2001 Jun; 109(3): 198-203.
    43. Braut A, Kollar EJ, Mina M. Analysis of the odontogenic and osteogenic potentials of dental pulp in vivo using a Colla1-2.3-GFP transgene. Int J Dev Biol. 2003 May;47(4):281-92.
    44. Suzuki Y, Yamaguchi A, Ikeda T, Kawase T, Saito S, Mikuni-Takagaki Y. In situ phosphorylation of bone and dentin proteins by the casein kinase Ⅱ-like enzyme. J Dent Res. 1998 Oct;77(10): 1799-806.
    45. Butler WT, Ritchie HH. The nature and functional significance of dentin extracellular matrix protein. Int J Dev Biol, 1995,39:169-79
    46. Lussi A, Crenshaw MA, Linde A. Induction and inhibition of hydroxyapatite formation by dentin phosphoprotein in vitro. Archs Oral Biol, 1988;33:685-91
    47. Traub W, Jodaikin A, Arad T, Veis A, Sabsay B. Dentin phosphophoryn binding to collagen fibrils. Matrix. 1992 Jun; 12(3): 197-201.
    48. Furedi-Milhofer H, Moradian-Oldak J, Weiner S, Veis A, Mintz KP, Addadi L. Interactions of matrix proteins from mineralization tissues with octacalcium phosphate. Connect Tissue Res. 1994;30(4):251-64.
    49. Butler WT. Dentin matrix proteins. Eur J Oral Sci. 1998 Jan; 106 Suppl 1:204-10.
    50. MacDougall M, Nydegger J, Gu TT, Simmons D, Luan X, Cavender A, D'Souza RN. Developmental regulation of dentin sialophosphoprotein during ameloblast differentiation: a potential enamel matrix nucleator. Connect Tissue Res. 1998;39(1-3):25-37; discussion 63-7.
    51. Lussi A, Linde A. Mineral induction in vivo by dentin proteins. Caries Res. 1993;27(4):241-8.
    52. Van den Bos T, Beertsen W. Bound phosphoproteins enhance mineralization of alkaline phosphatase-collagen complexes in vivo. J Bone Miner Res, 1994, 9(8):1 205-301
    53.欧阳勇,李玉晶,宿颖.人牙本质磷蛋白的提取与特性分析.中华口腔医学杂志,1999,34(2):112-5
    54.欧阳勇,李玉晶,刘晓勇等.人牙本质磷蛋白对小型猪修复性牙本质形成作用的实验研究.中华口腔医学杂志,1999,34(5):295-7
    55. Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun. 2001 Jan 19;280(2):460-5.
    56. Witkop CJ. Hereditary defects in enamel and dentin. Acta Genet, 1957, 7:236-239
    57. Shields, E., Bixler, D., and El-Kafrawy, A. A proposed classification for heritable human dentin defects with a description of a new entity .Arch. Oral Biol.1973. 18:543-553.
    58. MacDougall. Dental Structural Diseases Mapping to Human Chromosome 4q21. Connective Tissue Research, 2003.44(Suppl. 1): 285-291,
    59. Ball,S.P., Cook,PJ.L., Mars,M.,Buckton, K.E.. Linkagebetween dentinogenesis imperfecta and GC. Ann. Hum. Genet. 1982 46:35-40.
    60. Crall, M.G. Genetic marker study of dentinogenesis imperfecta. Masters Thesis, Ohio State University, Columbus. 1989
    61. Crall, M.G., Murray, J.C., and Beutow, K.H.. Multipoint linkage analysis of dentinogenesis imperfecta (DGI) on 4q. Proc Finn Dent Soc. 1992, 88(suppl. l):286-293.
    62. Crobsy, A.H., Edwards, S.J., Murray, J.C., Dixon, MJ. Genomic organization of the human osteopontin gene: Exclusion of the locusfrom a causative role in the pathogenesis of dentinogenesis imperfecta typell. Genomics 1995 27:155-160.
    63. Crobsy, A.H., Scherpbier-Heddema, T., Wijmenga, C, Altherr, M.R., Murray, J.C., Buetow, K.H., and Dixon, M.J. Genetic mapping of the dentinogenesis imperfecta type II locus. Am. J. Hum. Genet. 1995, 57:832-839.
