季铵盐型抗菌单体改性窝沟封闭剂的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
窝沟封闭作为口腔防龋的有效手段已具有四十多年的应用历史。众多的研究表明,应用窝沟封闭剂是预防口腔窝沟龋最有效的方法之一。目前,常用的窝沟封闭剂主要包括复合树脂和玻璃离子两大类。玻璃离子类封闭剂由于本身机械强度较差,保留率较低,所以使用相对较少;相比之下,复合树脂类封闭剂凭借其合理的流动性、良好的润湿性和物理性能等众多优点,在临床上应用最为广泛。但是复合树脂类材料由于存在聚合收缩,可使牙体结构和材料间产生微裂隙,口腔细菌则会趁机侵入裂隙并且繁殖生长,从而形成继发龋并导致窝沟封闭的失败。另外,一些早期龋坏的牙体组织可能在临床操作中被覆盖于窝沟封闭剂下方,其中的致龋菌可能存活甚至继续生长繁殖,导致龋坏的进一步发展。由此可见,赋予窝沟封闭剂一定的抗菌性能十分必要。
     氟是公认的防龋活性物质,并且已经被广泛应用于商品化的窝沟封闭剂中。它通过抑制牙体硬组织脱矿、促进再矿化、干扰菌斑的形成以及抑制细菌的生长代谢等机制影响龋坏的形成。但是在牙科材料中添加氟存在一些缺点:首先氟的释放表现为初期的“突释效应”,随后释放浓度就会很快降低,氟释放的长期有效性值得怀疑。其次,尚缺乏充足的证据证明含氟封闭剂的临床防龋效果优于不含氟的封闭剂,而且仅有个别的含氟封闭剂被报道具备有效的抗菌活性。另外,由于氟的潜在毒性,在口腔环境中长期应用含氟材料的安全性尚有待于进一步的研究。除氟化物以外,抗生素、无机抗菌剂等抗菌活性物质也被加入牙科修复材料或粘接剂中。但是由于添加的抗菌剂都是简单分散在树脂基质中的,仅仅是依靠抗菌成分的溶出而发挥抗菌作用,所以抗菌的持久性无法得到保证。所以如果能将抗菌功能基团以化学键形式键合到牙科高分子材料中应该是更好的途径。基于以上目的,Imazato等合成了一种具有抗菌活性的季铵盐单体,甲基丙烯酰氧十二烷基溴吡啶(MDPB),并将其加入到自酸蚀粘接剂中合成了具有抗菌功能的粘接剂,发现该材料在固化后具有接触性抑菌作用。
     本课题组已经合成一种可聚合季铵盐抗菌功能单体—甲基丙烯酰氧乙基-正十六烷基-二甲基氯化铵(methacryloxylethyl cetyl dimethyl ammonium chloride,DMAE-CB),实验证明其对口腔常见致病菌具有较强的杀菌活性,添加DMAE-CB单体的改性粘接剂固化后具有明显的接触抑菌效果。
     1主要研究目的:
     将DMAE-CB添加到商品窝沟封闭剂Helioseal中获得DMAE-CB改性封闭剂作为实验组;未添加抗菌单体的Helioseal则作为阴性对照,具备氟释放功能的窝沟封闭剂Helioseal F作为阳性对照,评价抗菌单体DMAE-CB的添加对窝沟封闭剂抗菌性能的影响,推测改性封闭剂的抗菌机制,并且研究封闭剂的机械性能是否会因为抗菌单体的添加而受到削弱,初步评价抗菌改性窝沟封闭剂的临床应用前景。
     2主要研究方法:
     2.1采用接触抑菌实验评价改性封闭剂的固化表面对变形链球菌生长的影响,并在老化处理和唾液处理后重复上述实验以评价材料表面的抗菌效果。
     2.2制备三组试件的浸提液,研究变形链球菌在浸提液中的生长动力学和倍增时间,以考察材料浸提液的抗菌活性。
     2.3在封闭剂的固化表面进行变形链球菌生物膜的体外培养,通过光密度值分析改性材料对生物膜形成的影响;利用扫描电镜观察DMAE-CB改性封闭剂表面变链生物膜的形成过程,考察抗菌材料表面对变链生物膜形成的影响。
     2.4采用荧光染色技术结合激光共聚焦显微镜观察,评价不同组封闭剂的固化表面对变形链球菌生存状态(死菌/活菌)的影响,推测细菌胞膜完整性的情况,进一步明确季铵盐改性牙科树脂材料的抗菌机理。
     2.5测定比较三组封闭剂材料在牙釉质表面的接触角,评价DMAE-CB抗菌单体的添加对窝沟封闭剂渗透性的影响。
     2.6采用傅立叶变换红外光谱技术,通过检测三组封闭剂材料光照固化前后的C=C双键伸缩振动,评价材料的双键转化率,推测DMAE-CB的添加对窝沟封闭剂中树脂单体聚合转化率的影响。
     2.7研究三组封闭剂光固化后的表面显微硬度,进一步评价DMAE-CB抗菌单体的添加对窝沟封闭剂本身固化能力的影响。
     2.8通过窝沟封闭剂微渗漏实验和对封闭剂与牙釉质粘接界面的结构观察,探讨抗菌单体DMAE-CB的添加对窝沟封闭剂与牙面密合性的影响。
     2.9将DMAE-CB添加到封闭剂Helioseal F中,考察这种季铵盐阳离子单体的添加对含氟封闭剂在体外环境下氟离子释放的影响。
     3主要研究结果:
     3.1 DMAE-CB改性封闭剂固化后表面可以抑制变形链球菌的生长,老化处理或唾液处理后改性材料表面仍表现出一定的抗菌活性。作为阳性对照的含氟窝沟封闭剂Helioseal F和阴性对照组相比未表现出明显的抗菌活性(P > 0.05)。
     3.2三组封闭剂浸提液的细菌生长曲线均同空白对照组相似。四组浸提液细菌生长回归线的截距值没有显著差异(P > 0.05);DMAE-CB改性封闭剂组和阴性对照组浸提液中变形链球菌指数生长期拟合直线的斜率及细菌倍增时间均无显著差异(P > 0.05)。
     3.3 DMAE-CB改性封闭剂固化后表面可抑制变形链球菌生物膜的形成。扫描电镜观察发现:孵育4 h,改性封闭剂表面仅见有非常少量细菌单个或穗状散在分布,很少的细胞外基质结构附着于材料表面,且结构塌陷;孵育24 h,改性封闭剂表面已有变链生物膜形成,但结构较为松散。
     3.4细菌经荧光染色后,激光共聚焦显微镜下死菌显示为红色,活菌显示为绿色。阴性对照组和阳性对照组固化表面均显示有大量的红色和绿色荧光斑块;而实验封闭剂组表面无论红色或者绿色的荧光斑块均较稀疏。
     3.5荧光强度分析表明实验封闭剂组的总荧光强度FIt明显要比阴性对照组和阳性对照组低(P < 0.05),红绿荧光强度比值FIr/FIg实验封闭剂组则为最高(P < 0.05)。
     3.6实验封闭剂组剂和阴性对照组的接触角均显著小于阳性对照组(P < 0.05),而且实验封闭剂组和阴性对照组的接触角没有显著的统计学差异(P > 0.05);各组酸蚀处理亚组的接触角均小于未酸蚀亚组的(P < 0.05)。
     3.7实验封闭剂组和阴性对照组的聚合转化率并没有显著的统计学差异(P > 0.05);相比较阴性对照组和实验封闭剂组,阳性对照组的聚合转化率最高(P < 0.05)。
     3.8实验封闭剂组和阴性对照组的硬度值并没有显著的统计学差异(P > 0.05);相比较阴性对照组和实验封闭剂组,阳性对照组的硬度值最高(P < 0.05)。
     3.9实验封闭剂组和阴性对照组在微渗漏程度上无显著统计学差异(P > 0.05);而阳性对照组微渗漏的发生率明显高于阴性对照组和实验封闭剂组(P < 0.05).
     3.10两组封闭剂Helioseal F与Helioseal F(1% w/w DMAE-CB)表现出类似的氟释放方式,初期的大量释放和较长时间的低水平持续释放,而且在不同时间点测得的两组氟释放量之间均没有显著性的统计学差异(P > 0.05)。
     4主要结论:
