纳米生物活性陶瓷材料的制备以及电泳沉积生物陶瓷涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文就生物活性陶瓷羟基磷灰石纳米材料的制备以及运用电泳沉积技术沉积羟基磷灰石涂层进行了研究。羟基磷灰石作为常用的生物活性材料,因具备良好的生物活性和生物相容性而广泛运用于临床,但是由于本身的脆性,限制了羟基磷灰石单独作为植骨材料的应用,而必须与其它的传统医用金属材料一起使用,才能满足作为医用材料强度方面的要求,因此,本论文就电泳沉积羟基磷灰石涂层进行了研究。在制备涂层之前,首先利用湿法制备出结晶度在纳米范围的羟基磷灰石颗粒,并利用X射线衍射、傅立叶变换红外光谱等技术对所制得的羟基磷灰石颗粒进行了表征;然后利用电泳沉积技术在钛合金上得到羟基磷灰石生物陶瓷涂层,并依据实验所测得参数和电泳沉积的具体过程,提出了电泳沉积生物陶瓷的电容充电模型;最后就电泳沉积过程的动力学进行了理论推导,得到了不同条件下沉积量与时间之间的关系式,同时利用这些关系式所得的结论和实验数据,拟合出在一定条件下沉积量与时间之间的关系。主要结论如下:
     (1)通过采用煅烧CaCO_3所制得的CaO悬浮液与稀磷酸反应,只要控制好所加的钙磷物料比为1.67,并通过长时间的陈化,同时保证反应过程在隔绝空气的环境下进行,就能制备出纯度高、结晶度小的羟基磷灰石颗粒。
     (2)用上述方法制备的羟基磷灰石颗粒,经X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)等技术的表征,发现颗粒的纯度高、羟基磷灰石的结晶度在纳米尺度范围之内。
     (3)用上述方法制备羟基磷灰石,经洗涤、脱水后,容易在乙醇中做带电处理,得到的羟基磷灰石颗粒的zeta电位为30-40毫伏、粒径为1-25μm、最几分布为7μm的悬浮液,这种悬浮液很容易通过电泳技术在钛合金上制得羟基磷灰石涂层。
     (4)通过对电泳沉积过程以及实验参数的分析,如果假设在电极上不发生任何化学反应,并且颗粒只受电场力的作用,则电泳沉积过程可用电容的充电过程来模拟。
     (5)假设悬浮液中只有羟基磷灰石导电,而分散介质不导电,从理论上推导出不同条件下电泳沉积量与沉积时间之间的关系式。利用这些关系式所得的结
    
    纳米生物活性陶瓷材料的制备以及电泳沉积生物陶瓷涂层的研究
    论和恒流一等浓度条件下所得到的沉积量与时间的数据,拟合出不同电流条件下
    所对应的经基磷灰石颗粒运行速度之间的关系式。利用此关系式和恒压一等浓度
    条件下不同时间所对应的电流强度的数据,拟合出恒压一等浓度条件下沉积量与
    时间之间的关系曲线,此曲线与实验所得的曲线在沉积初期符合的程度比较好。
Hydroxyapatite (HAP), formulated as Caio(PO4)e(OH)2, has become a favorable biomaterial for implants since its chemical composition and crystal structure are similar to the calcium phosphate minerals present in biological hard tissue. The clinical use of HAP as a load-bearing implant, however, is limited because of its mechanical brittleness and low tensile strength. Many efforts have been made in recent years in the development of processing methods for depositing HAP on the implant alloy substrate in order to have high strength as well as excellent biocompatibility and bioactivity. Electrophoretic deposition of HAP bioceramic coatings has recently attracted considerable attention because of a variety of advantages of the method of the coating fabrication, such as a low process temperature, ability to deposit on porous or complex shapes of substrate, the simple control of deposit thickness.
    It has been studied in this thesis that nanometer hydroxyapatite materials were fabricated by a wet method and bioceramic coatings of hydroxyapatite were prepared by the electrophoretic deposition (EPD) technique. The major results and conclusions are summarized as follows:
    1. Hydroxyapatite for EPD was prepared by wet method using CaCO3 and H3PO4 as the raw materials. The crystal structure and chemical composition of the product were determined by X-ray diffraction (XRD) and Fourier transform infrared(FTIR). The results show that the high pure nanometer hydroxyapatite materials can be prepared while CaO obtained from the decomposition of CaCO3 reacted with H3PO4 for 96 hours in the Ca/P ratio of 1.67.
    2. HAP coatings on clinical alloys were obtained by electrophoretic deposition that is a combination of two processes: electrophoresis and deposition. Electrophoresis is the motion of charged HAP particles in a suspension under the influence of an electric field, and deposition is the coagulation of HAP particles to a dense mass. The sintered surface of bioceramic coatings deposited by electrophoresis method was detected by scanning electron microscopy (SEM) and X-ray diffraction (XRD). According
    
