人牙本质源MMPs的鉴定及其与牙本质粘接持久性的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口腔粘接技术(Dental bonding technology)的发展使得各种牙体缺损修复成为可能,因为兼顾微创修复和美学修复的优点,已成为口腔医学领域一个重要的研究内容。牙釉质或牙本质与口腔修复材料之间形成牢固、长期有效的粘接力,是口腔粘接修复成功的关键。因为牙本质结构、成分的特殊性,其粘接成为口腔粘接领域的一个难点及热点。过去20年中,粘接材料及粘接操作方法都经历着日新月异的发展,现有粘接修复体在短期内可获得良好的粘接效果,有报道称可以达到50~70MPa。但是在口腔复杂环境中行使功能后,树脂粘接修复体会逐步出现修复体边缘着色、继发龋,甚至修复体脱落。研究表明体内牙本质粘接界面的粘接强度会在3~5年后显著降低,体外实验牙本质粘接强度甚至会在6个月后就发生显著的降低,即发生了牙本质粘接界面的退变。修复体一旦发生粘接界面的退变,就会引起修复体边缘适合性降低或固位丧失,最终导致粘接修复的失败。因此,粘接耐久性缺陷已成为制约口腔粘接技术发展、亟待解决的重要科学问题。
     研究发现,牙本质内含有一种内源性的蛋白水解酶——基质金属蛋白酶(Matrix Metalloproteinases, MMPs),这种酶具有降解所有细胞外基质的功能。牙本质有机基质中约90%的成分为Ⅰ型胶原纤维,牙本质源的基质金属蛋白酶可能会降解牙本质粘接界面的Ⅰ型胶原纤维,参与牙本质粘接界面的退变过程。牙本质内含有多种MMPs,每种MMP都有特异性的降解底物以及作用方式,目前对于MMPs在牙本质中的分布情况,以及其在粘接界面退变过程中的作用和作用机制尚缺乏足够的研究。
     本研究的目的在于通过研究牙本质源MMPs在不同种类牙本质基质中的分布及其与牙本质粘接持久性的相关性,探讨参与牙本质粘接界面退变过程中牙本质源MMPs的种类及作用,为寻求可靠、有效地抑制牙本质粘接界面退变的方法,提高其粘接持久性奠定理论基础。
     1.主要研究方法:
     1)采用免疫组织化学染色和液相芯片技术检测正常及硬化牙本质中的MMPs的种类和分布情况;
     2)采用冷热循环和人工唾液长期浸泡两种方法来模拟老化条件,检测老化处理后牙本质粘接界面的退变情况及MMPs的含量变化;
     3)借助微剪切粘接强度测试粘接强度,FE-SEM结合EDX分析检测粘接界面的纳米渗漏情况,Ⅰ型胶原吡啶交联终肽反应检测粘接界面胶原的降解及MMPs的活性,探讨不同粘接系统的牙本质粘接持久性及牙本质源MMPs与牙本质粘接持久性的关系。
     2.主要研究结论:
     1)五种MMPs:MMP-1、MMP-2、MMP-3、MMP-8和MMP-9均存在于正常的人牙本质及磨损牙齿的硬化牙本质中。
     2)在正常人冠方牙本质中,牙本质源MMPs:MMP-1、MMP-2、MMP-3、MMP-8和MMP-9的分布趋势均为由近髓腔处向外侧釉牙本质界处递减,在同一层次的牙本质中,五种牙本质源MMPs的含量由高到低为MMP-8﹥MMP-2﹥MMP-9﹥MMP-3﹥MMP-1。
     3)随着年龄的增长,人牙本质源MMP-2和MMP-3有降低的趋势。
     4)牙本质源MMP-8和MMP-9在人磨损牙齿的硬化牙本质中含量显著高于正常牙本质,说明其与非龋坏硬化牙本质的形成密切相关。
     5)老化处理后,深层牙本质的粘接强度下降情况及胶原降解程度均比浅层牙本质显著,提示深层牙本质粘接界面的退变情况比浅层牙本质严重,这可能与牙本质源MMPs的分布差异有关。
     6)老化处理后,全酸蚀粘接剂Single Bond2和自酸蚀粘接剂S3Bond粘接的牙本质界面均产生了粘接退变,牙本质源MMPs可能参与了SingleBond2组粘接界面的退变,其在S3Bond组的粘接界面退变中的作用仍无法肯定;粘接剂处理后牙本质中的胶原酶MMP-8,明胶酶MMP-2、MMP-9含量会随着老化时间的延长显著降低,提示其可能参与了牙本质粘接界面的退变。
     7)使用MMP-8抑制剂可以提高牙本质粘接界面的耐久性,其作用与广谱MMPs抑制剂洗必泰溶液无显著性差异,提示胶原酶MMP-8可能在牙本质粘接界面退变过程中发挥主导作用。
The development of dental bonding technology makes variety of teeth defectsrestoration become possible. Because of the advantages of minimally invasiverestoration and aesthetic restoration, it has become an important researchingcontent in dentistry. Solid, long-term adhesion between enamel or dentin anddental prosthetic material is the key to the success of dental adhesive restoration.Because of the particularity of the dentin structure and composition, adhesionbecomes one of the difficult points and hot spots in the field of dental adhesion.In the past20years, the adhesive materials and bonding methods are undergoingrapid development. And the immediate bonding strength of the currently existingdentin bonding materials has significantly improved, which is reported up to50-70MPa. But after used in the complex oral environment, prosthetic restorationwould gradually appear coloration of the prosthesis edge, secondary caries, andeven the prosthesis off. Studies showed that in vivo dentin bonding strength ofthe adhesive interface decreased significantly in3to5years, and in vitroexperiments dentin bonding strength even decreased significantly after sixmonths, which meant degeneration in the dentin adhesive interface occurred.Once degeneration occurred, it would cause reduction of fitness of restorationmargin and loss of retention, which ultimately led to failure of adhesiverestoration. Therefore, the defects of bonding durability had become an importantscientific problem to be solved, which would constrain the development of oralbonding technology.