     4.1 DMAE-CB改性封闭剂固化后可以抑制变形链球菌的生长,其抗菌活性在老化处理和唾液处理后没有明显的衰减,说明季铵盐单体改性窝沟封闭剂可以在唾液环境中发挥较持久的抗菌作用,具有临床应用的可行性。
     4.2改性封闭剂材料在发挥抗菌功能的同时并没有抗菌阳离子单体的溶出。
     4.3 DMAE-CB改性窝沟封闭剂固化后可以抑制表面变形链球菌生物膜的形成,材料老化处理后抑制作用并无明显衰减。
     4.4 DMAE-CB改性封闭剂固化后的材料表面通过破坏细菌细胞膜的完整性,可以杀死吸附于材料表面的细菌,同时影响细菌在其表面的黏附。
     4.5少量抗菌单体DMAE-CB的添加并没有改变窝沟封闭剂在牙釉质表面的接触角;牙釉质表面的酸蚀处理可以降低封闭剂在其表面的接触角。
     4.6少量抗菌单体DMAE-CB的添加并没有改变窝沟封闭剂材料本身的聚合转化率,聚合能力没有受到影响;无机填料比例的增加会提高光固化型复合树脂材料的聚合转化率。
     4.7少量抗菌单体DMAE-CB的添加并没有改变窝沟封闭剂材料本身固化后的表面硬度,也间接说明其聚合固化能力没有受到影响。
     4.8少量抗菌单体DMAE-CB的添加并没有对窝沟封闭剂与牙面间的密合性造成影响,没有改变微渗漏的情况;无填料的封闭剂产生的微渗漏更少。
     4.9窝沟封闭剂Helioseal F中少量DMAE-CB的添加并没有影响在体外环境下材料固化后氟离子的释放情况;通过添加季铵盐抗菌单体以改善含氟封闭剂的抗菌性能具备一定的可行性。
     综上所述,DMAE-CB改性封闭剂固化后具备一定的抗菌活性,可以抑制变形链球菌的生长和黏附,破坏细菌胞膜的完整性,老化处理和唾液预处理后改性封闭剂材料仍表现出一定的抗菌活性,发挥抗菌功能的同时并没有抗菌阳离子单体的溶出,表现为接触性抑菌;另外,少量抗菌单体DMAE-CB的添加并没有对窝沟封闭剂本身的机械性能造成影响,封闭剂在牙釉质表面的接触角、聚合转化率、硬度和微渗漏情况均没有明显的变化。
Pit and fissure sealing is considered to be one of the most effective method of protecting teeth from dental caries. The composite resin and glass ionomer are main materials of sealant. Because the retention of the glass ionomer sealant as compared with the composite resin is poor, the composite resin is the most commonly used material in this procedure, due to its reasonable flowability, good wettability and improved physical properties. However, polymerization shrinkage of composite resin-based materials might facilitate the formation of gaps between the filling and cavity wall, providing space for bacterial invasion and proliferation, thereby leading to secondary caries and the failure of restorations. Additionally, incipient caries may inadvertently be sealed in with dental sealants and the fate of those bacteria within carious lesions is of significance. Therefore, if sealants could provide additional antibacterial protection, especially against cariogenic bacteria such as Streptococcus mutans (S. mutans), additional protection could be afforded to prevent subsequent deterioration at the sealant-tooth interface and caries initiation.
     Fluoride is well-known for its anticarious activity by inhibiting the biosynthetic metabolism of bacteria. Fluoride released from dental restorative materials affects caries formation by reducing demineralization, enhancing remineralization, interfering with plaque formation and inhibiting microbial metabolism. The addition of fluoride to pit and fissure sealants has been widely applied in dental materials. However, the dynamic release of fluoride is unstable, exhibiting a higher initial release and subsequent leaching-out at very low levels, thereby making the permanence and validity of fluoride release suspicious. Moreover, there is some debate about whether adding fluoride to a sealant actually prevents caries more effectively than the sealant alone. Aside from fluoride, some other antibacterial components, such as antibiotics and inorganic agents, have also been added into the dental materials. However, the release kinetics of those antibacterial agents is difficult to control strictly. Moreover, the constant release of antibacterial agents may damage the physical and chemical properties of the carrier material.