    64. Aplin, H.M., Hirst, K.L., and Dixon, M.J. Refinement of the dentinogenesis imperfecta type II locus to an interval of less than 2 centi-Morgans at chromosome 4q21 and the creation of a yeast artificial chromosome contig of the critical region. J. Dent. Res. 1999, 78(6): 1270-1276.
    65. MacDougall M, DuPont BR, Simmons D, et al. Assignment of DMP1 to human chromosome 4 band 4q21 by in situ hybridization. Cytogenet Cell Genet, 1996, 74:189
    66. MacDougall M, Jeffords L, Gu T T, Otterund B, Leppert M, Leach R. Genetic mapping of the dentinogenesis imperfecta type III locus. J. Dent. Res. 1999 78(6): 1277-1282.
    67. Dean, D.D., Hartsfield, J.K., Wright, J.T., and Hart, T.C. Genetic linkage of dentin dysplasia type Ⅱ to chromosome 4q. J. Craniofac. Genet. Dev. Biol. 1997, 17:172-177.
    68. Linde, A., and Goldberg, M. Dentinogenesis. Crit. Rev. Oral Biol. 1993 Med. 4:679-728.
    69. Crosby, A.H., Lyu, M.S., Lin, K., McBride, O.W.,Kerr, J.M., Aplin, H.M.. Mapping of the human and mouse bone sialoprotein and osteopontin loci. Mamm. Genome. (1996) 7:149-151.
    70. Aplin, H.M., Hirst, K.L., Crosby, A.H., and Dixon, M.J. Mapping of the human dentin matrix acidic phosphoprotein gene (DMP1) to the dentinogenesis imperfecta type Ⅱ critical region at chromosome 4q21. Genomics, 1995, 30:347-349
    71. MacDougall M, Simmons D, Luan X, Gu TT, DuPont BR. Assignment of dentin sialophosphoprotein to human chromosome 4 band q21.3 by in situ hybridization. Cytogenet Cell Genet, 1997, 79(1-2): 121-122
    72. MacDougall M. Refined mapping of the human dentin sialophosphoprotein (DSPP) gene within the critical dentinogenesis imperfecta type Ⅱ and dentin dysplasia type Ⅱ loci. Eur J Oral Sci, 1998, 106(suppl 1):227-233
    73. Xiao S, Yu C, Chou X, Yuan W, Wang Y, Bu L, Fu G, Qian M, Yang J, Shi Y, Hu L, Han B, Wang Z, Huang W, Liu J, Chen Z, Zhao G, Kong X. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat. Genet. 2001, 27(2):201-204.
    74. Zhang X, Zhao J, Li C, Gao S, Qiu C, Liu P, Wu G, Qiang B, Lo W H, Shen Y. DSPP mutation in dentinogenesis imperfecta Shields type Ⅱ. Nat. Genet. 2001, 27(2): 151-152.
    75.王英.遗传性牙本质发育不全Ⅱ型致病基因的定位与克隆.第四军医大学博士学位论文,2001
    76. Malmgren B, Lindskog S, Elgadi A, Norgren S. Clinical, histopathologic, and genetic investigation in two large families with dentinogenesis imperfecta type Ⅱ. Hum Genet. 2004 Apr; 114(5):491-8. Epub 2004 Feb 03.
    77. Kim JW, Nam SH, Jang KT, Lee SH, Kim CC, Hahn SH, Hu JC, Simmer JP. A novel splice acceptor mutation in the DSPP gene causing dentinogenesis imperfecta type Ⅱ. Hum Genet. 2004 Aug; 115(3):248-54. Epub 2004 Jul 06.
