核心结合因子α1对鼠牙本质涎磷蛋白基因转录调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙齿是特殊的矿化器官,由釉质、牙本质、牙骨质和牙髓组成,其中牙本质构成牙齿的主体。牙本质起源于牙源性上皮和外胚间充质的相互作用,进而诱导成牙本质细胞分化成熟,合成和分泌细胞外有机基质,然后羟基磷灰石晶体沉积,矿化开始形成。在矿化过程中,细胞外基质起着非常重要的作用。其中最关键的牙本质涎蛋白(dentin sialoprotein,DSP)和牙本质磷蛋白(dentin phosphoprotein,DPP)是目前普遍公认的牙本质特异性蛋白,它们来源于同一个编码基因——牙本质涎磷蛋白(dentin sialophosphoprotein,DSPP)基因。长期以来,国内外学者对DSPP基因及其编码蛋白做了大量的研究,包括基因结构、染色体定位、蛋白结构和功能分析等,然而关于DSPP基因转录调控方面的研究报道甚少。
     核心结合因子α1(core binding factor α1,cbfα1)是一种成骨细胞特异性转录因子,可以诱导成骨前体细胞合成和分泌ALP、OC、OPN、BSP等矿化相关蛋白,并向成骨细胞分化,因此在成骨分化过程中发挥着至关重要的作用。许多矿化相关蛋白基因的启动子上都已发现有cbfα1的结合位点,如Ⅰ型胶原、OC、OPN、BSP、ALP、金属蛋白酶13等。国内外学者的研究证实cbfα1在牙齿发育过程中存在着时空表达的特异性,其调控的下游蛋白包括多种牙本质基质中重要的矿化组织特异性蛋白。近来的研究又发现由成釉细胞分泌的另外一种牙齿特异性蛋白——成釉蛋白的启动子上也存在2个cbfα1的结合位点,那么cbfα1在DSPP基因的
Tooth is a special mineralized organ composed of enamel, dentin, cementum and pulp. Dentin forms the main part of tooth. During dentin formation, instructive epithelial-mesenchymal interactions lead to the cytodifferentiation of ectomesenchymal cells into odontoblasts that produce dentin extracellular matrix (ECM). Previous studies have identified that dentin sialoprotein (DSP) and dentin phosphoprotein (DPP) which are dentin-specific proteins play a very important role during the process of cytodifferentiation and hydroxyapatite crystal multiplication. They are cleavage products of a primary transcript encoded by a single gene termed dentin sialophosphoprotein (DSPP) gene. Many studies have been made about DSPP gene in its structure of gene and protein, mapping, function, and so on. But little is known about the molecular mechanisms of its transcriptional regulation.Core binding factor α1 (cbfα1) is a kind of transcription factor, which plays a key role in osteoblast recruitment and differentiation. It can induce the pro-osteoblasts or non-osteoblasts to synthesize and secrete some mineralization related proteins such as ALP, OC, OPN, BSP, and finally, to differentiate into osteoblasts. Cbfα1 binding site is present in transcriptional
    enhancer of many mineralization related gene, such as type I collage, OC, OPN, BSP, ALP, matrix metalloproteinase-13, and so on. Researchers found recently that cbfal is temporally and spatially regulated during dental development. The proteins regulated by cbfal are also very important in dentin mineralization. There are two cbfal binding sites on the mouse ameloblastin promoter.In our study, we investigated the role of cbfal in biomineralization by studying the transcriptional regular function of cbfal on DSPP gene by PCR, gene reconstruction, cell culture in vitro, gene transfection, report gene, electrophoretic mobility shift assays (EMSA), and so on.The present study consists of three parts:1. Clone and construction of the eukaryotic expression vector including the mouse dentin sialophosprotein promoterGenomic DNA was got from mouse blood. The desired DNA segments were obtained by PCR. No.l segment is between nucleotides (nt) -4496bp and -3499bp, No.2 between nt -3519bp and -2515bp, and No.3 between nt -657bp and 17bp. Then the segments were inserted into T-vector to be sequenced. DNA segments of the right clones were cut with restriction enzymes, and subcloned into pGL3-promotor and pGL3-enhancer vector which belong to one kind of report gene of eukaryotic expression vector. The isolated plasmids were identified by digestion with the restriction enzyme. Then, we identified the base between nucleotides (nt) -4496bp and -2515bp. With our partner's work, we have got the eukaryotic expression vectors of different segments of mouse DSPP promoter as long as 4.4kb.2. The research of transcriptional regulation of cbfal on mousedentin sialophosphoproteinBy transient transfection, immunofluorescence, western blot, and so on, we found that cbfal expression was significantly high 48h after transient transfection. Then we studied the relationship between cbfal and DSPP promoter in different cells. The results showed that cbfal could regulate the transcription of DSPP, and it was more efficient in MDPC-23 cells. After co-transfected pcDNA3-cbfol and report vector of different segments of