     In order to avoid the defects caused by solubility of the agent, the dental material with antibacterial activity could be produced by binding the polymerizable monomers into polymer matrix. Several reports have described the incorporation of a quaternary ammonium monomer, methacryloyloxydodecyl pyridinium bromide (MDPB), in composite resin or an adhesive system as a strategy for obtaining antibacterial properties. Accordingly, methacryloxylethyl cetyl dimethyl ammonium chloride (DMAE-CB), a polymerizable cationic monomer containing a quaternary ammonium for antibacterial effect, was synthesized by our research group, and the DMAE-CB-incorporated adhesive was demonstrated to exert antibacterial activity and an anti-biofilm effect against S. mutans.
     In the present study, DMAE-CB was incorporated into a commercial resin-based sealant material to obtain an experimental DMAE-CB-incorporated sealant for evaluation of antibacterial activity and various other properties. The hypotheses were that the mobilized DMAE-CB in the resin-based sealant would exhibit a stable and long-lasting antibacterial effect against S. mutans and that the addition of a small amount (1% w/w) of DMAE-CB would not affect the properties of the parent material.
     1 The main objectives:
     DMAE-CB was incorporated at 1% (w/w) into a clinically used sealant (Helioseal). Helioseal without DMAE-CB served as a negative control. Helioseal F, containing a fluoride-releasing resin, was used as a positive control. This aim of this study was to evaluate their antibacterial activity and properties including surface contact angle, degree of conversion, hardness and microleakage characteristics.
     2 The main methods:
     2.1 The inhibitory effect of the cured sealant on bacterial growth was evaluated by the film contact method, and the influence of aging treatment or saliva treatment of the modified sealant was also evaluated by the same method.
     2.2 The bacterial growth in the eluent of the modified sealant was investigated with spectrophotometry and growth kinetic analysis.
     2.3 The effects of the cured DMAE-CB-incorporated sealant on the S. mutans biofilm accumulation of in vitro investigated with spectrophotometry,and the microcosm of S. mutans biofilm were observed with scanning electron microscope spectrophotometry.
     2.4 The effects of the cured sealants on the membrane integrity of S. mutans were investigated using confocal laser scanning microscopy (CLSM) in conjunction with fluorescent indicators.
     2.5 The contact angles of the sealants on the enamel surface were measured with a camera based goniometer.
     2.6 The degree of conversion of the sealants was measured using Fourier transform infrared reflectance spectroscopy.
     2.7 Vickers microhardness of the cured sealants was measured using a Micro Hardness Tester.
     2.8 30 extracted sound human molar teeth were randomly divided into three groups. After application of the three groups of materials, the specimens were subjected to thermocycling and then immersed in 1% methylene-blue dye. Following sectioning, specimens were examined under a sterecmicroscope and microleakage scores were assigned.
     2.9 Fluoride release from Helioseal F and Helioseal F(1% DMAE-CB) was evaluated at time intervals of 4, 8, 12, and 24 hours and 2, 3, 7, 14, 28, 56, and 112 days. Seven disks of each material were made and stored for equilibration in double distilled water at 37°C for the time of each measurement. The solution was analyzed for fluoride with a fluoride combination electrode.
     3 The main results:
     3.1 The bacterial growth was inhibited significantly by the DMAE-CB -incorporated sealant (P < 0.05); no significant difference was found between the negative control and the positive control (P > 0.05).
     3.2 The bacterial growth curves of S. mutans in the eluents of the three sealant groups were similar to that of the blank control in fresh BHI. There was no statistical difference in the intercept values among the four groups (P > 0.05). The slope values of the three sealant groups were significantly lower than that of the blank control, but the difference was not statistically significant (P > 0.05).
     3.3 The cured DMAE-CB-incorporated dental sealant could inhibit the formation of S. mutans biofilm on the material surface. After 4-h incubation, on the surface of DMAE-CB incorporated sealant, S. mutans were sporadically scattered with blurred contours; extracelluar matrix was scanty and deformed. After 24-h incubation the biofilm of DMAE-CB-incorporated group was incompact with long chains of S. mutans attached on extracellular scaffold.
     3.4 CLSM images showed that the live bacteria were dyed as green and those dead bacteria were red. The DMAE-CB-incorporated sealant retained fewer red and green patches.
     3.5 The cured DMAE-CB-incorporated sealant could inhibit the adherence of S. mutans by destroying bacterial membrane integrity (P < 0.05).
     3.6 The contact angles of the positive control were higher than those of the DMAE-CB-incorporated group and the negative control (P < 0.05), and the difference between the latter two groups was not significant (P > 0.05). Moreover, the contact angle with etching was lower than that without etching (P < 0.05).
     3.7 The degree of conversion of the positive control was higher than that of the DMAE-CB-incorporated group and the negative control (P < 0.05). There was no significant difference between the DMAE-CB-incorporated group and the negative control (P > 0.05).
     3.8 The microhardness of the positive control was higher than that of the DMAE-CB-incorporated group and the negative control (P < 0.05). There was no significant difference between the DMAE-CB-incorporated group and the negative control (P > 0.05).
     3.9 The incorporation of the antibacterial monomer DMAE-CB showed no more microleakage compared to the commercial sealant in which no antibacterial composite was used (P > 0.05). The microleakage score for the positive control was higher than that of the other two groups (P < 0.05).
     3.10 Fluoride was released from the evaluated sealants with a similar pattern. Both the materials released measurable amounts of fluoride throughout the test period, with considerable amounts of fluoride released in the first 24 h and especially during the first 4 h.
     4 The main conclusions:
     4.1 The DMAE-CB-incorporated sealant could inhibit the bacterial growth and the antibacterial effect was also showed after 2-month aging process or saliva treatment.
     4.2 The eluent of DMAE-CB-incorporated sealant did not have any greater influence on bacterial growth than its parent material and bioactive components didn’t release into the medium.