     The study showed that dentin contained endogenous proteolytic enzymes-Matrix Metalloproteinases, MMPs. The enzyme could degrade all extracellularmatrix. About90%of the composition of dentin organic matrix is type Ⅰcollagen fibers. And the dentinal matrix metalloproteinases may degrade type Icollagen fibers in the dentin adhesive interface, to participate in the degenerativeprocess of the dentin adhesive interface. The dentin contains a variety of MMPs,and each MMP has a specific degradation substrate and the mode of function.Now the distribution of MMPs in dentin, as well as the role in and the mechanismof degeneration process in the bonding interface is still lack of sufficient research.
     The purpose of this study is to research on the distribution of dentinal MMPs indifferent types dentin matrix and its correlation with the durability of dentinadhesion, and to explore the types and the role of the dentinal MMPs involved indentin interface degeneration. It also searches for a reliable and effective way toinhibit degeneration in dentin interface, and lay the theoretical foundation ofimprovement the adhesion durability.
     1. Methods
     1) Using immunohistochemical staining and liquid chip to detect the type anddistribution of MMPs in normal and sclerotic dentin.
     2) Using thermal cycling and long-term soak in artificial saliva to simulateaging conditions, in order to detect degeneration in the aging treated dentininterface and variation in the content of MMPs.
     3) To evaluate the bonding strength with the micro-shear bonding strength test,to detect and analyze nanoleakage in adhesive interface by FE-SEMcombined with EDX, and to detect degradation of collagen and activity ofMMPs in the bonding interface through Cross-linked carboxyterminaltelopeptide of type I collagen reaction, in order to investigate of different adhesive systems and the relationship between dentinal MMPs and dentinadhesive durability.
     2. Results
     1) Five kinds of MMPs of MMP-1, MMP-2and MMP-3, MMP-8and MMP-9both existed in normal dentin and sclerotic dentin.
     2) In the normal coronal dentin, the distribution of dentinal MMPs: MMP-1,MMP-2and MMP-3, MMP-8and MMP-9both decreased from near pulpcavity to dento enamel junction. In the same layer of dentin, the contents ofthe five dentinal MMPs decreased as MMP-8> MMP-2> MMP-9> MMP-3>MMP-1.
     3) Along with the increase of age, the human dentinal MMP-2and MMP-3decreased.
     4) The contents of dentinal MMP-8and MMP-9in the sclerotic dentin weresignificantly higher than those in normal dentin, which suggests dentinalMMP-8and MMP-9may closely relate to the formation of non-carioussclerotic dentin.
     5) After aging treatment, the decreasement of bonding strength and thedegradation of collagen in deep-dentin were both more significant than thosein superficial dentin. It suggested that the degeneration of dentin interface indeep dentin was more serious than that in superficial dentin, which mayrelate to the differences of dentinal MMPs distribution.
     6) After aging treatment, adhesive degeneration exited both in the dentininterface of the total etch adhesive Single Bond2and self-etching adhesiveS3Bond adhesive. Dentinal MMPs may involve in the degeneration ofadhesive interface of the Single Bond2group. But their roles in thedegeneration of the adhesive interface of the S3Bond group were still not sure. After treatment of adhesive, the contents of collagenase MMP-8andgelatinase MMP-2, MMP-9decreased significantly along with the aging time,suggesting that they may be involved in the degeneration of the dentinadhesive interface.