    
    
    to the relationship of the deposition time versus the deposit weight and the current density as well as deposit weight versus applied voltage, a model of capacity charging is proposed to explain the process of EPD.
    3. The kinetics of EPD was studied under the precondition that the charged powder of HAP is the only carrier of electric charge in suspension. The kinetic equations are developed for constant-current and constant-voltage EPD using mass balance conditions. The formula of deposition weight versus time as well as the relationship of velocity versus deposition time could be derived from the experimental data of current versus time, which is obtained under the condition of constant voltage and constant concentration of HAP, and the relationship between observed current and velocity of HAP powders, which results from the theoretical kinetic equation and experimental data measured at the condition of constant current and constant concentration of HAP. The calculated kinetic curve is better fit at the beginning of EPD to the experimental curve plotted under the condition of constant voltage and constant concentration of HAP.
引文
1.李世普,刘晓明,生物陶瓷,武汉工业大学出版社,1989
    2.黄占杰,生物陶瓷,科学,Vol40.No.3.pp200~206
    3. J. F. Shacklfor, Advanced Engineering Ceramics for Biomedical Applications, Key Engineering materials Vol. 56~57.1987. ppl 3~22
    4.L. L. Hench,生物陶瓷,新型无机材料,Vol.7.No.3.1979.pp87~95
    5.黄炳堂,丁传贤,医用生物陶瓷材料,自然,Vol.10.No.11.1987.pp830~834
    6. R. Z. LeGeris. Calcium Phosphate materials in Reconstructive Dentistry: A Review. Adv. Dent.Res, Vol. 2. 1988. pp164~168
    7. W. Suchanck and M.Yoshmura, Processing and Properties of Hydroxyapatite Based Biomaterials for Use as Hard Tissue Replacement Implants, J. Mater. Res, Vol. 13.No. 1. 1998. pp94~117
    8.郑岳华,侯小妹,杨兆雄.多孔羟基磷灰石生物陶瓷的进展.硅酸盐通报,1995,(3):20~24
    9. T. Kanazawa, T. Umegaki, K. Yamashia, H. Monma and T. Hiramatsu, Effeet of Calcium Phosphate with various Ca/P Ratios, J. Mater. Sci. Vol. 26, 1991, pp417~422
    10. J. D. Santos, P. L. Sliva, J. C. Knowies, S. Talal and F. J. Montero, Reinforcement of Hydroxyapatite by Adding P_2O_5-CaO Glasses with Na_2O, K_2O and MgO, J. Mater. Sci. Med, No. 7. 1996, 187~193
    11. N. Tamari, M.Mouri and I.Kondo,Mechanical Propertise and Existing Phase of Composite Ceramics Obtained by Sintering of a Mixture of Hydroxyapatite and Zirconia, J. Japan. Ceram. Soc.Vol.95.No.8.1987, pp806~809
    12. E.Champion,S.Gautier and D. Bernache-Assoliant, Characterization of Hot Pressed Al_2O_3-Platelet Reinforced Hydroxyapatite Composites J. Mater. Med, No.7, 1996, pp125~130
    13. T. K.Chaki and P. E. Wang, Strengthening Behavior of Hydroxyapatite-Silver Composite, Bioceramics, Vol. 8. pp235~243
    14. K.Asano and T. Ichiko, Development of Hydroxyapatite-Titanium Composite Implant Material, in Ceramics in surgery, ed. P. Vincenizi,1983, ElsvierScientific
    
    Publishing Co. Amsterdam, pp365~371
    15.席文君,功能材料,1996,27(3):274~276
    16. Vbjciech Suchanek, J. Am. Ceram.Soc, 80[u]2805-13(199)
    17.浦素云,金属植入材料及其腐蚀.北京:北京航空航天大学出版社,1990
    18. Gottfredsen K, et al.Anchorage of TiO_2-blasted, HA-coated and machined implants. J Biomed Mater Res, 1995, 29: 1223~1231
    19. Daculsi G, et al. Macroporous calcium phosphate ceramic for long bone surgeruy in humans and dogs, clinical and histological study. J Biomed Mater Res, 1990, 24: 379~396
    20.王迎军,等.金属基等离子喷涂HA涂层人工骨的研究.中国陶瓷,1996,32(2):37~40
    21.憨勇,徐可为.羟基磷灰石生物陶瓷涂层制备方法综述.硅酸盐通报,1997,5:47~50
    22.高濂,宫本大树,放电等离子烧结技术.无机材料学报,1997,12(2):129~133
    23.李旭东,等.离子束技术沉积羟基磷灰石薄膜的结构及溶解性能.无机材料学报,1998,13(4):541~546
    24. Cui F Z, et al, Highly adhesive hydroxyapatite coatings on titanium alloy formed by ion beam assisted deposition. J Mater Sci : Mater In Medicine. 1997, 8: 403~405
    25.李世普,陈晓明.生物陶瓷.武汉:武汉工业大学出版社,1989
    26.程逵,等.生物陶瓷涂层.材料科学与工程,1998,16(3):8~12
    27. Arita H, Castano V M. Synthesis and processing of hydroxyapatite ceramic tapes with controlled porosity. J Mater Sci Lett, 1995, 6: 19~23
    28.张亚平,等.钛合金表面激光溶凝一步制备复合生物陶瓷涂层.材料研究学报,1998,12(4):423~426
    29.徐滨士,等.等离子喷涂及堆焊.北京:中国铁道出版社,1986
    30. Zhang J Q, et al. comparison of wear resistance of ion implantation surgical Ti6A14V with other alloys, in: MRS Symp Proc, 1986, 55: 229~234
    31. Wolke, et al. Plasma-sprayed hydroxyapatite coating for biomedical applications. Proceeding of the Third National Thermal Spray Conference, 1990, 413~417
    