     4.3 DMAE-CB-incorporated sealant was demonstrated to have inhibitory effects on in vitro biofilm accumulation of S. mutans.
     4.4 The DMAE-CB-incorporated sealant could destroy bacterial membrane integrity and even killing bacteria.
     4.5 The incorporation of a small amount of DMAE-CB to the sealant Helioseal had no significant influence on the surface contact angle. The etching of the enamel surface is necessary to ensure the effectiveness of the sealant.
     4.6 The incorporation of DMAE-CB had no adverse influence on the curing behaviour of the Bis-GMA/TEGDMA-based sealant. The degree of conversion increases with increasing filler content of composite resin material.
     4.7 The incorporation of the antibacterial monomer DMAE-CB had no influence on the microhardness and the curing level of the cured sealants.
     4.8 The incorporation of the antibacterial monomer DMAE-CB had no influence on the ability to prevent microleakage. The unfilled fissures showed less microleakage than filled fissures.
     4.9 The incorporation of DMAE-CB had no adverse influence on the fluoride release from Helioseal F which containing a fluoride-releasing resin. The antibacterial activity of long-term and effectiveness by mean of the incorporation of antibacterial monomer is feasible way.
     Overall, the DMAE-CB-incorporated sealant after polymerization showed a contact antibacterial effect against S. mutans, which could inhibit the bacterial growth, biofilm accumulation and destroy bacterial membrane integrity. The antibacterial activity could be maintained after aging process or saliva treatment. Additionally, the incorporation of small amounts of the monomer DMAE-CB showed no influence on the contact angle, degree of conversion, hardness, microleakage characteristic of the parental material.
引文
[1] Adair SM. The role of sealants in caries prevention programs. J Calif Dent Assoc 2003;31:221-227.
    [2] Uribe S. Sealants recommended to prevent caries. Evid Based Dent 2004;5:93-94.
    [3] Davidson CL, Feilzer AJ. Polymerization shrinkage and polymerization shrinkage stress in polymer based restoratives. J Dent 1997;25:435-440.
    [4] Handelman SL, Leverett, DH, Iker HP. Longitudinal radiographic evaluation of the progress of caries under sealants. J Pedod 1985;9:119-126.
    [5] Preetha V, Shashikiran N, Reddy V. Comparison of antibacterial properties of two fluoride-releasing and a non-fluoride-releasing pit and fissure sealants. Ind Soc of Ped and Prev Dent 2007;25:133-136
    [6] Annette Wiegand, Wolfgang Buchalla, Thomas Attin. Review on fluoride-releasing restorative materials-Fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 2007;23:343-362
    [7] Morphis TL, Toumba KJ, Lygidakis NA. Fluoride pit and fissure sealants: a review. Int J Paediatr Dent 2000;10:90-98
    [8] Heifetz SB, Yaari A, Proskin H. Anticaries effectiveness of a fluoride and nonfluoride sealant. Calif Dent Assoc J 2007;35:573-577
    [9] Marthaler TM. Successes and drawbacks in the caries-preventive use of fluorides- lessons to be learnt from history. Oral Health Prev Dent 2003;1:129-140.
    [10] Bapna MS, Murphy R, Mukherjee S. Inhibition of bacterial colonization by antimicrobial agents incorporated into dental resins. J Oral Rehabil 1988;15:405- 411.
    [11] Fang M, Chai F, Chen JH, Neut C, Jia M, Liu Y, Zhao SJ, Hildebrand HF. Antibacterial functionalization of an experimental self etching primer by inorganic agents: microbiological and biocompatibility evaluations. Biomol Eng 2007;24:483- 488.
    [12] Imazato S, Torii M, Tsuchitani Y, McCabe JF, Russell RR. Incorporation of bacterial inhibitor into resin composite. J Dent Res 1994;73:1437-1443.
    [13] Imazato S, Tay FR, Kaneshiro AV, Takahashi Y, Ebisu S. An in vivo evaluation of bonding ability of comprehensive antibacterial adhesive system incorporating MDPB. Dent Mater 2007;23:170-176
    [14] Xiao YH, Chen JH, Fang M, Xing XD, Wang H, Wang YJ, Li F. Antibacterialeffects of three experimental quaternary ammonium salt (QAS) monomers on bacteria associated with oral infections. J Oral Sci 2008;50:323-327.
    [15] Xiao YH, Ma S, Chen JH, Chai ZG, Li F, Wang YJ. Antibacterial activity and bonding ability of an adhesive incorporating an antibacterial monomer DMAE-CB. J Biomed Mater Res B Appl Biomater 2009;90:813-817.
    [16]李芳.季铵盐型抗菌单体改性牙本质粘接剂的抗菌性能研究.第四军医大学博士学位论文. 2009.
    [17] Li F, Chen JH, Chai ZG, Zhang L, Xiao YH, Fang M, Ma S. Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J Dent 2009;37:289-296.
    [18] Li F, Chai ZG, Sun MN, Wang F, Ma S, Zhang L, Fang M, Chen JH. Anti-biofilm effect of dental adhesive with cationic monomer. J Dent Res 2009;88:372-376.
    [19] Cueto El, Buonocore MG. Sealing of pits and fissures with an adhesive resin: its use in caries prevention. J Am Dent Assoc 1967;75:121-128.
    [20] Council on Dental Materials and Devices. Pit and fissure sealants. J Am Dent Assoc 1971;82:1101-1103.
    [21] Lee H, Ocumpaugh DE, Swartz ML. Sealing of developmental pits and fissures: II. Fluoride release from flexible fissure sealants. J Dent Res 1971;51:183-190.
    [22] Kadoma Y, Kojima K, Masuhara E. Studies on dental fluoride releasing polymers IV. Fluoridation of human enamel by fluoride containing sealant. Biomaterials 1983;4: 89-93
    [23] Hicks MI, Flaitz CM, Gareia-Godoy F. Fluoride-releasing sealant and caries-like enamel lesion formation in vitro. J Clin Pediatr Dent. 2000;24:2l5-2l9.
    [24] Ripa LW. Sealants revisted: an update of the effectiveness of pit-and-fissure sealants. Caries Res. 1993;27:77-82.