    mouse DSPP promoter with pRL-TK vector into MDPC-23 cells using the Lipofectamine?2000, the cells were measured for luciferase activity using the dual luciferase reporter assay system. We found that all of the segments of mouse DSPP promoter include the segments of nt -4496bp to -3499bp and nt -3519bp to -2515bp, could drive the expression of the report gene, suggested all the segments had promoter activity. Potential transcriptional enhancers exist in regions between nt -410 and -195, nt -1243 and -791, nt -1447 and -1243, nt -3519 and -2475 base pairs, whereas suppressor elements are located in regions between nt -195 and -95, nt -670 and -410, and nt -2475 to -1447 base pairs. There might have novel potential binding sites for cbfal in the region of nt -4496 to -3499, nt -3519 to -2515.3. The identify of cbfal binding sites on DSPP promoterIn order to identify the binding sites, we designed and synthesized wild and mutant type oligonucleotides for the special region and control segments. For the EMSA, the double-stranded oligonucleotides were labeled with [7-32P]ATP and purified on a 15% polyacrylamide gel. Antibody supershift experiments were performed with specific antibodies to cbfal. The results showed that the wild-type oligonucleotides could form protein-DNA complex, whereas the mutant ones could not. This was confirmed by the competition tests. To further confirm that the sites were cbfal binding site, super-shift experiments were performed using the anti-cbfal antibody. The addition of the antibody led to the formation of slower migrating protein-DNA complexes. This result suggested that there were binding sites for cbfal on DSPP promoter.To test our result, we did some other works in cellular situation. Mutant segments obtained by PCR were inserted into T-vector to be sequenced, and then were subcloned into pGL3-promotor vector. After identification by digestion with the restriction enzyme, the isolated plasmids were co-transfected with pcDNA3-cbfal and pRL-TK vector into MDPC-23 cells. Then the cells were measured for luciferase activity. We found that there were no difference between mutant segments and empty vectors in driving the expression of the report gene, and cbfal couldn't change the expression level.
引文
1. MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT. Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. J Biol Chem, 1997, 272(2): 835-42.
    2. Leaver AG, Eastoe JE, Hartles RL. The isolation from human dentine of a complex containing citric acid and a peptide. Arch Oral Biol, 1960, 2: 120-6.
    3. Ritchie HH, Hou H, Veis A, Butler WT. Cloning and sequence determination of rat dentin sialoprotein, a novel dentin protein. J Biol Chem, 1994, 269(5): 3698-702.
    4. Gu K, Chang SR, Slaven MS, Clarkson BH, Rutherford RB, Ritchie HH. Human dentin phosphophoryn nucleotide and amino acid sequence. Eur J Oral Sci, 1998, 106(6): 1043-7.
    5. Masuda W, Nouso C, Kitamura C, Terashita M, Noguchi T. D-Aspartic acid in bovine dentine non-collagenous phosphoprotein. Arch Oral Biol, 2002, 47(11): 757-62.
    6. Ritchie HH, Wang LH, Knudtson K. A novel rat 523 amino acid phosphophoryn: nucleotide sequence and genomic organization. Biochim Biophys Acta, 2001, 1520(3): 212-22.
    7. Begue-Kirn C, Ruch JV, Ridall AL, Butler WT. Comparative analysis of mouse DSP and DPP expression in odontoblasts, preameloblasts, and experimentally induced odontoblast-like cells. Eur J Oral Sci, 1998, 106 Suppl 1: 254-9
    8. Dahl T, Sabsay B, Veis A. Type I collagen-phosphophoryn interactions: specificity of the monomer-monomer binding. J Struct Biol, 1998, 123(2): 162-8.
