小鼠牙本质涎磷蛋白基因转染诱导成体间充质干细胞牙向分化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙再生的研究属于当前口腔医学领域中的前沿课题。随着现代细胞生物学、分子生物学、材料学技术的进步以及牙齿组织工程概念的发展,使牙齿再生逐步成为可能,引起了越来越多的学者对这一领域的关注。目前牙再生研究中的热点主要集中在对于成牙的种子细胞的选择以及促使种子细胞牙向分化的定向诱导体系。另外,良好的支架材料在组织工程组织的构建中也起着举足轻重的作用。
     本课题选取小鼠骨髓间充质干细胞(BM-MSCs)、脂肪基质细胞(ADSCs)这两种成体间充质干细胞为牙再生的候选种子细胞,通过腺病毒介导的基因转染,使以上两种细胞在体外培养过程中高表达小鼠牙本质涎磷蛋白基因,从而模拟成牙本质细胞在体内分化时的内环境,探索了一条通过导入外源性成牙相关基因诱导间充质源性干细胞牙向分化的定向诱导途径。本课题部分阐明了牙齿发育过程中成牙细胞分化时的相关分子机制,通过建立小鼠牙乳头间充质细胞这一成牙前体细胞的自发牙向分化模型作为阳性对照,从基因水平和蛋白水平两个方面论证了过表达牙本质涎磷蛋白的成体间充质干细胞的牙向分化潜能,并从骨髓和脂肪两种组织来源的成体间充质细胞中筛选出适宜应用于牙再生的种子细胞。为了进一步探讨将基因转染诱导后牙向分化的种子细胞应用于构建组织工程化牙髓—牙本质复合体的可行性,我们又自行制备了丝素蛋白与海藻酸钙凝胶
The research of tooth regeneration is a front topic in current stomatology medical domain. Today, tooth regeneration is becoming possible step by step with the modern scientific advancement in cell biology, molecular biology and material science, as well as following the idea of tooth tissue engineering, Meanwhile, more and more scientists show their interest in this field. At present, the research of tooth regeneration is focused on which cell has potential capacity for odontogenesis and how the differentiation of seed cells toward odontogenesis can be induced. In addition, compatible materials for scaffolds play an important role in the construction of tissue engineering organization. As the representative of adult mesenchyma stem cells, we chose bone marrow derived mesenchymal stem cells (BM-MSCs) and adipose tissue derived stromal cells (ADSCs) for our tooth regeneration research. By gene transfection with adenovirus, BM-MSCs and ADSCs were high expressed mouse dentin sialophosphoprotein gene in vitro. We simulated the internal environment of odontablast differentiation in vivo and explored a way to induce mesenchyma stem cells orient differentiation by importing exogenous
引文
1. Y Chai and H. C Slavkin. Prospects of tooth regeneration in the 21st century: a perspective. Microse Res Tech. 2003, 60(5): 469-479.
    2. Thesleff I, Sharpe P. Signalling networks regulating dental development. Mech Dev, 1997. 67(2): 111-123.
    3. Thesleff I. Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci, 2003, 116(Pt 9): 1647-1648.
    4. MacDougall M, Simmons D, Luan X, et al. Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem, 1997, 272(2): 835-842
    5. Ohazama A, Modino S. A., Miletich I, et al. Stem-cell-based tissue engineering of murine teeth. J Dent Res, 2004, 83(7): 518-522.
    6.李志勇,大鼠骨髓间充质干细胞牙向分化潜能的实验研究,四川大学华西口腔医学院博士学位论文.2005,29-60
    7. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002, 13: 4279-4295
    8. Martin A, Unda FJ, Begue-Kim C, et al. Effects of aFGF, bFGF, TGFbetal and IGF-I on odontoblast differentiation in vitro. Eur J Oral Sci, 1998, 106 (Suppl 1): 117-121.
    9. Iohara K, Nakashima M, Ito M, et al. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res, 2004, 83(8): 590-595.
    10. Franceschi RT. Biological approaches to bone regeneration by gene therapy. J Dent Res. 2005, 84(12): 1093-1103. Review.
    11.Dragoo JL, Lieberman JR., Lee RS, et al. Tissue-engineered bone from BMP-2-transduced stem cells derived from human fat. Plast Reconstr Surg. 2005 May;115(6):1665-1673.
    12. Zhu W, Rawlins BA, Boachie-Adjei O, et al. Combined bone morphogenetic protein-2 and -7 gene transfer enhances osteoblastic differentiation and spine fusion in a rodent model. J Bone Miner Res. 2004,19(12):2021-2032.