    [25] National Institute of Dental Research. Fluoride releasing sealants. J Am Dent Assoc 1985;110:90.
    [26] Swartz ML, Phillips RW, Norman RD, Elliason S, Rhodes BF, Clark HE. Addition of fluoride to pit and fissure sealants- a feasibility study. J Dent Res 1976;55:757-771.
    [27] El-Mehdawi SM, Rapp R, Draus FJ, Miklos FL, Zullo TG. Fluoride ion release from ultraviolet light-cured sealants containing sodium fiuoride. Paediatric Dentistry 1985;7:287-291
    [28] Cooley RL, McCourt JW, Huddleston AM, Casmedes HP. Evaluation of a fluoride-containing sealant by SEM, microleakage and fiuoride release. Pediatr Dent 1990; 12:38-42.
    [29] Jensen ME, Wefel JS, Triolo PT, Hammesfahr PD. Effects of a fluoride releasing fissure sealant on artificial enamel caries. Am J Dent 1990;3:75-78.
    [30] Hicks MJ, Flaitz CM. Caries-like lesion formation around fluoride releasing sealant and glass ionomer. Am J Dent 1992;5:329-334.
    [31] Jensen OE, Billings RJ, Featherstone JD. Clinical evaluation of FluroShield pit and fissure sealant. Clin Prev Dent 1990;12:24-27.
    [32] Park K, Georgescu M, Scherer W, Schulman A. Comparison of shear strength, fracture patterns, and microleakage among unfilled, filled, and fluoride-releasing sealants. Pediatr Dent 1993;15:418-421
    [33] Loyola Rodriguez JP, Garcia-Godoy F. Antibacterial activity of fluoride release sealants on mutans streptococci. J Clin Pediatr Dent 1996;20:109-111.
    [34] Rock WP, Foulkes EE, Perry H, Smith AJ. A comparative study of fluoride releasing composite resin and glass ionomer materials used as fissure sealants. J Dent 1996;24: 275-280.
    [35] do-Rego MA, de-Araujo MA. A 2-year clinical evaluation of fluoride-containing pit and fissure sealants placed with an invasive technique. Quintessence Int 1996;27:99-103.
    [36] Morphis TL, Toumba KJ. Retention of two fluoride pit-and-fissure sealants in comparison to a conventional sealant. Int J Paediatr Dent 1998;8:203-208.
    [37] Rawls HR, Zimmerman BF. Fluoride exchanging resins for caries protection. Caries Res 1983;17:32-43.
    [38] Querens AE, Murray ML, Rawls HR. Mutagenic potential of residual monomers in dental resins. J Dent Res 1981;60A:550.
    [39] Querens AE, Rawls HR. Development of a fluoride exchanging restorative resin. J Dent Res 1982;61:187
    [40] Zimmerman BF, Rawls HR, Bassett JR. Fluoride release and physical properties of an experimental resin filled sealant. J Dent Res 1984;63:295
    [41] Rawls HR. Fluoride releasing acrylics. J Biomater Appl 1987;1:382-405.
    [42] Kadoma Y, Masuhara E, Ueda M, Imail Y. Controlled release of fluoride ions from methacryloyl fluoride-methyl methacrylate copolymers.1.Synthesis of methacryloyl fluoride-methyl methacrylate copolymers. Makromol Chem 1981;182:273-277.
    [43] Kadoma Y, Masuhara E, Anderson JM. Controlled release of fluoride ions from methacryloyl fluoride-methyl methacrylate copolymers. 2. Solution hydrolysis andrelease of fluoride ions. Macromolecules 1982;15:1119-1123.
    [44] Kojima K, Kadoma Y, Masuhara E. Studies on dental fluoride releasing polymers. III. Properties of methacryloyl fluoride-methyl methacrylate copolymers as dental materials. Japanese Journal of Dental Materials 1982;1:131.
    [45] Tanaka M, Ono H, Kadoma Y, Imail Y. Incorporation in human enamel of fluoride slowly released from a sealant in vivo. J Dent Res 1987;66:1591-1593.
    [46] Yoshida M, Sakurai S, Saito T, Kamiyama K. Experimental study on fluoride releasing sealant. Japanese Journal of Paedodonties 1988;26:257-534.
    [47] Kuba Y, Miyazaki K, Ichiki K, Kawazoe H, Motokawa W. Clinical application of visible light-cured fluoride releasing sealant to non-etched enamel surface of partially erupted permanent molars. J Clin Pediatr Dent 1992;17:3-9.
    [48] Ripa LW. Has the decline in caries prevalence reduced the need for fissure sealants in the UK? A review. J Paediatric Dent 1990;6:79-84.
    [49] [49]. Rock WP, Foulkes EE, Perry H, Smith AJ. A comparative study of fluoride releasing composite resin and glass ionomer materials used as fissure sealants. J Dent 1996;24:275-280.
    [50] Erickson RL, Glasspoole EA. Model investigation of caries inhibition by fluoride- releasing dental materials. Adv Dent Res 1994;9:315-323.
    [51] Br?nnstrom M. Infection beneath composite resin restorations. Can it be avoided? Oper Dent. 1987;12:158-163
    [52] Elderton RJ. Management of early dental caries in fissures with fissure sealant. Br Dent J 1985;158:254-258.
    [53] Vatanatham K, Trairatvorakul C, Tantbirojn D. Effect of fluoride- and nonfluoride- containing resin sealants on mineral loss of incipient artificial carious lesion. J Clin Pediatr Dent 2006;30:320-324,
    [54] Muller-Bolla M, Lupi-Pégurier L, Tardieu C, Velly AM, Antomarchi C. Retention of resin-based pit and fissure sealants: a systematic review. Community Dent Oral Epidemiol 2006;34:321-336
    [55] Amin HE. Clinical and antibacterial effectiveness of three different sealant materials. J Dent Hyg 2008;82:45-54
    [56] Lygidakis NA, Oulis KI. A comparison of FluroShield with Delton fissure sealant: Four years results. Pediatr Dent 1999;21:429-431.