    78. Kim JW, Hu JC, Lee JI, Moon SK, Kim YJ, Jang KT, Lee SH, Kim CC, Hahn SH, Simmer JP. Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type Ⅱ. Hum Genet. 2004 Dec 8; [Epub ahead of print]
    79. Takagi Y, Veis A. Matrix protein differences between human normal and dentinogenesis imperfecta dentin. In: Veis A (ed). The Chemistry and biology of mineralized connective tissues. Elsever/North-Holland, New York, 1981, 233
    80. Takagi Y, Veis A, Sauk JJ. Relation of minerlization defects in collagen matrices to non-collagen component: identification of a molecular defect in dentinogenesis imperfecta. Clin Orthop Related Res, 1983, 176:282-290
    81. Takagi Y, Sasaki. Histological distribution of phosphophoryn in normal and pathological human dentins. J Oral Pathol, 1986, 15:463-467
    82. Sreenath T, Thyagarajan T, Hall B, Longenecker G, D'Souza R, Hong S, Wright JT, MacDougall M, Sauk J, Kulkarni AB. Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type Ⅲ. J Biol Chem. 2003 Jul 4;278(27):24874-80. Epub 2003 Apr 29.
    83. Dong J, Gu T, Jeffords L, Macdougall M. Dentin phosphoprotein compound mutation in dentin sialophosphoprotein causes dentinogenesis imperfecta type Ⅲ. Am J Med Genet A. 2004 Dec 16; 132A(3):305-309 [Epub ahead of print]
    84. Melnick, M., Shields, E.D., and Burzynski, N.J. Clinical Dysmorphology of Oral-Facial Structures (Wright and Sons, Bristol, England). 1982.
    85. Witkop C J. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol, 1998, 17, 547-553.
    86. Rajpar MH, Koch MJ, Davies RM, Mellody KT, Kielty CM, Dixon MJ. Mutation of the signal peptide region of the bicistronic gene DSPP affects translocation to the endoplasmic reticulum and results in defective dentine biomineralization. Hum Mol Genet. 2002 Oct 1;11(21):2559-65.
    87. Cheng-Ming Chuong. Molecular basis of epithelial appendage morphogenesis. R. G. Landes Company. 1998; Chapter 9:157~173
    88. Thesleff I. and Aberg T. Molecular regulation of tooth development. Bone. 1999; 25(1): 123~125
    89. Massague J, Cheifetz S, Laiho M, et al. Transforming growth factor-beta. Cancer Surv 1992;12:81—103.
    90. Ruch JV, Lesot H, Begue-kirn C. Odontoblast differentiation. Int J Dev Biol, 1995,39:51-68
    91. Thesleff I, Aberg T. Molecular regulation of tooth development.Bone 1999 Jul;25(1): 123-125
    92. David Chin, Glen M. Boyle, Peter G. Parsons, William B. Coman What is transforming growth factor-beta (TGF-b)? The British Association of Plastic Surgeons (2004)57, 215-221
    93.文玲英,吴海珍.现代牙髓免疫学.合肥:安徽科学技术出版社.1998;111-112
    94.金伯泉,李恩善,许辉等.细胞与分子免疫学.西安:世界图书出版社,1995:137-8
    95. Ruch JV. Odontoblast commitment and differentiation. Biochem Cell Biol, 1998;76(6):923-938
    96. Keranen SVE, Kettunen P, Aberg T, et al. Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions. Dev Genes Evol, 1999;209:495-506
    97. Roberts AB, Spore MB. The transforming growth factor βs. In Peptide Growth Factors and Their Receptors Part Ⅰ (Sporn, M.B. & Roberts, A.B., eds), 1990, 95:419—472.