    9. Suzuki Y, Yamaguchi A, Ikeda T, Kawase T, Saito S, Mikuni-Takagaki Y. In situ phosphorylation of bone and dentin proteins by the casein kinase Ⅱ-like enzyme. J Dent Res, 1998, 77(10): 1799-806.
    10. Fujisawa R, Kuboki Y. Conformation of dentin phosphophoryn adsorbed on hydroxyapatite crystals. Eur J Oral Sci, 1998, 106 Suppl 1: 249-53,
    11. Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J, 1996, 317(1): 59-64.
    12. Vanden BT, Beertsen W. Bound phosphoproteins enhance mineralization of alkaline phosphatase-collagen complexes in vivo. J Bone Miner Res. 1994, 9(8): 1205-9.
    13. Lussi A, Linde A. Mineral induction in vivo by dentine proteins. Caries Res, 1993, 27(4): 241-8.
    14. Clarkson BH, Feagin FF, McCurdy SP, Sheetz JH, Speirs R. Effects of phosphoprotein moieties on the remineralization of human root caries. Caries Res, 1991, 25(3): 166-73.
    15.欧阳勇,李玉晶,刘晓勇,邓惠,葛丽华.人牙本质磷蛋白对小型猪修复性牙本 质形成作用的实验研究.中华口腔医学杂志,1999,34(5):295-7
    16. Hirst KL, Ibaraki-O'Connor K, Young MF, Dixon MJ. Cloning and expression analysis of the bovine dentin matrix acidic phosphoprotein gene. J Dent Res, 1997, 76(3): 754-60.
    17. Mah J, Prasad N. Dentine phosphoproteins in gingival crevicular fluid during root resorption. Eur J Orthod, 2004, 26(1): 25-30.
    18. Butler WT, Bhown M, Dimuzio MT, Linde A. Nonocollagenous proteins of dentin. Isolation and partial characterization of rat dentin proteins and proteoglycans using a three-step preparative method. Coll Relat Res, 1981, 1(2): 187-99
    19. Butler WT, Bhown M, Brunn JC, D'Souza RN, Farach-Carson MC, Happonen RP, Schrohenloher RE, Seyer JM, Somerman MJ, Foster RA. Isolation, characterization and immunolocalization of a 53-kDal dentin sialoprotein (DSP). Matrix, 1992, 12(5): 343-51
    20. Ritchie HH, Hou H, Veis A, Butler WT. Cloning and sequence determination of rat dentin sialoprotein, a noval dentin protein. J Biol Chem, 1994, 269(5): 3698-702.
    21. Ritchie HH, Li X. A novel rat dentin mRNA coding only for dentin sialoprotein. Eur J Oral Sci, 2001, 109(5): 342-7.
    22. Yamakoshi Y, Hu JC, Liu S, Zhang C, Oida S, Fukae M, Simmer JP. Characterization of porcine dentin sialoprotein (DSP) and dentin sialophosphoprotein (DSPP) cDNA clones. Eur J Oral Sci, 2003, 111(1): 60-7.
    23. Ritchie HH, Park H, Liu J, Bervoets TJ, Bronckers AL. Effects of dexamethasone, vitamin A and vitamin D3 on DSP-PP mRNA expression in rat tooth organ culture. Biochim Biophys Acta, 2004, 1679(3): 263-71.
    24.张莹.人牙本质涎蛋白的基因克隆、表达和功能研究.第四军医大学博士学位论文.2002
    25. Boskey A, Spevak L, Tan M, Doty SB, Butler WT. Dentin sialoprotein (DSP) has limited effects on in vitro apatite formation and growth. Calcif Tissue Int, 2000, 67(6): 472-8.
    26. Ritchie HH, Berry JE, Somerman MJ, Hanks CT, Bronckers AL, Hotton D, Papagerakis P, Berdal A, Butler WT. Dentin sialoprotein (DSP) transcripts: developmentally-sustained expression in odontoblasts and transient expression in pre-ameloblasts. Eur J Oral Sci, 1997, 105(5 Pt 1): 405-13.