    
    32.王迎军等.生物活性陶瓷涂层的爆炸喷涂与等离子喷涂.华南理工大学学报,1998.26(7:):124~128
    33. Hitoshioguchi, Keiko I, et al. Evaluation of a high-velocity flame-spraying technique for hydroxyapatite. Biomater, 1992, 13(1): 5~7
    34. Wen H B, Wolke J G C, et al. Fast precipitation of calcium phophate layers on titanium induces by simple chemical treatments. Biomater. 1997, 18(1): 22~24
    35.白书欣,张红.等离子注入技术及其在材料学中的应用.材料科学导报,1997,11:5~7
    36. Aremnds J, Christoffersen J, et al. A calcium hydroxyapatite precipitated from an aqueous solution. Crystal Growth, 1987, 84(4): 513~517
    37. Hattori T, Iwadate Y, Kato T. Hydrothermal synthesis of hydroxyapatite from calcium acetate and triethyl phosphate. Advan. Ceran. Mater. 1980, 31(4): 424~428
    38. Monma H. Preparation of hydroxyapatite by the hydrolysis of brushite. Mater.Sci. 1987, 22(16): 4245~4247
    39. Li Yubao, et al. Morphology and compositior of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. Mater Sci: Mater. Med, 1994, 5(4): 324~327
    40. Redopenning J, Schlessinger, et al. Characterization of electrolytically prepared brushite and hydroxyapatite coatings on orthopedic alloys. Biomde. Meter. Res. 1996, 30(3): 287~292
    41. Shirkhanzadeh M. Bioactibe calcium phosphate coatings prepared by electrodeposition, J Mat Sci: Mat In Medicine, 1994(5): 219~224
    42. Ducheyne P, Radin S, Heughebaert S, et al. Effect of calcium phosphate ceramic coatings on porous titanium J Biomaterials, 1990(11): 244~248
    43. F. HARBACH, R. NEEFF, H. NIENBURG and L.WEILER, in Processing Science, edited by H. Hausner, G. L. Messing and S. Hirano (Dtsch. Keram. Ges: Cologne, Germany, 1988) p.609.
    44. Suzuki T. Synthetic hydroxyapatite as inorganic cation-exchanger:(3) Exchange characteristics of lead ion(pb~(2+)). J Chem Soc Faraday Trans, 1984,80: 3157~3165.
    45. Qiying M, Logan T J, Traina S J. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ Sci and Technol,
    
    1995, 29: 1118~1126.
    46. Takeuchi Y, Arai H. Removal of coexisting pb~(2+),Cu~(2+) and Cd~(2+) ions from water by addition of hydroxyapatite powder. J Chen Eng of Japan, 1990, 23(1): 75~80
    47.邬鸿彦,朱明刚,孔令宜.对制备羟基磷灰石粉末工艺条件的再探讨.河北科技大学学报,1998,1:2328
    48.刘羽,钟康年,胡文云.溶胶凝胶法合成条件与羟基磷灰石特征的关系.材料科学与工程,1997,,15(1):2025.
    49.孙淑珍,雷家珩,邬鸿新,等.溶胶凝胶法合成羟基磷灰石.无机盐工业,1992,311:2425.
    50. Elliot J C, Young, R A. Recent studies of apatite and other calcium orthophosphates. Nature, 1967, 214: 904
    51.刘羽,钟康年,胡文云.用水热法合成羟基磷灰石去除溶液中铅离子研究[J].武汉化工学院学报,1998,20(1):39~42.
    52.伍源,周玉新.用水热法合成羟基磷灰石[J].无机盐工业.1991,1:58~60.
    53.张德正,王保锋等,医用羟基磷灰石陶瓷的制备与应用.中国陶瓷.1998,34(6):24~26
    54. Nims L E J. Preparatiove techniques based on the dissciation constants of phosphoric acid. Amer Chem Soc, 1934, 56: 1110~1115
    55. Korber F, Tromel G Z. The formation of HA through a solid-state reaction between tri- and tetracalcium phosphates. Electrochem, 1932, 28: 578~580
    56. Tromel G Z. The optimum conditions for the formation of HA. Physic Chem, 1932, 158(A): 422~425
    57. Narasaraju T S B, Lahire P. Hydroxyapatite(HAP) prepared by a solid state diffusion process. Curr Sci, 1998, 51: 772~774
    58.韩颖超,王欣宇,李世普等.自燃烧法合成纳米HAP粉末.硅酸盐学报,2002,30(3):124-126.
    59.张明福,赫晓东,韩杰才,等.自燃烧法合成BaNd_2Ti_5O_(14)的凝胶化及热处理研究.无机材料学报,2000,15(5):879~883.
    60.徐志刚,程福祥,周彪等.CoFe_2O_4纳米材料的燃烧法合成及磁性研究.科学通
    