    13. Narayanan K, Srinivas R, Ramachandran A, et al. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad Sci USA. 2001,98 (8):4516-4521.
    14. Almushayt A, Narayanan K, Zaki AE, et al. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther. 2006,13(7):611-620.
    15. B. E. Petersen, W. C. Bowen, K. D. Patrene, et al., Bone marrow as a potential source of hepatic oval cells. Science, 1999. 284(5417): 1168-1170.
    16. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineer ,2001,7(2) :211 -228.
    17. G Ferrari, G. Cusella-De Angelis, M. Coletta, et al., Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998. 279(5356): 1528-1530.
    18. M. R. Alison, R. Poulsom, R. Jeffery, et al., Hepatocytes from non-hepatic adult stem cells. Nature, 2000. 406(6793): 257.
    19. J. M. Weimann, C. B. Johansson, A. Trejo, et al.. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol, 2003. 5(11): 959-966.
    20. Chai Y, Jiang X, Ito Y, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 2000, 127(8): 1671-1679.
    21. K. A. Jackson, T. Mi and M. A. Goodell, Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci U S A, 1999. 96(25): 14482-14486.
    22. M. A. Eglitis and E. Mezey, Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A, 1997. 94(8): 4080-4085.
    23. D. Orlic, J. Kajstura, S. Chimenti, et al., Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant, 2003. 7 Suppl 3: 86-88.
    24. R. Poulsom, S. J. Forbes, K. Hodivala-Dilke, et al., Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol, 2001. 195(2): 229-235.
    25. V. F. La Russa, P. Schwarzenberger, A. Miller, et al., Marrow stem cells, mesenchymal progenitor cells, and stromal progeny. Cancer Invest, 2002. 20(1): 110-123.
    26. Perm PE, Jiang DZ, Fei RG, et al. Dissecting the hematopoietic microenvironment. IX. Further characterization of murine bone marrow stromal cells. Blood, 1993, 81(5):1205-1213.
    27. Mitsiadis TA, Smith MM. How do genes make teeth to order through development?. J Exp Zoolog B Mol Dev Evol., 2006, [Epub ahead of print]
    28. M. F. Pittenger, A. M. Mackay, S. C. Beck, et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): 143-147.
    29. Sen A, Lea-currie YR, Sujkowska D, et al. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J Cell Biochem, 2001, 81: 312-319.
    30. Strem BM, Hicok KC, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005, 54(3): 132-141.
    31. Majumdar MK, Keane-Moore M, Buyaner D, et al., Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci. 2003, 10(2): 228-241.
    32. Gronthos S, Franklin DM, Leddy HA, et al. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol, 2001, 189: 54-63
    33. Zhu H, Mitsuhashi N, Klein A, et al. The Role of the Hyaluronan Receptor CD44 in MSC Migration in the Extracellular Matrix. Stem Cells, 2005 [Epub ahead of print]
    34.金岩,组织工程学原理与技术.1ed,第四军医大学出版社,2004,273
    35. Thompson LD, Wenig BM, Adair CF, et al. Peripheral Nerve Sheath Tumors of the Thyroid Gland: A Series of Four Cases and a Review of the Literature. Endocr Pathol. 1996, 7(4): 309-318.
    36. Moxham BJ, Webb PP, Benjamin M, et al. Changes in the cytoskeleton of cells within the periodontal ligament and dental pulp of the rat first molar tooth during ageing. Eur J Oral Sci. 1998, 106(Suppl 1): 376-383
    37. Auernhammer CJ, Melmed S. Leukemia-inhibitory factor-neuroimmune modulator of endocrine function. Endocr Rev. 2000, 21(3): 313-345.
    38. Chojnacki A, Shimazaki T, Crregg C, et al. Glycoprotein 130 signaling regulates Notchl expression and activation in the self-renewal of mammalian forebrain neural stem cells. J Neurosci. 2003, 23(5): 1730-1741
    39. Shellard J, Perreau J, Brulet P. Role of leukemia inhibitory factor during mammalian development. Eur Cytokine Netw. 1996,7(4):699-712.
    40. Wright LS, Li J, Caldwell MA, et al. Gene expression in human neural stem cells: effects of leukemia inhibitory factor. J Neurochem. 2003, 86(1):179-195.
    41. Chung TD, Yu JJ, Spiotto MT, et al. Characterization of the role of IL-6 in the progression of prostate cancer. Prostate. 1999, 15;38(3): 199-207.