    27. MacDougall M, Nydegger J, Gu TT, Simmons D, Luan X, Cavender A, D'Souza RN. Developmental regulation of dentin sialophosphoprotein during ameloblast differentiation: a potential enamel matrix nucleator. Connect Tissue Res, 1998, 39(1-3): 25-37
    28. Baba O, Qin C, Brunn JC, Wygant JN, McIntyre BW, Butler WT. Colocalization of dentin matrix protein 1 and dentin sialoprotein at late stages of rat molar development. Matrix Biol, 2004, 23(6): 371-9.)
    29. Hao J, Zou B, Narayanan K, George A. Differential expression patterns of the dentin matrix proteins during mineralized tissue formation. Bone, 2004, 34(6): 921-32.
    30. Baba O, Qin C, Brunn JC, Jones JE, Wygant JN, Mclntyre BW, Butler WT. Detection of dentin sialoprotein in rat periodontium. Eur J Oral Sci, 2004, 112(2): 163-70.
    31. Silva TA, Lara VS, Silva JS, Oliveira SH, Butler WT, Cunha FQ. Macrophages and mast cells control the neutrophil migration induced by dentin proteins. J Dent Res, 2005, 84(1): 79-83.
    32. Silva TA, Lara VS, Silva JS, Garlet GP, Butler WT, Cunha FQ. Dentin sialoprotein and phosphoprotein induce neutrophil recruitment: a mechanism dependent on IL-1beta, TNF-beta, and CXC chemokines. Calcif Tissue Int, 2004, 74(6): 532-41.
    33. Ritchie HH, Wang LH. Sequence determination of an extremely acidic rat dentin phosphoprotein. J Biol Chem, 1996, 271(36): 21695-8.
    34. Feng JQ, Luan X, Wallace J, Jing D, Ohshima T, Kulkarni AB, D'Souza RN, Kozak CA, MacDougall M. Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (Dspp) gene, which codes for both dentin sialoprotein and dentin phosphoprotein. J Biol Chem, 1998, 273(16): 9457-64.
    35. Gu K, Chang S, Ritchie HH, Clarkson BH, Rutherford RB. Molecular cloning of a human dentin sialophosphoprotein gene. Eur J Oral Sci, 2000, 108(1): 35-42.
    36. George A, Srinivasan RThotakura SR, Liu K, Veis A. Rat dentin matrix protein 3 is a compound protein of rat dentin sialoprotein and phosphophoryn. Connect Tissue Res, 1999, 40(1): 49-57.
    37. Yamakoshi Y, Hu JC, Fukae M, Zhang H, Simmer J P. Dentin glycoprotein: The protein in the middle of the dentin Sialophosphoprotein chimera. J Biol Chem. 2005, 23, Epub ahead of print
    38. Takagi Y, Veis A, Sauk JJ. Relation of mineralization defects in collagen matrices to noncollagenous protein components. Identification of a molecular defect in dentinogenesis imperfecta. Clin Orthop Relat Res, 1983, (176): 282-90.
    39. MacDougall M. Dental structural diseases mapping to human chromosome 4q21. Connect Tissue Res, 2003, 44 Suppl 1: 285-91.
    40.王英.遗传性牙本质发育不全Ⅱ型致病基因的定位与克隆.第四军医大学博士学位论文.2001
    41. Xiao S, Yu C, Chou X, Yuan W, Wang Y, Bu L, Fu G, Qian M, Yang J, Shi Y, Hu L, Han B, Wang Z, Huang W, Liu J, Chen Z, Zhao G, Kong X. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet, 2001, 27(2): 201-4
    42. Zhang X, Zhao J, Li C, Gao S, Qiu C, Liu P, Wu G, Qiang B, Lo WH, Shen Y. DSPP mutation in dentinogenesis imperfecta Shields type Ⅱ. Nat Genet, 2001, 27(2): 151-2.
    43. Rajpar MH, Koch MJ, Davies RM, Mellody KT, Kielty CM, Dixon MJ. Mutation of the signal peptide region of the bicistronic gene DSPP affects translocation to the endoplasmic reticulum and results in defective dentine biomineralization. Hum Mol Genet, 2002, 11(21): 2559-65.