    [57] Koch MJ, Garcia-Godoy F, Mayer T, Staehle HJ. Clinical evaluation of Helioseal F fissure sealant. Clin Oral Invest 1997;1:199-202
    [58] Jandt KD, Al-Jasser AMO, Al-Ateeq K, Vowles RW, Allen GC. Mechanical properties and radiopacity of experimental glass-silica-metal hybrid composites. Dent Mater 2002;6:429-435.
    [59] Yoshida K, Tanagawa M, Atsuta M. Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J Biomed Mater Res 1999;4:516-522.
    [60] Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents 2006;27:513-517.
    [61]方明, Neut C,陈吉华,刘奕,赵三军, Hildebrand HF.利用无机抗菌剂研制抗菌自酸蚀处理剂的初步研究.北京口腔医学2007;151:5-8..
    [62] Fang M, Chai F, Chen JH, Neut C, Jia M, Liu Y, Zhao SJ, Hildebrand HF. Antibacterial functionalization of an experimental self-etching primer by inorganic agents: microbiological and biocompatibility evaluations. Biomol Eng 2007;24: 483-488.
    [63]牛丽娜,陈吉华,方明,杨聚才,肖玉鸿,倪峰.不同形貌氧化锌对复合树脂抗变异链球菌活性的影响.华西口腔医学杂志. 2009;27:210-211
    [64] Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weissa E. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials 2006;21:3995-4002.
    [65] Kim O, Shim WJ. Studies on the preparation and dental properties of antibacterial polymeric dental restorative composites containing alkylated ammonium chloride derivatives. J Polym Res Taiwan 2001;1:49-57.
    [66] Jedrychowski JR, Caputo AA, Kerper S. Antibacterial and mechanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil 1983;10:373-381
    [67] Leung D, Spratt DA, Pratten J, Gulabivala K, Mordan NJ, Young AM. Chlorhexidine-releasing methacrylate dental composite materials. Biomaterials 2005; 34:7145-7153.
    [68] Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Tay FR, Frencken JE. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater 2006;22:647-652.
    [69] Frencken JE, Imazato S, Toi C, Mulder J, Mickenautsch S, Takahashi Y, Ebisu S. Antibacterial effect of chlorhexidine containing glass-ionomer cement in vivo: a pilotstudy. Caries Res 2007;41:102-107.
    [70] Jandt KD, Sigusch BW. Future perspectives of resin-based dental materials. Dent Mater. 2009;25:1001-1006
    [71] Yoshikawa K, Clark DT, Brailsford SR, Beighton D, Watson TF, Imazato S, Momoi Y. The effect of antibacterial monomer MDPB on the growth of organisms associated with root caries. Dent Mater J 2007;26:388-392.
    [72] Imazato S, Ohmori K, Russell RRB, McCabe JF, Momoi Y, Maeda N. Determination of bactericidal activity of antibacterial monomer MDPB by a viability staining method. Dent Mater J 2008;27:145-148
    [73] Imazato S, Imai T, Russell RRB, Torii M, Ebisu S. Antibacterial activity of cured dental resin incorporating the antibacterial monomer MDPB and an adhesion- promoting monomer. J Biomed Mater Res 1998;39:511-515.
    [74] Imazato S, Tarumi H, Kato S, Ebisu S. Water sorption and colour stability of composites containing the antibacterial monomer MDPB. J Dent 1999;27:279-283.
    [75] Imazato S, Kinomoto Y, Tarumi H, Torii M, Russell RRB, McCabe JF. Incorporation of antibacterial monomer MDPB in dentin primer. J Dent Res 1997;76: 768-772.
    [76] Imazato S, Torii Y, Takatsuka T, Inoue K, Ebi N, Ebisu S. Bactericidal effect of dentin primer containing antibacterial monomer methacryloyloxydodecylpyridinium bromide (MDPB) against bacteria in human carious dentin. J Oral Rehabil 2001;28: 314-319.
    [77] ?zer F, Karakaya S,ünlüN, Erganis O, Kav K, Imazato S. Comparison of antibacterial activity of two dentin bonding systems using agar well technique and tooth cavity model. J Dent 2003;31:111-116.
    [78] Imazato S, Kuramoto A, Takahashi Y, Ebisu S, Peters MC. In vitro antibacterial effects of the dentin primer of Clearfil Protect Bond. Dent Mater 2006;22:527-532.
    [79] Kuramoto A, Imazato S, Ebisu S, Walls AWG, Russell RRB. Bactericidal effect of antibacterial primer impregnated into demineralized dentin. J Dent Res 2001;80 (special issue):675.
    [80] Smith G, Lumley PJ, Ruettermann S, Imazato S, Smith AJ. Antibacterial effects of a self-etching/priming system for composite resin restorations. J Dent Res 2003;82 (special issue B): B-343.
    [81] Imazato S, Kaneko T, Takahashi Y, Noiri Y, Ebisu S. In vivo antibacterial effects of dentin primer incorporating MDPB. Oper Dent 2004;29:369-375
    [82] Tziafas D, Koliniotou-Koumpia E, Tziafa C, Papadimitriou S. Effects of a new antibacterial adhesives on the repair capacity of the pulp-dentine complex in infected teeth. Int Endod J 2007;40:58-66.
    [83] Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater 2003;19:449-457
    [84] Schmalz G, ErgücüZ, Hiller KA. Effect of dentin on the antibacterial activity of dentin bonding agents. J Endod 2004;30:352-358.
    [85] Donmez N, Belli S, Pashley DH, Tay FR. Ultrastructural correlates of in vivo/in vitro bond degradation in self-etch adhesives. J Dent Res 2005;84:355-359.
    [86] De Munck J, Van Meerbeek B, Inoue S, Vargas M, Yoshida Y, Armstrong S, Lambrechts P, Vanherle G. Microtensile bond strengths of one- and two-step self- etch adhesives to bur-cut enamel and dentin. Am J Dent 2003;16:414-420.
    [87] Sonoda H, Banerjee A, Sherriff M, Tagami J, Watson TF. An in vitro investigation of microtensile bond strengths of two dentine adhesives to caries-affected dentine. J Dent 2005;33:335-342.