    42. Laabi Y, Metcalf D, Mifsud S, et al. Differentiation commitment and regulator-specific granulocyte-macrophage maturation in a novel pro-B murine leukemic cell line. Leukemia. 2000,14(10):1785-1795.
    43. Potter ED, Ling ZD, Carvey PM. Cytokine-induced conversion of mesencephalic-derived progenitor cells into dopamine neurons. Cell Tissue Res. 1999,296(2):235-246.
    44. Pruijt JF, Lindley IJ, Heemskerk DP, et al. Leukemia inhibitory factor induces in vivo expansion of bone marrow progenitor cells that accelerate hematopoietic reconstitution but do not enhance radioprotection in lethally irradiated mice. Stem Cells. 1997,15(1):50-55.
    45. D'Souza RN, Cavender A, Sunavala G, et al. Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res. 1997,12(12):2040-2049.
    46. Volpers C, Kochanek S. Adenoviral Vectors for gene transfer and therapy. J Gene Med,2004,6 (Suppl 1):s164-s171
    47. Thomas D, suthanthiran M. Optimal modes and targets of gene therpy in transplantation. Immunol Rev, 2003,196:161 -175
    48. Kawabata K, Sakurai F, Koizumi N, et al. Adenovirus Vector-Mediated Gene Transfer into Stem Cells. Mol Pharm. 2006, 3(2): 95-103
    49.孙汉堂,肖明振,吴补领等.牙本质涎磷蛋白G0代转基因小鼠的获得.第四军医大学学报.2005,26(16):1454-1456.
    50. Dai J, Rabie AB, Hagg U, et al. Alternative gene therapy strategies for the repair of craniofacial bone defects. Curr Gene Ther. 2004, 4(4): 469-485
    51. Hitt MM, Gauldie J. Gene vectors for cytokine expression in vivo. Curr Pharm Des. 2000, 6 (6): 613-632. Review.
    52. Wivel NA, Wilson JM. Methods of gene delivery. Hematol Oncol Clin North Am. 1998, 12(3): 483-501. Review.
    53. Massie B, Couture F, Lamoureux L, et al. Inducible overexpression of a toxic protein by an adenovirus vector with a tetracycline-regulatable expression cassette. J Virol. 1998, 72(3): 2289-2296.
    54.刘秉文,陈俊杰,医学分子生物学,北京:中国协和医科大学出版社,2000:396
    55. Cao B, Mytinger JR, Huard J. Adenovirus mediated gene transfer to skeletal muscle. Microsc Res Tech, 2002, 58(1): 45-51
    56. Yamakoshi Y, Hu JC, Fukae M, et al. Dentin glycoprotein: the protein in the middle of the dentin sialophosphoprotein chimera. J Biol Chem, 2005, 280(17): 17472-17479
    57.张莹,史俊南,汪平等.人牙本质涎蛋白在人牙胚发育过程中的表达和意义.牙体牙髓牙周病学杂志.2003,13(11):614-616.
    58. Begue-Kim C, Krebshach PH, Bartlett JD, et al. Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sci. 1998,Oct;106(5):963-970
    59. Bleicher F, Couble ML, Farges JC, et al. Sequential expression of matrix protein genes in developing rat teeth. Matrix Biol, 1999. 18(2): 133-143.
    60. He TC , Zhou SB , Da Costa LT, et al. A simplified system for generating recombinant adenovirus. Proc Natl Acad Sci USA ,1998 , 95 (5) : 2509 -2514
    61. S. A. Modino and P. T. Sharpe, Tissue engineering of teeth using adult stem cells. Arch Oral Biol, 2005. 50(2): 255-258.
    62. Lieberman JR., Le LQ, Wu L, et al. Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res.1998,16(3):330-339.
    63. Dragoo JL, Choi JY, Lieberman JR, et al. Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res. 2003,21(4): 622-629.
    64. Hirst KL, Ibaraki-O'Connor K, Young MF, et al. Cloning and expression analysis of the bovine dentin matrix acidic phosphoprotein gene. J Dent Res, 1997,76(3): 745-760
    65. MacDougall M, Gu TT, Luan X, et al. Identification of a novel isoform of mouse dentin matrix protein 1: spatial expression in mineralized tissues. J Bone Miner Res. 1998 Mar;13(3):422-431.
    66. Qin C, Brunn JC, Cadena E, et al. The expression of dentin sialophosphoprotein gene in bone. J Dent Res. 2002, 81(6):392-394.