    44. Kim JW, Hu JC, Lee JI, Moon SK, Kim YJ, ang KT, Lee SH, Kim CC, Hahn SH, Simmer JP. Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type Ⅱ. Hum Genet, 2005, 116(3): 186-91.
    45. Kim JW, Nam SH, Jang KT, Lee SH, Kim CC, Hahn SH, Hu JC, Simmer JP. A novel splice acceptor mutation in the DSPP gene causing dentinogenesis imperfecta type Ⅱ. Hum Genet, 2004, 115(3): 248-54.
    46. Dong J, Gu T, Jeffords L, MacDougall M. Dentin phosphoprotein compound mutation in dentin sialophosphoprotein causes dentinogenesis imperfecta type Ⅲ. Am J Med Genet A, 2005, 132(3): 305-9.
    47. Sreenath T, Thyagarajan T, Hall B, Longenecker G, D'Souza R, Hong S, Wright JT, MacDougall M, Sauk J, Kulkami AB. Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type Ⅲ. J Biol Chem, 2003, 278(27): 24874-80.
    48.江卫民.小鼠牙本质涎磷蛋白cDNA克隆、表达、纯化、抗体制备及其组织表达特异性研究.第四军医大学博士学位论文.1999
    49. Papagerakis P, Berdal A, Mesbah M, Peuchmaur M, Malaval L, Nydegger J, Simmer J, Macdougall M. Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone, 2002: 30(2): 377-85.
    50. MacDougall M, Nydegger J, Gu TT, Simmons D, Luan X, Cavender A, D'Souza RN. Developmental regulation of dentin sialophosphoprotein during ameloblast differentiation: a potential enamel matrix nucleator. Connect Tissue Res, 1998, 39(1-3): 25-37;
    51.张蓉.牙本质涎磷蛋白在牙齿发育、矿化及牙髓损伤修复中作用的研究.第四军医大学博士学位论文.2001
    52. Qin C, Brunn JC, Cadena E, Ridall A, Tsujigiwa H, Nagatsuka H, Nagai N, Butler WT. The expression of dentin sialophosphoprotein gene in bone. J Dent Res, 2002, 81(6): 392-4.
    53. Qin C, Brunn JC, Cadena E, Ridall A, Butler WT. Dentin sialoprotein in bone and dentin sialophosphoprotein gene expressed by osteoblasts. Connect Tissue Res, 2003, 44 Suppl 1: 179-83.
    54. Baba O, Qin C, Brunn JC, Jones JE, Wygant JN, McIntyre BW, Butler WT. Detection of dentin sialoprotein in rat periodontium. Eur J Oral Sci, 2004, 112: 163-170
    55. Sreenath TL, Cho A, MacDougall M, Kulkami AB. Spatial and temporal activity of the dentin sialophosphoprotein gene promoter: differential regulation in odontoblasts and ameloblasts. Int J Dev Biol, 1999, 43(6): 509-16.
    56. Chen S, Gu TT, Sreenath T, Kulkarni AB, Karsenty G, MacDougall M. Spatial expression of Cbfα1/Runx2 isoforms in teeth and characterization of binding sites in the DSPP gene. Connect Tissue Res, 2002, 43(2-3): 338-44.
    57. Unterbrink A, O'Sullivan M, Chert S, MacDougall M. TGF beta-1 downregulates DMP-1 and DSPP in odontoblasts. Connect Tissue Res, 2002, 43(2-3): 354-8.
    58.何文喜.Smads信号分子在成牙本质细胞分化中作用的研究.第四军医大学博士学位论文.2003
    59. Chen S, Unterbrink A, Kadapakkam S, Dong J, Gu TT, Dickson J, Chuang HH, MacDougall M. Regulation of the Cell Type-specific dentin sialophosphoprotein gene expression in mouse odontoblasts by a novel transcription repressor and an activator CCAAT-binding factor. J Biol Chem, 2004, 279(40): 42182-91
    60. Narayanan K, Ramachandran A, Peterson MC, Hao J, Kolsto AB, Friedman AD, George A. The CCAAT enhancer-binding protein (C/EBP)beta and Nrfl interact to regulate dentin sialophosphoprotein (DSPP) gene expression during odontoblast differentiation. J Biol Chem, 2004, 279(44): 45423-32.