     7) Using MMP-8inhibitors could increase adhesion durability of dentinadhesion interface, and there were not significant differences betweenMMP-8inhibitors and broad-spectrum MMPs inhibitor chlorhexidinesolution, which suggested that the collagenase MMP-8may play a leadingrole in the degeneration in the dentin adhesive interface.
引文
1. Chaussain-Miller C, Fioretti F, Goldberg M, Menashi S. The role of matrixmetalloproteinases (MMPs) in human caries. J Dent Res.2006;85(1):22-32.
    2. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors ofmetalloproteinases: structure, function, and biochemistry. Circ Res.2003;92(8):827-839.
    3. Verma RP, Hansch C. Matrix metalloproteinases (MMPs):Chemical–biological functions and (Q)SARs. Bioorg Med Chem.2007;15(6):2223-2268.
    4. Lynch CC, Matrisian LM. Matrix metalloproteinases in tumor-host cellcommunication. Differentiation.2002;70(9-10):561-573.
    5. Bode W, Gomis-Rüth FX, St ckler W. Astacins, serralysins, snake venomand matrix metalloproteinases exhibit identical zinc-binding environments(HEXXHXXGXXH and Met-turn) and topologies and should be groupedinto a common family, the 'metzincins'. FEBS Lett.1993;331(1-2):134-140.
    6. Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle ofregulation of metalloproteinase activity with potential applicability to theentire matrix metalloproteinase gene family. Proc Natl Acad Sci USA.1990;87(14):5578-5582.
    7. Dickinson DP. Cysteine peptidases of mammals: their biological roles andpotential effects in the oral cavity and other tissues in health and disease.Crit Rev Oral Biol Med.2002;13(3):238-275.
    8. Murphy G, Nagase H. Progress in matrix metalloproteinase research.Molecular Aspects of Medicine.2008:29(5):290-308.
    9. Dumas J, Hurion N, Weill R, Keil B. Collagenase in mineralized tissues ofhuman teeth. FEBS Lett.1985;187(1):51-55.
    10. van Strijp AJ, Jansen DC, DeGroot J, ten Cate JM, Everts V. Host-derivedproteinases and degradation of dentin collagen in situ. Caries Res.2003;37(1):58-65.
    11. Sulkala M, Tervahartiala T, Sorsa T, Larmas M, Salo T, Tj derhane L.Matrix metalloproteinase-8(MMP-8) is the major collagenase in humandentin. Arch Oral Biol.2007;52(2):121-127.
    12.王丹杨,张凌,陈吉华.牙本质源基质金属蛋白酶与牙体组织胶原变性关系的研究进展.中华口腔医学.2011;46(6):379-381.
    13. Boukpessi T, Menashi S, Camoin L, Tencate JM, Goldberg M,Chaussain-Miller C. The effect of stromelysin-1(MMP-3) onnon-collagenous extracellular matrix proteins of demineralized dentin andthe adhesive properties of restorative resins. Biomaterials2008;29(33):4367-4373.
    14. Mazzoni A, Mannello F, Tay FR, Tonti GA, Papa S, Mazzotti G, et al.Zymographic analysis and characterization of MMP-2and-9forms inhuman sound dentin. J Dent Res.2007;86(5):436-440.
    15. Mazzoni A, Pashley DH, Nishitani Y, Breschi L, Mannello F, Tj derhane L,Toledano M, Pashley EL, Tay FR. Reactivation of inactivated endogenousproteolytic activities in phosphoric acid-etched dentin by etch-and-rinseadhesives. Biomaterials2006;27(25):4470-4476.
    16. Tj derhane L, Larjava H, Sorsa T, Uitto VJ, Larmas M, Salo T. Theactivation and function of host matrix metalloproteinases in dentin matrixbreakdown in caries lesions. J Dent Res.1998;77(8):1622-1629.
    17. Creemers LB, Jansen ID, Docherty AJ, Reynolds JJ, Beertsen W, Everts V.Gelatinase A (MMP-2) and cysteine proteinases are essential for thedegradation of collagen in soft connective tissue. Matrix Biol.1998;17(1):35-46.
    18. Wisithphrom K, Murray PE, Windsor LJ. Interleukin-1alpha alters theexpression of matrix metalloproteinases and collagen degradation by pulpfibroblasts. J Endod.2006;32(3):186-192.
    19. Hao YQ, Niu ZY, Wang GQ, Zhou XD, Hu T. Expression ofmatrixmetalloproteinase-8on the bell-stage in human and rat toothdevelopment. Hua Xi Kou Qiang Yi Xue Za Zhi.2004:22(1):26-28.