    67. Qin C, Brunn JC, Cadena E, et al. Dentin sialoprotein in bone and dentin sialophosphoprotein gene expressed by osteoblasts. 2003 ;44 Suppl 1:179-183.
    68. P. Papagerakis, A. Berdal, M. Mesbah, et al., Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone, 2002,30(2): 377-385.
    69. Paine ML, Luo W, Wang HJ, et al. Dentin sialoprotein and dentin phosphoprotein overexpression during amelogenesis. J Biol Chem. 2005, 280 (36):31991-31998.
    70. Y. Ouyang, Y. Li and X. Liu, et al. Experimental study on the effect of restorative dentin formation with human dentin phosphoprotein in immature permanent teeth of minipig. Zhonghua Kou Qiang Yi Xue Za Zhi, 1999, 34(5) :295-297.
    71. Morgan RA, Anderson WE Human gene therapy. Annu Rev Biochem. 1993, 62:191-217.
    72. Miller AD. Human gene therapy comes of age. Nature. 1992, 357(6378) : 455-460.
    73. K. Vuori and E. Ruoslahti. Connections count in cell migration. Nat Cell Biol. 1999, l(4):85-87
    74. C. Qin, O. Baba and W. T. Butler, et al. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med, 2004,15(3): 126-136.
    75. Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000, 97(25): 13625-13630
    76. Franceschi RT. The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Crit Rev Oral Biol Med. 1999,10(1):40-57. Review.
    77. Chen S, Rani S, Wu YD, et al. Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Biol Chem. 2005, 280(33): 29717-29727
    78. Alappat S, Zhang ZY, Chen YP. Msx homeobox gene family and craniofacial development. Cell research. 2003, 13(6): 429-442
    79. Thesleff I. Homeobox genes and growth factors in regulation of craniofacial and tooth morphogenesis. Acta Odontol Stand. 1995, 53(3): 129-134.
    80. Chen Y, Bei M, Woo I, et al. Msxl controls inductive signaling in mammalian tooth morphogenesis. Development. 1996, 122(10): 3035-44.
    81. MacKenzie A, Ferguson MW, Sharpe PT. Expression patterns of the homeobox gene, Hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development. 1992, 115(2): 403-420.
    82. Peters H, Neubuser A, Kratochwil K, et al. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 1998, 12(17): 2735-2747.
    83. Grigoriou M, Tucker AS, Sharpe PT, et al. Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development. 1998, 125(11): 2063-2074.
    84. Priam F, Ronco V, Locker M. New cellular models for tracking the odontoblast phenotype. Arch Oral Biol. 2005, 50(2): 271-277.
    85. Akiyama H, Chaboissier MC, Martin JF, et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002, 16(21): 2813-2828.
    86. Nakashima K, de Crombrugghe B. Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends Genet. 2003,19(8):45 8-466.
    87. George A, Sabsay B, Simonian PA, et al., Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. JBiol Chem, 1993. 268(17): 12624-12630.
    88. George A, Silberstein R, Veis A. In situ hybridization shows Dmp1 (AG1) to be a developmentally regulated dentin-specific protein produced by mature odontoblasts. Connect Tissue Res. 1995,33(1-3):67-72.
    89. Septier D, Torres-Quintana MA, Menashi S, et al. Inositol hexasulphate, a casein kinase inhibitor, alters the distribution of dentin matrix protein 1 in cultured embryonic mouse tooth germs. Eur J Oral Sci. 2001, 109(3): 198-203.
    90. Papagerakis P, Berdal A, Mesbah M, et al. Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone. 2002,30(2):377-385.
    91. Lee DH, Lim BS, Lee YK, et al. Effects of hydrogen peroxide on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol. 2006,22(1):39-46.
    92. Gronthos S, Mankani M, Brahim J, et al. human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000, 97 (25): 13625-13630
    93. Li Z, Ramay HR, Hauch KD, et al. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005; 26(18):3919-3928.
    94. Li Z, Zhang M. Chitosan-alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res A.2005,75(2):485-493.
    95. Novikova LN, Mosahebi A, Wiberg M, et al. Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. J Biomed Mater Res A. 2006; 77(2): 242-252.
    96. Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials. 2005, 26(18): 3941-3951
    97. Akari Takeuchi, Chikara Ohtsuki, Toshiki Miyazaki, et al. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. J Biomed Mater Res. 2003, 65A: 283-289
    1. Y Chai and H. C Slavkin. Prospects of tooth regeneration in the 21st century: a perspective. Microse Res Tech. 2003, 60(5): 469-479.