    61. Gaikwad JS, Hoffmann M, Cavender A, Bronckers AL, D'Souza RN. Molecular insights into the lineage-specific determination of odontoblasts: the role of Cbfotl. Adv Dent Res, 2001, 15: 19-24. 1
    62. Gergen JP, Wieschaus EF. The localized requirements for a gene affecting segmentation in Drosophila: analysis of larvae mosaic for runt. Dev Biol, 1985, 109(2): 321-35.
    63. Ogawa E, Maruyama M, Kagoshima H, Inuzuka M, Lu J, Satake M, Shigesada K, Ito Y. PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci U S A, 1993, 90(14): 6859-63.
    64. Kagoshima H, Akamatsu Y, Ito Y, Shigesada K. Functional dissection of the alpha and beta subunits of transcription factor PEBP2 and the redox susceptibility of its DNA binding activity. J Biol Chem, 1996, 271(51): 33074-82.
    65. Rodan GA, Harada S. The missing bone. Cell, 1997, 89(5): 677-80.
    66. Vaillant F, Blyth K, Terry A, Bell M, Cameron ER, Neil J, Stewart M. A full-length Cbfα1 gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc. Oncogene, 1999, 18(50): 7124-34.
    67. Ziros PG, Gil AP, Georgakopoulos T, Habeos I, Kletsas D, Basdra EK, Papavassiliou AG. The bone-specific transcriptional regulator Cbfα1 is a target of mechanical signals in osteoblastic cells. J Biol Chem, 2002, 277(26): 23934-41.
    68. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 1996, 84(2): 321-30.
    69. Zhang YW, Bae SC, Takahashi E, Ito Y. The cDNA cloning of the transcripts of human PEBP2alphaA/CBFAl mapped to 6pl2.3-p21.1, the locus for cleidocranial dysplasia. Oncogene, 1997, 15(3): 367-71.
    70. Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, Komori T, Nakatsuka M. Cbfαl isoforms exert functional differences in osteoblast differentiation. J Biol Chem, 1999, 274(11):6972-8.
    71. Xiao ZS, Thomas R, Hinson TK, Quarles LD. Genomic structure and isoform expression of the mouse, rat and human Cbfcα1/Osf2 transcription factor. Gene, 1998, 214(1-2): 187-97
    72. Vaillant F, Blyth K, Terry A, Bell M, Cameron ER, Neil J, Stewart M. A full-length Cbfal gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc. Oncogene. 1999 25; 18(50):7124-34.
    73. Thirunavukkarasu K, Mahajan M, McLarren KW, Stifani S, Karsenty G. Two domains unique to osteoblast-specific transcription factor Osf2/Cbfal contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Mol Cell Biol. 1998 Jul;18(7):4197-208.
    74. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997, 89(5): 755-64.
    75. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 1997, 89(5): 765-71.
    76. Aberg T, Cavender A, Gaikwad JS, Bronckers AL, Wang X, Waltimo-Siren J, Thesleff I, D'Souza RN. Phenotypic changes in dentition of Runx2 homozygote-null mutant mice. J Histochem Cytochem, 2004, 52(l):131-9.
    77. Chung CR, Tsuji K, Nifuji A, Komori T, Soma K, Noda M. Micro-CT evaluation of tooth, calvaria and mechanical stress-induced tooth movement in adult Runx2/Cbfal heterozygous knock-out mice. J Med Dent Sci. 2004 Mar;51(l):105-13.
    78. Visosky AM, Johnson J, Bingea B, Gurney T, Lalwani AK. Otolaryngological manifestations of cleidocranial dysplasia, concentrating on audiological findings. Laryngoscope, 2003, 113(9): 1508-14.
    79. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell, 1997, 89(5): 773-9.
    80. Golan I, Baumert U, Hrala BP, Mussig D. Early craniofacial signs of cleidocranial dysplasia. Int J Paediatr Dent. 2004 Jan;14(l): 49-53.
    81. Quack I, Vonderstrass B, Stock M, Aylsworth AS, Becker A, Brueton L, Lee PJ, Majewski F, Mulliken JB, Suri M, Zenker M, Mundlos S, Otto E Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia. Am J Hum Genet, 1999, 65(5): 1268-78.