    20. Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL, Fields GB, VisseR, Nagase H. Collagenase unwinds triple-helical collagen prior to peptidebond hydrolysis. EMBO J.2004;23(15):3020-3030.
    21. Murphy G, McAlpine CG, Poll CT, Reynolds JJ. Purification andcharacterization of a bone metalloproteinase that degrades gelatin and typesIV and V collagen. Biochim Biophys Acta.1985;831(1):49-58.
    22. Tay FR, Pashley DH, Loushine RJ, Weller RN, Monticelli F, Osorio R.Self-etching adhesives increase collagenolytic activity in radicular dentin. JEndod.2006:32(9):862-868.
    23. Satoyoshi M, Kawata A, Koizumi T, Inoue K, Itohara S, Teranaka T,Mikuni-Takagaki Y. Matrix metalloproteinase-2in dentin matrixmineralization. J Endod.2001;27(7):462–466.
    24. Martin-De Las Herasa S, Valenzuela A, Overall CM. The matrixmetalloproteinase gelatinase A in human Dentin. Arch Oral Biol.2000;45(9):757-765.
    25. Toledano M, Nieto-Aguilar R, Osorio R, Campos A, Osorio E, Tay FR,Alaminos M. Differential expression of matrix metalloproteinase-2inhuman coronal and radicular sound and carious dentine. J Dent.2010;38(8):635-640.
    26. Chaussain C, Eapen AS, Huet E, Floris C, Ravindran S, Hao J, Menashi S,George A. MMP2-cleavage of DMP1generates a bioactive peptidepromoting differentiation of dental pulp stem/progenitor cell. Eur Cell Mater.2009;18:84-95.
    27. Zehnder M, Wegehaupt FJ, Attin T. A first study on the usefulness of matrixmetalloproteinase9from dentinal fluid to indicate pulp inflammation. JEndod.2011:37(1):17-20.
    28. Freise C, Erben U, Muche M, Farndale R, Zeitz M, Somasundaram R, RuehlM. The alpha2chain of collagen type VI sequesters latent proforms ofmatrix-metalloproteinases and modulates their activation and activity.Matrix Biol.2009:28(8):480-489.
    29. Zheng L, Amano K, Iohara K, Ito M, Imabayashi K, Into T, Matsushita K,Nakamura H, Nakashima M. Matrix metalloproteinase-3accelerates woundhealing following dental pulp injury. Am J Pathol.2009;175(5):1905-1914.
    30. Hall R, Septier D, Embery G, Goldberg M. Stromelysin-1(MMP-3) informing enamel and predentine in rat incisor-coordinated distribution withproteoglycans suggests a functional role. Histochem J.1999:31(12):761-770.
    31. Shin SJ, Lee JI, Baek SH, Lim SS. Tissue levels of matrixmetalloproteinases in pulps and periapical lesions. J Endod.2002;28(4):313-315.
    32. EI-din AK, Miller BH, Griggs JA. Resin bonding to sclerotic, noncarious,cervical lesions. Quintessence Int.2004;35(7):529-540.
    33. Tay FR, Pashley DH. Resin bonding to cervical sclerotic dentin: a review. JDent.2004;32(3):173-196.
    34. Sorsa T, Tj derhane L, Salo T. Matrix metalloproteinases (MMPs) in oraldiseases. Oral Dis.2004;10(6):311-318.
    35. Sorsa T, Tj derhane L, Konttinen YT, Lauhio A, Salo T, Lee HM, Golub LM,Brown DL, M ntyl P. Matrix metalloproteinases: contribution topathogenesis, diagnosis and treatment of periodontal inflammation. AnnMed.2006;38(5):306-321.
    36. Sorsa T, Uitto VJ, Suomalainen K, Vauhkonen M, Lindy S. Comparison ofinterstitial collagenases from human gingiva, sulcular fluid andpolymorphonuclear leukocytes. J Periodontal Res.1988;23(6):386-393.
    37. Kiili M, Cox SW, Chen HY, Wahlgren J, Maisi P, Eley BM, Salo T, Sorsa T.Collagenase-2(MMP-8) and collagenase-3(MMP-13) in adult periodontitis:molecular forms and levels in gingival crevicular fluid andimmunolocalisation in gingival tissue. J Clin Periodontol.2002;29(3):224-232.
    38. Tervahartiala T, Piril E, Ceponis A, Maisi P, Salo T, Tuter G, Kallio P,T rnwall J, Srinivas R, Konttinen YT, Sorsa T. The in vivo expression of thecollagenolytic matrix metalloproteinases (MMP-2,-8,-13, and-14) andmatrilysin (MMP-7) in adult and localized juvenile periodontitis. J Dent Res.2000;79(12):1969-1977.