    2. Bronne FM, Stern CD, Fraser S. Analysis of neural crest cell lineage and migration. J Craniofac Genet Dev Biol. 1991, 11(4): 214-222
    3. Le Douarin NM, Ziller C, Couly GF. Patterning of neural crest derivatives in the avian embryo: in vivo and in vitro studies. Dev Biol. 1993, 159(1): 24-49.
    4. Anderson DJ. Cell and molecular biology of neural crest cell lineage diversification. Curr Opin Neurobiol, 1993, 3: 8-13.
    5. Chai Y, Jiang X, Ito Y, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000 Apr; 127(8): 1671-1679.
    6. Zhang Y, Wang S, Song Y, et al. Timing of odontogenic neural crest cell migration and tooth-forming capability in mice. Dev Dyn. 2003 Apr; 226(4): 713-718.
    7. Sarkar S, Petiot A, Copp A, et al. FGF2 promotes skeletogenic differentiation of cranial neural crest cells. Development. 2001 Jun, 128(11): 2143-2152.
    8.江宏兵.颅神经嵴干细胞分离培养及其成牙分化诱导研究.四川大学华西口腔医学院博士学位论文.2004,36-50.
    9. Pierret C, Spears K, Maruniak JA, et al. Neural crest as the source of adult stem cells. Stem Cells Dev. 2006 Apr, 15(2): 286-291.
    10. Langille RM, Slursh M. Formation ofchondrous and osseous tissues in micromass cultures of rat frontonasal and mandibular eeto-mesenchymal. Diferemiation, 1990, 44(3): 197-206
    11. Narayanan K, Srinivas R, Ramachandran A, et al. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad Sci USA. 2001, 98(8): 4516-4521
    12.张光东,金岩,史俊南等.大鼠外胚间充质细胞向成牙本质细胞祥细胞定向诱导分化—三维诱导模型的建立.实用口腔医学杂志.2003,19(3):195-198
    13.邓蔓菁,金岩,史俊南等.体外三维培养下诱导人胚胎面突外胚间充质干细胞向成牙本质样细胞分化.牙体牙髓牙周病学杂志.2004,14(7):364-368
    14. Unda FJ, Martin A, Hernandez C, et al. FGFs-1 and -2, and TGF beta 1 as inductive signals modulating in vitro odontoblast differentiation. Adv Dent Res. 2001, 15: 34-37
    15. Martin A, Unda FJ, Begue-Kim C, et al. Effects of aFGF, bFGF, TGFbetal and IGF-I on odontoblast differentiation in vitro. Eur J Oral Sci. 1998, 106 (Suppl 1): 117-121
    16. Fan M, Zhu Q, Bian Z, Zhang Q. Transforming growth factor beta(1) and bone morphogenetic protein 2 induce the differentiation of odontoblasts in vitro. Zhong hua Kou Qiang Yi Xue Za Zhi. 2002, 37(2): 106-108.
    17. Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000, 97(25): 13625-13630
    18. Couble ML, Farges JC, Bleicher F, Perrat-Mabillon B, Boudeulle M, Magloire H. Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif Tissue Int. 2000 Feb, 66(2): 129-138.
    19. Gronthos S, Brahim J, Li W, et al. Stem cell properties of humandental pulp stem cells. J Dent Res. 2002, 81(8): 531-535
    20. Nakashima M, Mizunuma K, Murakami T, et al. Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Ther, 2002, 9(12): 814-818
    21. Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000; 6(11): 1229
    22. Jaiswal N, Haynesworth SE, Caplan AI et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J of Cellular Biochem, 1997, 64(2): 295-3 I2
    23. Angele P, Kujat R, Nerlich M, et al. Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng, 1999, 5(6): 545-554
    24. Majumdar MK, Banks V, Peluso DP, et al. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol, 2000, 185(1): 98-106
    25. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000, 61(4): 364~370
    26. Ohazama A, Modino S. A., Miletich I, et al. Stem-cell-based tissue engineering of murine teeth. J Dent Res, 2004, 83(7): 518-522.
    27.李志勇,大鼠骨髓间充质干细胞牙向分化潜能的实验研究,四川大学华西口腔医学院博士学位论文.2005,29-60
    28. Cho SW, Hwang HJ, Kim JY Lineage of non-cranial neural crest cell in the dental mesenchyme: using a lacZ reporter gene during early tooth development. J Electron Microsc (Tokyo).2003;52(6):567-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700