    82. Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet, 1997, 16(3): 307-10.
    83. Machuca-Tzili L, Monroy-Jaramillo N, Gonzalez-del Angel A, Kofman-Alfaro S. New mutations in the CBFA1 gene in two Mexican patients with cleidocranial dysplasia. Clin Genet, 2002, 61(5): 349-53.
    84. Mundlos S. Cleidocranial dysplasia: clinical and molecular genetics. J Med Genet, 1999, 36(3): 177-82.
    85. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfα1: a transcriptional activator of osteoblast differentiation. Cell, 1997, 89(5): 747-54.
    86. Galindo M, Pratap J, Young DW, Hovhannisyan H, Im HJ, Choi JY, Lian JB, Stein JL, Stein GS, van Wijnen AJ. The bone-specific expression of RUNX2 oscillates during the cell cycle to support a G1 related anti-proliferative function in osteoblasts. J Biol Chem, 2005
    87. Pratap J, Galindo M, Zaidi SK, Vradii D, Bhat BM, Robinson JA, Choi JY, Komori T, Stein JL, Lian JB, Stein GS, van Wijnen AJ. Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res, 2003, 63(17): 5357-62.
    88. D'Souza RN, Aberg T, Gaikwad J, Cavender A, Owen M, Karsenty G, Thesleff I. Cbfα1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development, 1999, 126(13): 2911-20.
    89. Aberg T, Cavender A, Gaikwad JS, Bronckers AL, Wang X, Waltimo-Siren J, Thesleff I, D'Souza RN. Phenotypic changes in dentition of Runx2 homozygote-null mutant mice. J Histochem Cytochem, 2004, 52(1): 131-9.
    90.余擎.核心结合因子a1在牙齿发育矿化中的作用机制的研究.第四军医大学博士论文.2002
    91. Ito-Kato E, Suzuki N, Maeno M, Takada T, Tanabe N, Takayama T, Ito K, Otsuka K. Effect of carnosine on runt-related transcription factor-2/core binding factor alpha-1 and Sox9 expressions of human periodontal ligament cells. J Periodontal Res, 2004, 39(3): 199-204.
    92. Gao YH, Shinki T, Yuasa T, Kataoka-Enomoto H, Komori T, Suda T, Yamaguchi A. Potential role of cbfα1, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis: regulation of mRNA expression of osteoclast differentiation factor (ODF). Biochem Biophys Res Commun, 1998, 252(3): 697-702.
    93. Wise GE, Frazier-Bowers S, D'Souza RN. Cellular, molecular, and genetic determinants of tooth eruption. Crit Rev Oral Biol Med, 2002, 13(4): 323-34.
    94. Ikeda R, Yoshida K, Tsukahara S, Sakamoto Y, Tanaka H, Furukawa K, Inoue I. The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. J Biol Chem, 2005, 280(9): 8523-30
    95. Kanzler B, Kuschert SJ, Liu YH, Mallo M. Hoxa-2 r
    estricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development, 1998, 125(14):2587-97
    96. Spinella-Jaegle S, Roman-Roman S, Faucheu C, Dunn FW, Kawai S, Gallea S, Stiot V, Blanchet AM, Courtois B, Baron R, Rawadi G. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation. Bone, 2001, 29(4): 323-30
    97. Yang S, Wei D, Wang D, Phimphilai M, Krebsbach PH, Franceschi RT. In vitro and in vivo synergistic interactions between the Runx2/Cbfαl transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. J Bone Miner Res, 2003, 18(4): 705-15.
    98. Gu K, Zhang L, Jin T, Rutherford RB. Identification of potential modifiers of Runx2/Cbfcd activity in C2C12 cells in response to bone morphogenetic protein-7. Cells Tissues Organs, 2004, 176(1-3): 28-40.
    99. Tsuji K, Ito Y, Noda M. Expression of the PEBP2alphaA/AML3/CBFA1 gene is regulated by BMP4/7 heterodimer and its overexpression suppresses type I collagen and osteocalcin gene expression in osteoblastic and nonosteoblastic mesenchymal cells. Bone, 1998, 22(2): 87-92.