    39. Hernandez M, Valenzuela MA, Lopez-Otin C, Alvarez J, Lopez JM, VernalR, Gamonal J. Matrix metalloproteinase-13is highly expressed indestructive periodontal disease activity. J Periodontol.2006;77(11):1863-1870.
    40. Hernández M, Martínez B, Tejerina JM, Valenzuela MA, Gamonal J.MMP-13and TIMP-1determinations in progressive chronic periodontitis. JClin Periodontol.2007;34(9):729-735.
    41. Palosaari H, Wahlgren J, Larmas M, R nk H, Sorsa T, Salo T, Tj derhane L.The expression of MMP-8in human odontoblasts and dental pulp cells isdown-regulated by TGF-beta1. J Dent Res.2000;79(1):77–84.
    42. Randall LE, Hall RC. Temperospatial expression of matrixmetalloproteinases1,2,3, and9during early tooth development. ConnectTissue Res.2002:43(2-3):205-211.
    43. Sahlberg C, Reponen P, Tryggvason K, Thesleff I. Association between theexpression of murine72kDa type IV collagenase by odontoblasts andbasement membrane degradation during mouse tooth development. ArchOral Biol.1992;37(12):1021-1030.
    44. Heikinheimo K. T. Salo. Expression of basement membrane type IVcollagen and type IV collagenases (MMP-2and MMP-9) in human fetalteeth. J. Dent. Res.1995;74(5):1226-1234.
    45. Sahlberg C, Reponen P, Tryggvason K, Thesleff I. Timp-1,-2and-3showcoexpression with gelatinases A and B during mouse tooth morphogenesis.Eur. J. Oral Sci.1999;107(2):121-130.
    46. M. Goldberg, D. Septier, K. Bourd, R. Hall, A. George, H. Goldberg,S.Menashi, Immunohistochemical localization of MMP-2, MMP-9, TIMP-1,and TIMP-2in the forming rat incisor. Connect Tissue Res.2003;44(3-4):143-153.
    47. Fanchon S, Bourd K, Septier D, Everts V, Beertsen W, Menashi S, GoldbergM. Involvement of matrix metalloproteinases in the onset of dentinmineralization. Eur J Oral Sci.2004;112(2):171-176.
    48. Boushell LW, Kaku M, Mochida Y, Bagnell R, Yamauchi M.Immunohistochemical localization of matrixmetalloproteinase-2in humancoronal dentin. Arch Oral Biol.2008;53(2):109-116.
    49. Davis GE. Identification of an abundant latent94-kDa gelatin-degradingmetalloprotease in human saliva which is activated by acid exposure:implications for a role in digestion of collagenous proteins. Arch BiochemBiophys.1991;286(2):551-554.
    50. Gunja-Smith Z, Woessner JF Jr. Activation of cartilage stromelysin-1at acidpH and its relation to enzyme pH optimum and osteoarthritis. AgentsActions.1993;40(3-4):228-231.
    51. Magloire H, Lesage F, Couble ML, Lazdunski M, Bleicher F. Expressionand localization of TREK-1K+channels in human odontoblasts. J Dent Res.2003;82(7):542-545.
    52. Nishitani Y, Yoshiyama M, Wadgaonkar B, Breschi L, Mannello F, MazzoniA, Carvalho RM, Tj derhane L, Tay FR, Pashley DH. Activation ofgelatinolytic/collagenolytic activity in dentin by self-etching adhesives. EurJ Oral Sci.2006;114(2):160-166.
    53. Pashley DH, Tay FR, Yiu C, Hashimoto M, Breschi L, Carvalho RM, Ito S.Collagen degradation by host-derived enzymes dering aging. J Dent Res.2004;83(3):216-221.
    54. Amour A, Knight CG, Webster A, Slocombe PM, Stephens PE, Kn uper V,Docherty AJ, Murphy G. The in vitro activity of ADAM-10is inhibited byTIMP-1and TIMP-3. FEBS Lett.2000;473(3):275-279.
    55. Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-HansenB, DeCarlo A, Engler JA. Matrix metalloproteinases: a review. Crit Rev OralBiol Med.1993;4(2):197-250.
    56. Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem.1999;274(31):21491-21494.
    57. Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biologicalactions and therapeutic opportunities. J Cell Sci.2002;115(19):3719-3727.
    58. Yu WH, Yu S, Meng Q, Brew K, Woessner JF Jr. TIMP-3binds to sulfatedglycosaminoglycans of the extracellular matrix. J Biol Chem.2000;275(40):31226-31232.
    59. Ishiguro K, Yamashita K, Nakagaki H, Iwata K, Hayakawa T. Identificationof tissue inhibitor of metalloproteinases-1(TIMP-1) in human teeth and itsdistribution in cementum and dentine. Archs Oral Biol.1994;39(4):345–349.