    98. Thesleff I, Vaahtokari A, Kettunen P, et al. Epithelial-mesenchymal signaling during tooth development. Connect Tissue Res, 1995,32:9
    99. D'souza RN, Happonen RP, Flanders KC, et al. Histochemical localization of transforming growth factor-β1 in developing rat molars using antibodies to different epitopes. J Biol Buccale, 1990,18(4):299
    100. Jepsen S, Schiltz P, Strong DD, et al. Transformin growth factor-(1 mRNA in neonatal ovine molars visualized by in situ hybridization: potential role for the stratum intermedium. Arch Oral Biol,, 1992,37(8):645
    101.苏凌云,吴补领,史俊南.TGF-β1、TGF-β2、TGF-β3蛋白在人牙胚表达的免疫组化研究.牙体牙髓牙周病学杂志,2000,10(6):307-9
    102. Vaahtokari A, Vainio S, Thesleff I. Association between transforming growth factor-β1 RNA expression and epithelial-mesenchymal interaction during tooth morphogenesis. Development, 1991,113(3):985
    103. Begue-Kirn C, Ruch JV, Ridall AL,et al. Comparative analysis of mouse DSP and DPP expression in odontoblasts, preameloblasts, and experimentally induced odontoblast-like cells. Eur J Oral Sci 1998 Jan;106 Suppl 1:254
    104. Tziafas D. Basic mechanism of cytodifferentiation and dentinogenesis during dental pulp repair. Int J Dev Biol, 1995, 39:281-90
    105. Smith AJ, Tobias RS, Murray PE, et al. Transdentinal stimulation of reactionary dentinogenesis in ferrets by dentine matrix components. J Dent 2001 Jul;29(5):341-6
    106. D'souza RB, Bachman T, Banmgarcner,et al. Characterization of cellular response involved in reparative dentinogenesis in rat molars. J Dent Res, 1995,74:702-9
    107. Smith AJ, Cassidy B, Perry H, et al. Reactionary dentinogenesis. Int J Dev Biol, 1995,39(l):270
    108. Tziafas D, Papadimitriou S. Role of exogenous TGF-pin induction of reparative dentinogenesis in vivo. Eur J Oral Sci, 1998,106 (suppl I): 192
    109. Sloan AJ, Smith AJ. Stimulation of the dentine-pulp complex of rat incisor teeth by transforming growth factor-beta isoforms 1-3 in vitro. Arch Oral Biol, 1999,44(2); 149
    110. Hu CC, Zhang C, Qian Q, et al. Reparative dentin formation in rat molars after direct pulp capping with growth factor. J Endod, 1998,24(11):740
    111. Cordeiro MF. Beyond Mitomycin: TGF-beta and wound healing. Prog Retin Eye Res. 2002 Jan;21(l):75-89.
    112. Yigong Shi. Joan Massague. Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell, Vol. 2003,113, 685-700, June 13,
    113. Peter ten Dijke, Caroline Shill. New insights into TGF-b-Smad Signalling. TRENDS in Biochemical Sciences Vol.29 No.5 May 2004
    114. Sekelsky J, Newfeld S, Raftery L et al. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in drosaphila melanogaster. Genetics, 1995139(3):1347
    115. Derynck R, Gelbart WM, Harland RM, et al. Nomenclature: vertebrate mediators of TGFbeta family signals. Cell 1996 Oct 18;87(2):173
    116. Kano K, Notani A, Nam SY, et al. Cloning and studies of the mouse cDNA encoding Smad3.J Vet Med Sci 1999 Mar;61(3):213-9
    117. Zhang Y, Feng X, Derynck R, et al. The tumor suppressor Smad4/DPC4 as a central mediator of Smad function. Curr Biol. 1997 ;7(4):270-6
    118. Attisano L, Wrana JL. Smads as transcriptional co-modulators. Curr Opin Cell Biol 2000 Apr; 12(2):235-43
    119. Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 2000 Apr 17;19(8):1745-54
    120. Kawabata M, Miyazono K. Signal transduction of the TGF-beta superfamily by Smad proteins.J Biochem (Tokyo) 1999 Jan;125(l):9-16
    121. Baker JC, Harland RM. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev, 1996,10:1880
    122. Liu F. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature, 1996,381:620
    123. Shi Y. Structural insights on Smad function in TGF-beta signaling. Bioessays 2001 Mar;23(3):223-32
    124. Mirura, S., Takeshita, T., Asao, H., Kimura, Y, Murata, K., Sasaki, Y, Hanai, J.I., Beppu, H., Tsukazaki, T, Wrana, J.L., et al. (2000). Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol. Cell. Biol. 20, 9346-9355.
    125. Hocevar, B.A., Smine, A., Xu, X.X., and Howe, P.H. (2001). The adaptor molecule Disabled-2 links the transforming growth factorpreceptors to the Smad pathway. EMBO J. 20, 2789-2801.
    126. Furuhashi, M., Yagi, K., Yamamoto, H., Furukawa, Y, Shimada, S. .Nakamura, Y, Kikuchi, A., Miyazono, K., and Kato, M. (2001). Axin facilitates Smad3 activation in the transforming growth factor |3 signaling pathway. Mol. Cell. Biol. 21, 5132-5141.