    100. Tou L, Quibria N, Alexander JM. Regulation of human cbfα1 gene transcription in osteoblasts by selective estrogen receptor modulators (SERMs). Mol Cell Endocrinol, 2001, 183(1-2): 71-9.
    101. Xiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G, Franceschi RT. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfcd. J Biol Chem, 2000, 275(6): 4453-9.
    102. Alliston T, Choy L, Ducy P, Karsenty G, Derynck R.TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfαl and osteocalcin expression and inhibits osteoblast differentiation. EMBO J, 2001,20(9): 2254-72.
    103. Li J, Tsuji K, Komori T, Miyazono K, Wrana JL, Ito Y, Nifuji A, Noda M. Smad2 overexpression enhances Smad4 gene expression and suppresses CBFA1 gene expression in osteoblastic osteosarcoma ROS17/2.8 cells and primary rat calvaria cells. J Biol Chem, 1998,273(47): 31009-15.
    104. Lee MH, Javed A, Kim HJ, Shin HI, Gutierrez S, Choi JY, Rosen V, Stein JL, van Wijnen AJ, Stein GS, Lian JB, Ryoo HM. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor betal in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. J Cell Biochem, 1999, 73(1): 114-25.
    105. Zhang YW, Yasui N, Ito K, Huang G, Fujii M, Hanai J, Nogami H, Ochi T, Miyazono K, Ito Y. A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci U S A . 2000, 97(19): 10549-54.
    106. Chang DJ, Ji C, Kim KK, Casinghino S, McCarthy TL, Centrella M. Reduction in transforming growth factor beta receptor I expression and transcription factor Cbfαl on bone cells by glucocorticoid. J Biol Chem, 1998, 273(9): 4892-6.
    107. Homme M, Schmitt CP, Himmele R, Hoffmann GF, Mehls O, Schaefer F. Vitamin D and dexamethasone inversely regulate parathyroid hormone -induced regulator of G protein signaling-2 expression in osteoblast-like cells. Endocrinology, 2003, 144(6): 2496-504.
    108. Tintut Y, Parhami F, Le V, Karsenty G, Demer LL. Inhibition of osteoblast-specific transcription factor Cbfαl by the cAMP pathway in osteoblastic cells. Ubiquitin/proteasome-dependent regulation. J Biol Chem, 1999, 274(41): 28875-9.
    109. Li TF, Dong Y, Ionescu AM, Rosier RN, Zuscik MJ, Schwarz EM, O'Keefe RJ, Drissi H. Parathyroid hormone-related peptide (PTHrP) inhibits Runx2 expression through the PKA signaling pathway. Exp Cell Res, 2004, 299(1): 128-36.
    110. Zhao M, Qiao M, Harris SE, Oyajobi BO, Mundy GR, Chen D. Smurfl inhibits osteoblast differentiation and bone formation in vitro and in vivo. J Biol Chem, 2004, 279(13): 12854-9.
    111. Fujiwara M, Tagashira S, Harada H, Ogawa S, Katsumata T, Nakatsuka M, Komori T, Takada H. Isolation and characterization of the distal promoter region of mouse Cbfαl. Biochim Biophys Acta, 1999, 1446(3): 265-72.
    112. Willis DM, Loewy AP, Charlton-Kachigian N, Shao JS, Ornitz DM, Towler DA. Regulation of osteocalcin gene expression by a novel Ku antigen transcription factor complex. J Biol Chem, 2002, 277(40): 37280-91.
    113. Selvamurugan N, Kwok S, Partridge NC. Smad3 interacts with JunB and Cbfαl/Runx2 for transforming growth factor-betal-stimulated collagenase-3 expression in human breast cancer cells. J Biol Chem, 2004, 279(26): 27764-73.
    114. D'Alonzo RC, Selvamurugan N, Karsenty G, Partridge NC. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfal for collagenase-3 promoter activation. J Biol Chem, 2002, 277(1): 816-22
    115. Hess J, Porte D, Munz C, Angel P. AP-1 and Cbfα/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP-l composite element. J Biol Chem, 2001, 276(23): 20029-38
    116. Raouf A, Seth A. Ets transcription factors and targets in osteogenesis. Oncogene. 2000 Dec 18;19(55):6455-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700