    [88] Ansari ZJ, Sadr A, Moezizadeh M, Aminian R, Ghasemi A, Shimada Y, Tagami J, Ansari SJ, Moayedi S. Effects of one-year storage in water on bond strength of self-etching adhesives to enamel and dentin. Dent Mater J 2008;27:266-272.
    [89] Imazato S, Ebi N, Takahashi Y, Kaneko T, Ebisu S, Russell RRB. Antibacterial activity of bactericide immobilized filler for resin-based restoratives. Biomaterials 2003;24:3605-3609.
    [90] Ebi N, Imazato S, Noiri Y, Ebisu S. Inhibitory effect of resin composite containing bactericide-immobilized filler on plaque accumulation. Dent Mater 2001;17:485- 491.
    [91] Imazato S, Ikebe K, Nokubi T, Ebisu S, Walls AWG. Prevalence of root caries in a selected population of older adults in Japan. J Oral Rehabil 2006;33:137-143.
    [92] Imazato S, Walls AWG, Kuramoto A, Ebisu S. Penetration of an antibacterial dentine-bonding system into demineralized human root dentine in vitro. Eur J Oral Sci 2002;110:168-174.
    [93] Kuramoto A, Imazato S, Walls AWG, Ebisu S. Inhibition of progression of root caries by an antibacterial adhesive. J Dent Res 2005;84:89-93.
    [94] Han P, Schaller HG, Gernhardt C, Hellwig E. Influence of two bonding systems on the demineralization of root surface. Oper Dent 1999;24:344-350.
    [95] Kaneshiro AV, Imazato S, Ebisu S, Tanaka S, Tanaka Y, Sano H. Effects of aself-etching resin coating system to prevent demineralization of root surfaces. Dent Mater 2008;24:1420-1427.
    [96]肖玉鸿.季铵盐型抗菌单体的合成及其抗菌活性与细胞毒性研究.第四军医大学博士学位论文. 2008.
    [97] Locker D, Jokovic A, Kay EJ. Prevention. Part 8: The use of pit and fissure sealants in preventing caries in the permanent dentition of children. Br Dent J 2003;195: 375-378.
    [98] Yoshimatsu T, Hiyama K. Mechanism of the action of didecyldimethylammonium chloride (DDAC) against Escherichia coil and morphological changes of the cells. Biocontrol Sci 2007;12:93-99.
    [99] Marczuk-Kolada G, Jakoniuk P, Mystkowska J, ?uczaj-Cepowicz E, Waszkiel D, Dabrowski, Leszczyńska K. Fluoride release and antibacterial activity of selected dental materials. Postepy Hig Med Dosw (online) 2006;60:416-420.
    [100] Beyth N, Domb AJ, Weiss EI. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J Dent 2007;35:201-206.
    [101] Khalichi P, Cvitkovitch DG, Santerre JP. Effect of composite resin biodegradation products on oral streptococcal growth. Biomaterials 2004;25:5467-5472.
    [102] Sehiffner U,Giilzow HG. Influence of firmly and loosely bound fluoride on enamel demineralization in vitro. Caries Res 1998;32:267-317
    [103] Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G. Biofilms, the customized microniche. J Bacteriol 1994;176:2137-2142.
    [104] Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol 1995;49:711-745.
    [105] Bollenl CML, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent Mater 1997;13:258-269
    [106] Montanaro L, Campoccia D, Rizzi S, Donati ME, Breschi L, Prati C, Arciola CR. Evaluation of bacterial adhesion of Streptococcus mutans on dental restorative materials. Biomaterials 2004;25:4457-4463.
    [107] Feuerstein O, Matalon S, Slutzky H, Weiss EI. Antibacterial properties of self- etching dental adhesive systems. J Am Dent Assoc 2007;138:349-354.
    [108]何凌峰, Armstrong DW.毛细管电泳在微生物分离的最新应用.Chemistry (The Chinese Chem. Soc., Taipei) 2001;59:381-390
    [109] Sumitomo T, Nagamune H, Maeda T, Kourai H. Correlation between the bacterioclastic action of a bis-quaternary ammonium compound and outer membrane proteins. Biocontrol Sci 2006;11:115-124.
    [110] Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater 2003;l9:449-457.
    [111] Kawai K, Tsuchitani Y. Effects of resin composite components on glucosyltransferase of cariogenic bacterium. J Biomed Mater Res 2000;5l:123-127.
    [112] Locker D, Jokovic A, Kay EJ. Prevention. Part 8: The use of pit and fissure sealants in preventing caries in the permanent dentition of children. Br Dent J 2003;195: 375-378.
    [113] Mertz-Fairhurst EJ, Schuster GS, Fairhurst CW. Arresting caries by sealants: results of clinical study. J Am Dent Assoc 1986;122:197-197.
    [114] Simmons EW, Barghi N, Muscott JR. Thermocycling of pit and fissure sealants. J Dent Res 1976;55:606-610.
    [115] Bagramian RA, Srivastava S, Graves RC. Pattern of sealant retention in children receiving a combination of caries-preventive methods: three-year results. J Am Dent Assoc 1979;98:46-50.
    [116] Paris S, Meyer-Lueckel H, C?lfen H, Kielbassa AM. Penetration coefficients of commercially available and experimental composites intended to infiltrate enamel carious lesions. Dent Mater 2007;23:742-748.
    [117] Garcia-Godoy F, de Araujo FB. Enhancement of fissure sealant penetration and adaptation: the enameloplasty technique. J Clin Pediatr Dent. 1994;19:13-18.
    [118] Symons AL, Chu CY, Meyers IA. The effect of fissure morphology and pretreatment of the enamel surface on penetration and adhesion of fissure sealants. J Oral Rehabil 1996:23:791-798.
    [119] Olin PS, Lehner CR, Hilton JA. Enamel surface modification in vitro using hydrochloric acid pumice: an SEM investigation. Quintessence Int 1988;19:733-736.
    [120] Taylor DF, Kalachandra S, Sankarapandian M, McGrath JE. Relationship between filler and matrix resin characteristics and the properties of uncured composite pastes. Biomaterials 1998;19:197-204.
    [121] Asmussen E. Factors affecting the quantity of remaining double bonds in restorative resin polymers. Scand J Dent Res 1982;90:490-496.