    127. Tang, Y, Katuri, V., Dillner, A., Mishra, B., Deng, C.X., and Mishra, L. (2003). Disruption of transforming growth factor-p signaling in ELF p-spectrin-deficient mice. Science 299, 574-577.
    128. Wu G, Chen YG, Ozdamar B, et al. Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science 2000 Jan 7;287(5450):92-7
    129. Tsukazaki T, Chiang TA, Davison AF, et al. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 1998 Dec 11;95(6):779-91
    130. Di Guglielmo, G M, Le Roy C, Davidson A F, Wrana J L.. Distinct endocytic pathways regulate TGF-(3 receptor signaling and turnover. Nat. Cell Biol. 2003, 5, 410-421.
    131. Xu L, Chen Y G, Massague J. Smad2 nuclear import function masked by SARA and unmasked by TGFβ-dependent phosphorylation. Nat. Cell Biol. 2000, 2, 559-562.
    132. Dennler S, Itoh S, Vivien D, et al. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998 Jun l;17(ll):3091-100
    133. Jonk LJ, Itoh S, Heldin CH, et al. Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-beta, activin, and bone morphogenetic protein-inducible enhancer. J Biol Chem 1998 Aug 14;273(33):21145-52
    134. Kawabata M, Inoue H, Hanyu A, et al. Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J 1998 Jul 15;17(14):4056-65
    135. Johnson K, Kirkpatrick H, Comer A, et al. Interaction of Smad complexes with tripartite DNA-binding sites. J Biol Chem 1999 Jul 16;274(29):20709-16
    136. Zawel L, Dai JL, Buckhaults P, et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1998 Mar;l(4):611-7
    137. Labbe E, Silvestri C, Hoodless PA, et al. Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell 1998 Jul;2(l): 109-20
    138. Dennler S, Huet S, Gauthier JM. A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Oncogene 1999 Feb 25;18(8):1643-8
    139. Chen X, Weisberg E, Fridmacher V, et al. Smad4 and FAST-1 in the assembly of activein-responsive factor. Nature 1997,389:85-89
    140. Randall, R.A., Germain, S., Inman, GS., Bates, P.A., and Hill, C.S. Different Smad2 partners bind a common hydrophobic pocket in Smad2 via a defined proline-rich motif. EMBO J. 2002, 21, 145-156.
    141. Xun Xu, Lesley Jeong, Jun Han, et al. Developmental expression of Smad1-7 suggests critical function of TGF-p/BMP signaling in regulating epithelialmesenchymal interaction during tooth morphogenesis. Int. J. Dev. Biol. (2003, 47: 31-39)
    142. Alam J, Cook JL. Reporter genes: appliacation to the stud of mammalian gene transcription. Anal Biochem. 1990; 188:245-249
    143. Ow DW, et al. Transient and stable expression of the firefly luciferase gene in plants and transgenic plants. Science. 1986; 234: 856-862
    144. de Wet JR, et al. Firefly luciferase gene; structure and expression in mammalian cells. Mol Cell Biol. 1987; 7: 725-731
    145. Lee KS, Kim HJ, Li QL, et al. Runx2 is a common target of transforming growth factor betal and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 2000 Dec;20(23):8783-92
    146. Ducy P, Zhang R, Geoffroy V et al. Osf2/Cbfal: a transcriptional activator of osteoblast differentiation. Cell 1997 May 30;89(5):747-54
    147. Komori T, Yagi H, Nomura S, et al.Targeted disruption of Cbfal res μlts in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755-64
    148. Otto F, Thornell AP, Crompton T, et al. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765-771
    149. Alliston T, Choy L, Ducy P et al. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfal and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 2001 May l;20(9):2254-72
    150. Thirunavukkarasu K, Mahajan M, McLarren K W, Stifani S, Karsenty G Two domains unique to osteoblast-specific transcription factor Osf2/Cbfal contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Mol. Cell. Biol. 1998, 18(7):4197-4208.
    151. Javed A, Barnes G L, Javed A, Jassanya B O, Stein J L, Gerstenfeld L, Stein GS,Lian J B. Cbfal family members act as a negative regulator of the bone siaoloprotein gene. J. Bone Min. Res. 1999, 14:S165.
    152. Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G. Missense mutations abolishing DNA binding of the

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700