    60. Henrotin YE, Sanchez C, Deberg MA, Piccardi N, Guillou GB, Msika P,Reginster JY. Avocado/soybean unsaponifiables increase aggrecan synthesisand reduce catabolic and proinflammatory mediator production by humanosteoarthritic chondrocytes. J Rheumatol.2003;30(8):1825-1834.
    61. Huet E, Cauchard JH, Berton A, Robinet A, Decarme M, Hornebeck W,Bellon G. Inhibition of plasmin-mediated prostromelysin-1activation byinteraction of long chain unsaturated fatty acids with kringle5. BiochemPharmacol.2004;67(4):643-654.
    62. Gaultier F, Foucault-Bertaud A, Lamy E, Ejeil AL, Dridi SM, Piccardi N,Piccirilli A, Msika P, Godeau G, Gogly B. Effects of a vegetable extract fromLupinus albus (LU105) on the production of matrix metalloproteinases(MMP1, MMP2, MMP9) and tissue inhibitor of metalloproteinases (TIMP1,TIMP2) by human gingival fibroblasts in culture. Clin Oral Investig.2003;7(4):198-205.
    63. Song SE, Choi BK, Kim SN, Yoo YJ, Kim MM, Park SK, Roh SS, Kim CK.Inhibitory effect of procyanidin oligomer from elm cortex on the matrixmetalloproteinases and proteases of periodontopathogens.. J PeriodontalRes.2003;38(3):282-289.
    64. Kut C, Assoumou A, Dridi M, Bonnefoix M, Gogly B, Pellat B, Guillou GB,Godeau G. Morphometric analysis of human gingival elastic fibresdegradation by human leukocyte elastase protective effect of avocado andsoybean unsaponifiables (ASU). Pathol Biol (Paris).1998;46(7):571-576.
    65. Berton A, Rigot V, Huet E, Decarme M, Eeckhout Y, Patthy L, Godeau G,Hornebeck W, Bellon G, Emonard H. Involvement of fibronectin type IIrepeats in the efficient inhibition of gelatinases A and B by long-chainunsaturated fatty acids. J Biol Chem.2001;276(23):20458-204565.
    66. Mukhtar H, Ahmad N. Green tea in chemoprevention of cancer. Toxicol Sci.1999;52(2Suppl):111-117.
    67. Harper DR, Kit ML, Kangro HO. Protein blotting: ten years on. J VirolMethods.1990;30(1):25-39.
    68. Peterson EM. ELISA: a tool for the clinical microbiologist. Am J MedTechnol.1981;47(11):905-908.
    69. Sheibani K, Tubbs RR. Enzyme immunohistochemistry: technical aspects.Semin Diagn Pathol.1984;1(4):235-250.
    70. Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR Jr. Advancedmultiplexed analysis with the FlowMetrix system. Clin Chem.1997;43(9):1749-1756.
    71. Kellar KL, Iannone MA. Multiplexed microsphere-based flow cytometricassays. Exp Hematol.2002;30(11):1227-1237.
    72. Vignali DA. Multiplexed particle-based flow cytometric assays. J ImmunolMethods.2000;243(1-2):243-255.
    73. Lim CT, Zhang Y. Bead-based microfluidic immunoassays: the nextgeneration. Biosens Bioelectron.2007;22(7):1197-1204.
    74. Kellar KL, Douglass JP. Multiplexed microsphere-based flow cytometricimmunoassays for human cytokines. J Immunol Methods.2003;279(1-2):277-285.
    75. Seideman J, Peritt D. A novel monoclonal antibody screening method usingthe Luminex-100microsphere system. J Immunol Methods.2002;267(2):165-171.
    76. Nakabayashi N, Kojima K, Masuhara E. The promotion of adhesion by theinfltration of monomers into tooth substrates. J Biomed Mater Res.1982;16(3):265-273.
    77. Pashley DH, Tay FR, Carvalho RM, Rueggeberg FA, Agee KA, Carrilho M,Donnelly A, García-Godoy F. From dry bonding to water-wet bonding toethanol-wet bonding. A review of the interactions between dentin matrix andsolvated resins using a macromodel of the hybrid layer. Am J Dent.2007;20(1):7-20.
    78. Tay FR, Pashley DH, Kapur RR, Carrilho MR, Hur YB, Garrett LV, Tay KC.Bonding BisGMA to dentin--a proof of concept for hydrophobic dentinbonding. J Dent Res.2007Nov;86(11):1034-1039.