    报,2000,45(17):1837~1841.
    61.谢平波,张慰萍,尹民等.纳米Ln_2O_3:Eu(Ln=Gd,Y)荧光粉的燃烧法合成及其光致发光性质.无机材料学报,1998,13(1):53~58.
    62.岳振星,周济,张洪国.柠檬酸盐凝胶的自燃烧与铁氧体纳米粉合成.硅酸盐学报,1999,27(4):466~470.
    63.王迎军等,低密度生物活性颌面股的物理性能与生物性能,生物医学工程通报1994 6(1)
    64.黄楠等.等离子体注入钛基植入材料表面改性的研究,生物医学工程通报1994 Vol.6No.1
    65.张其清等.羟基磷灰石—胶原复合人公骨材料的研究,生物医学工程通报1994 Vol.6No.1
    66.黄炳堂等.生物活性玻璃涂层人工牙根种植体的研究,生物医学工程通报1994Vol.6No 1
    67. Dasarathy H, Riley C, Coble H D, Analysis of apatite deposits on substrate [J], J Biomed Mater Res, 1993, 27: 477~482
    68. Larry L. Hench Bioceramics: From Concept to Clinic J. Am. Ceram.Soc. 1991, 74(7): 1487~1510
    69. Hchem L J, Chen K S, Ju C P, Mater Chem Phy, 1995, 41: 282
    70.张建民,扬长春,石秋芝等,中国陶瓷,2000,36(6):36
    71. Dueheyne P, Radin S, Heaghebaet M, et al, Biomaterials, 1990, 11: 244
    72. Umegaki, T, Hisao Y, Yamashita K, et al, Gypsum Lime, 1989, 215: 24
    73. Halperin W P. Quantum size effects in metal particle. Rev Mod Phys. 1986, 58(3): 532~539
    74. Karch J, Birringer R, Gleiter H. Ceramics ductitle at low temperature. Nature, 1987, 330: 516~518
    75. Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J. Mater. Sci.; Mater. In Medicine, 1998(9): 727~729
    76. Yubao L, Wijn J D, Klein C P A T, et al. Preparation and characterization of nanograde osteoapatitc-like rod crystals. J. Mater. Sci,: Mater. In Medicine, 1994(5): 252~255
    
    
    77. Monma H, Kamiya T. Preparation of hydroxyapatite by the hydrolysis of brushite . J Mater Sci 1987(22) :4247-4250
    78. Monma H, Ueno S, Kanazawa T. Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate J Chem Tech Biotechnol, 1981(31) : 15-24
    79. Moreno E C, Varughese K. Crystal growth of calcium apatite from dilute solutions. J Crystal Growth, 1981(53) :20~30
    80. Fujishiro Y, Yabaki H, Kawamura K, et al. Preparation of needle-like hydroxyapatite by homogeneous precipitation under bydrothermal conditions. J Chem Tech Biotechnol, 1993(57) 349-353
    81. JCPDS桰nternational Centre for Diffraction Data( 1992) .Section 9: 9-432.
    82. 田从学,《攀枝花大学学报》,16 (1999) 77c
    83 游效曾, 《结构分析导论》,科学出版社(1980) 176
    84. Atends J, Christoffersen J.Christoffersen M R, et al. J.Crystal Growth 84(1987) 515.
    85. Zhitomirsky I, Gal-or L.Electrophoretic deposition of hydroxyapatite. J Materials Science:Materials In Medicine, 1997,8:213-219
    86. Damodaran R, Moudgil B.M. Electrophoretic deposition of calcium phosphates from non-aqueous media. Physicochemical and Engineering Aspects. 1993,80:191-195.
    87. J.H. Kennedy, A. Foissy, J. Am. Ceram. Soc. 1977,60(33)
    88. Cong Wang, J.Ma, et al .Materials Letters 2002,57:99-105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700