    [122] Asmussen E. Restorative resins: hardness and strength vs. quantity of remaining double bonds. Scand J Dent Res 1982;90:484-489.
    [123] Imazato S, McCabe JF. Influence of incorporation of antibacterial monomer on curing behavior of a dental resin composite. J Dent Res 1994;73:1641-1645.
    [124] Imazato S, Kinomoto Y, Tarumi H, Ebisu S, Tay FR. Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB. Dent Mater 2003;19:313-319.
    [125] Eliades GC, Vougiouklakis GJ, Caputo AA. Degree of double bond conversion in light-cured composites. Dent Mater 1987;3:19-25.
    [126] Kim S, Jang J. The measurement of degree of conversion for BIS-GMA/silica composites by FT-IR spectroscopy. Polym Test 1996;15:559-571.
    [127] Ruyter IE, Oysaed H. Conversion in different depths of ultraviolet and visible light activated composite materials. Acta Odontol Scand 1982;40:179-192.
    [128] Yap AUJ, Low JS, Ong LFKL. Effect of food-simulating liquids on surface characteristics of composite and polyacid-modified composite restoratives. Oper Dent 2000;25:170-176.
    [129] Feigal RJ, Donly KJ. The use of pit and fissure sealants. Pediatr Dent 2006;28: 143-150.
    [130] Yue C, Tantbirojn D, Grothe RL, Versluis A, Hodges JS, Feigal RJ. The depth of cure of clear versus opaque sealants as influenced by curing regimens. J Am Dent Assoc 2009;140:331-338.
    [131] Say EC, Civelek A, Nobecourt A, Ersoy M, Guleryuz C. Wear and microhardness of different resin composite materials. Oper Dent 2003;28:628-634.
    [132] Santos GB, Medeiros IS, Fellows CE, Muench A, Braga RR. Composite depth of cure obtained with QTH and LED units assessed by microhardness and micro-Raman spectroscopy. Oper Dent 2007;32:79-83.
    [133] Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater 2000;16:129-138.
    [134] Atai M, Nekoomanesh M, Hashemi SA, Amani S. Physical and mechanical properties of an experimental dental composite based on a new monomer. Dent Mater 2004;20:663-668.
    [135] Kwon YH, Kwon TY, Ong JL, Kim KH. Light-polymerized compomers: coefficient of thermal expansion and microhardness. J Prosthet Dent 2002;88:396-401.
    [136] Simonsen RJ. Retention and effectiveness of a single application of white sealant after 10 years. J Am Dent Assoc 1987;115:31-36.
    [137] Hevinga MA, Opdam NJ, Frencken JE, Bronkhorst EM, Truin GJ. Microleakage andsealant penetration in contaminated carious fissures. J Dent 2007;35:901-914.
    [138] Kidd EA. Microleakage in relation to amalgam and composite restorations: A laboratory study. Br Dent J 1976;141:305-310.
    [139] Celiberti P, Lussi A. Use of a self-etching adhesive on previously etched intact enamel and its effect on sealant microleakage and tag formation. J Dent. 2005;33: 163-171.
    [140] Pazinatto FB, Campos BB, Costa LC, Atta MT. Effect of the number of thermocycles on microleakage of resin composite restorations. Pesqui Odontol Bras 2003;7:337-341.
    [141] Güng?r HC, Altay N, Batirbaygil Y, UnlüN. In vitro evaluation of the effect of a surfactant-containing experimental acid gel on sealant microleakage. Quintessence Int 2002;33:679-684.
    [142] Cooley RL, McCourt JW, Huddleston AM, Casmedes HP. Evaluation of a fiuoride-containing sealant by SEM, microieakage, and fluoride release. Pediatr Dent 1990:12:38-42.
    [143] Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater 2005;21:962-970.
    [144] Celiberti P, Lussi A. Penetration ability and microleakage of a fissure sealant applied on artificial and natural enamel fissure caries. J Dent 2007;35:59-67.
    [145] Haugejorden O, Lervik T, Birkeland JM, Jorkjend L. An 11-year follow-up study of dental caries after discontinuation of school-based fluoride programs. Acta Odontol Scand 1990;48:257-263.
    [146] Helvatjoglu-Antoniades M, Karantakis P, Papadogiannis Y, Kapetanios H. Fluoride release from restorative materials and a luting cement. J Prosthet Dent. 2001;86: 156-164.
    [147] Matalon S, Slutzky H, Mazor Y, Weiss EI. Surface antibacterial properties of fissure sealants. Pediatr Dent 2003;25:43-48.
    [148] de Carvalho FG, Puppin-Rontani RM, Soares LE, Santo AM, Martin AA, Nociti- Junior FH. Mineral distribution and CLSM analysis of secondary caries inhibition by fluoride/MDPB-containing adhesive system after cariogenic challenges. J Dent 2009;37:307-314.
    [149] Kuhn AT, Wilson AD. The dissolution mechanisms of silicate and glass ionomer dental cements. Biomaterials 1985;6:378-382.
    [150] Kantovitz KR, Pascon FM, Correr GM, Alonso RC, Rodrigues LK, Alves MC, Puppin-Rontani RM. Influence of environmental conditions on properties of ionomeric and resin sealant materials. J Appl Oral Sci 2009;17:294-300.
    [151] Naorungroj S, Wei HH, Arnold RR, Swift EJ Jr, Walter R. Antibacterial surface properties of fluoride-containing resin-based sealants. J Dent 2010 Jan 18. [Epub ahead of print]
    [152] Bell A, Creanor SL, Foye RH, Saunders WP. The effect of saliva on fluoride release by a glass-ionomer filling material. J Oral Rehabil 1999;26:407-412.
    [153] Levallois B, Fovet Y, Lapeyre L, Gal JY. In vitro fluoride release from restorative materials in water versus artificial saliva medium (SAGF). Dent Mater 1998;14: 441-447.
    [154] Behrend B, GeurtsenW. Long-term effects of four extraction media on the fluoride release from four polyacid-modified composite resins (compomers) and one resin-modified glass-ionomer cement. J Biomed Mater Res 2001;58:631-637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700