    79. Li F, Liu XY, Zhang L, Kang JJ, Chen JH. Ethanol-wet Bonding TechniqueMay Enhance the Bonding Performance of Contemporary Etch-and-RinseDental Adhesives. J Adhes Dent.2011
    80. L, Zhou JF, Tan JG, Jing Q, Zhao JZ, Wan K. Effect of multiple coatings ofone-step self-etching adhesive on microtensile bond strength to primarydentin. Chin Med Sci J.2011;26(3):146-151.
    81. do Amaral RC, Stanislawczuk R, Zander-Grande C, Michel MD, Reis A,Loguercio AD. Active application improves the bonding performance ofself-etch adhesives to dentin. J Dent.2009;37(1):82-90.
    82. Liu Y, Tj derhane L, Breschi L, Mazzoni A, Li N, Mao J, Pashley DH, TayFR. Limitations in bonding to dentin and experimental strategies to preventbond degradation. J Dent Res.2011;90(8):953-968.
    83. De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, BraemM,Van Meerbeek B. A critical review of the durability of adhesion to toothtissue: methods and results. J Dent Res.2005;84(2):118-132.
    84. Spencer P, Wang Y. Adhesive phase separation at the dentin interface underwet bonding conditions. J Biomed Mater Res.2002;62(3):447-456.
    85. Marshall SJ, Bayne SC, Baier R, Tomsia AP, Marshall GW. A review ofadhesion science. Dent Mater.2010;26(2):e11-e16.
    86. Van Landuyt KL, Snauwaert J, Peumans M, De Munck J, Lambrechts P, VanMeerbeek B. The role of HEMA in one-step self-etch adhesives. Dent Mater.2008;24(10):1412-1419.
    87. Takahashi M, Nakajima M, Hosaka K, Ikeda M, Foxton RM, Tagami J.Long-term evaluation of water sorption and ultimate tensile strength ofHEMA-containing/-free one-step self-etch adhesives. J Dent.2011;39(7):506-512.
    88. Sanabe ME, Costa CA, Hebling J. Exposed collagen in aged resin-dentinbonds produced on sound and caries-affected dentin in the presence ofchlorhexidine. J Adhes Dent.2011;13(2):117-124.
    89. Breschi L, Martin P, Mazzoni A, Nato F, Carrilho M, Tj derhane L, VisintiniE, Cadenaro M, Tay FR, De Stefano Dorigo E, Pashley DH. Use of aspecific MMP-inhibitor (galardin) for preservation of hybrid layer. DentMater.2010;26(6):571-578.
    90. Hiraishi N, Yiu CK, King NM, Tay FR. Effect of2%chlorhexidine ondentin microtensile bond strengths and nanoleakage of luting cements. JDent.2009;37(6):440-448.
    91. Sano H, Shono T, Sonoda H, Takatsu T, Ciucchi B, Carvalho R, Pashley DH.Relationship between surface area for adhesion and tensile bondstrength--evaluation of a micro-tensile bond test. Dent Mater.1994;10(4):236-240.
    92. McDonough WG, Antonucci JM, He J, Shimada Y, Chiang MY, SchumacherGE, Schultheisz CR. A microshear test to measure bond strengths ofdentin–polymer interfaces. Biomaterials.2002;23(17):3603–3608.
    93. Cardoso PE, Braga RR, Carrilho MR. Evaluation of micro-tensile, shear andtensile tests determining the bond strength of three adhesive systems. DentMater.1998;14(6):394–398.
    94. Banomyong D, Palamara JE, Burrow MF, Messer HH. Effect of dentinconditioning on dentin permeability and microshear bond strength. Eur JOral Sci.2007;115(6):502-509.
    95. Armstrong S, Geraldeli S, Maia R, Raposo LH, Soares CJ, Yamagawa J.Adhesion to tooth structure: a critical review of "micro" bond strength testmethods. Dent Mater.2010;26(2):e50-62.
    96. Shimada Y, Yamaguchi S, Tagami J. Micro-shear bond strength ofdual-cured resin cement to glass ceramics. Dent Mater.2002;18(5):380-388.
    97. Scherrer SS, Cesar PF, Swain MV. Direct comparison of the bond strengthresults of the different test methods: a critical literature review. Dent Mater.2010;26(2):e78-93.
    98. Amaral FL, Colucci V, Palma-Dibb RG, Corona SA. Assessment of in vitromethods used to promote adhesive interface degradation: a critical review. JEsthet Restor Dent.2007;19(6):340-354.
    99. Tay FR, Pashley DH, Yoshiyama M. Two modes of nanoleakage expressionin single-step adhesives. J Dent Res.2002;81(7):472–476.
    100.Tay FR, Pashley DH. Water-treeing: a potential mechanism for degradationof dentin adhesives. Am J Dent.2003;16(1):6–12.
    101.Yuan Y, Shimada Y, Ichinose S, Tagami J. Qualitative analysis of adhesiveinterface nanoleakage using FE-SEM/EDS. Dent Mater.2007;23(5):561-569.
    100. Breschi L, Mazzoni A, Nato F, Carrilho M, Visintini E, Tj derhane L,Ruggeri A Jr, Tay FR, Dorigo Ede S, Pashley DH. Chlorhexidine stabilizesthe adhesive interface: A2-year in vitro study. Dent Mater.2010;26(4):320-325.
    101. Heymann HO, Bayne SC. Current concepts in dentin bonding: focusing ondentinal adhesion factors. J Am Dent Assoc.1993;124(5):26-36.
    102. Kwong SM, Tay FR, Yip HK, Kei LH, Pashley DH. An ultrastructural studyof the application of dentin adhesives to acid-conditioned sclerotic dentin. JDent.2000;28(7):515-528.
    103. Tersariol IL, Geraldeli S, Minciotti CL, Nascimento FD, P kk nen V,Martins MT, Carrilho MR, Pashley DH, Tay FR, Salo T, Tj derhane L.Cysteine cathepsins in human dentin-pulp complex. J Endod.2010;36(3):475-481.
    104. Lehmann N, Debret R, Roméas A, Magloire H, Degrange M, Bleicher F,Sommer P, Seux D. Self-etching increases matrix metalloproteinaseexpression in the dentin-pulp complex. J Dent Res.2009;88(1):77-82.
    105. Palosaari H, Ding Y, Larmas M, Sorsa T, Bartlett JD, Salo T, Tj derhane L.Regulation and interactions of MT-1-MMP and MMP-20in humanodontoblasts and pulp tissue in vitro. J Dent Res.2002;81(5):354-359.
    106. Tj derhane L, Salo T, Larjava H, Larmas M, Overall CM. A novel organculture method to study the function of human odontoblasts in vitro:gelatinase expression by odontoblasts is differentially regulated by TGF-β1.J Dent Res.1998;77(7):1486-1496.
    107. Marcaccini AM, Novaes AB Jr, Meschiari CA, Souza SL, Palioto DB, SorgiCA, Faccioli LH, Tanus-Santos JE, Gerlach RF. Circulating matrixmetalloproteinase-8(MMP-8) and MMP-9are increased in chronicperiodontal disease and decrease after non-surgical periodontal therapy. ClinChim Acta.2009;409(1-2):117-122.
    108. Proen a JP, Polido M, Osorio E, Erhardt MC, Aguilera FS, García-Godoy F,Osorio R, Toledano M. Dentin regional bond strength of self-etch andtotal-etch adhesive systems. Dent Mater.2007;23(12):1542-1548.
    109. Weerasinghe DS, Nikaido T, Wettasinghe KA, Abayakoon JB, Tagami J.Micro-shear bond strength and morphological analysis of a self-etchingprimer adhesive system to fluorosed enamel. J Dent.2005;33(5):419-426.
    110. Saboia VP, Silva FC, Nato F, Mazzoni A, Cadenaro M, Mazzotti G, GianniniM, Breschi L. Analysis of differential artificial ageing of the adhesiveinterface produced by a two-step etch-and-rinse adhesive. Eur J Oral Sci.2009;117(5):618-624.
    111. Saboia VP, Nato F, Mazzoni A, Orsini G, Putignano A, Giannini M, BreschiL. Adhesion of a two-step etch-and-rinse adhesive on collagen-depleteddentin. J Adhes Dent.2008;10(6):419-422.
    112. Smith DC, Cooper WE. The determination of shear strength. A method usinga micro-punch apparatus. Br Dent J.1971;130(8):333-337.
    113. Pashley DH, Ciucchi B, Sano H, Carvalho RM, Russell CM. Bond strengthversus dentine structure: a modelling approach. Arch Oral Biol.1995;40(12):1109-1118.
    114. Skovron L, Kogeo D, Gordillo LA, Meier MM, Gomes OM, Reis A,Loguercio AD. Effects of immersion time and frequency of water exchangeon durability of etch-and-rinse adhesive. J Biomed Mater Res B ApplBiomater.2010;95(2):339-346.
    115. Pashley DH, Ciucchi B, Sano H, Carvalho RM, Russell CM. Bond strengthversus dentine structure: a modelling approach. Arch Oral Biol.1995;40(12):1109-1118.
    116. Skovron L, Kogeo D, Gordillo LA, Meier MM, Gomes OM, Reis A,Loguercio AD. Effects of immersion time and frequency of water exchangeon durability of etch-and-rinse adhesive. J Biomed Mater Res B ApplBiomater.2010;95(2):339-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700