医用镁钙锌合金成分设计及表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医用镁合金作为可吸收的植入材料具有巨大的发展潜力。本课题通过从生物学和冶金学两方面考察相关元素的作用,优选出了钙和锌作为合金元素,并在查阅大量文献的基础上,对镁钙锌合金的成分进行了设计,熔炼出了两种相同钙含量、不同锌含量的镁钙锌合金,即Mg-1.0 wt.%Ca-0.3 wt.%Zn和Mg-1.0 wt.%Ca-1.0 wt.%Zn。随后对其进行热处理和离子注入表面改性,并对合金元素强化机制及合金在模拟体液(SBF)中的腐蚀行为进行了研究。通过和纯镁、镁铝锌合金(AZ91)的性能对比,评价了镁钙锌合金作为硬组织植入物的优势和特点。
     实验结果表明,Ca和Zn能够细化镁合金的组织,在合金中形成二元相Mg_2Ca和三元相Mg_6Ca_2Zn_3,合金经过人工时效后,Mg_6Ca_2Zn_3相弥散析出。合金的压缩和弯曲性能测试结果表明,随锌含量的增加,合金的弯曲模量、抗弯强度、弯曲断裂挠度增大,压缩模量、抗压强度、压缩屈服点等略有降低。
     应用高能真空金属离子注入技术将Ti离子和Zr离子在110 keV的能量下,分别以5×1016 ions/cm~2、1.0×10~(17) ions/cm~2、1.5×10~(17) ions/cm~2三种不同剂量注入到纯镁、镁钙锌合金和AZ91合金的表面。EDS和XPS分析结果表明,离子注入后,合金表面的元素含量随着注入剂量的增加而增大,注入的Ti离子在合金表面形成了TiO_2层。离子注入前后表面纳米压痕测试的结果还证实,离子的注入使合金表面硬度和模量均有一定程度的提高。
     三电极体系测试结果表明,未经离子注入的镁钙锌合金的极化阻力远高于纯镁,但低于AZ91;Zr离子注入后合金的极化阻力均高于Ti离子注入的合金。镁钙锌和AZ91合金在SBF中的浸泡实验结果表明,经过相同时间的浸泡,AZ91的质量损失速率较低,其次为锌含量为1.0 wt.%的镁钙锌合金;离子注入后合金的腐蚀速率均显著降低,其中锌含量为1.0 wt.%的镁钙锌合金的腐蚀速率最低,其耐腐蚀性优于AZ91。镁钙锌合金与AZ91表面均有羟基磷灰石生成,具有较好的生物活性。
     锌含量为1.0 wt.%的镁钙锌合金经离子注入后在SBF中表现最稳定,同时具有合适的弯曲和压缩力学性能,是性能最佳的合金。这种合金经离子注入后,其体内植入物制品表面积最高可达240 cm~2,能够满足一般体内植入物的表面积要求。
Biocompatible magnesium alloys offer great potential as absorbable implant materials. In this study, biocompatable Ca and Zn elements were selected as the alloying element by investigating the effect of certain elements on biology and metallurgy. On the basis of numerous reading of literatures, the alloys with same component of Ca and different component of Zn were designed and prepared. Then heat treatment and surface modification by implanting Ti and Zr ions were carried out on the alloys. The mechanical properties and corrosion resistance of alloys in SBF were investigated. The superiority and characteristic of Mg-Ca-Zn alloys were estimated by comparing with pure Mg and AZ91 magnesium alloy.
     The results showed that Ca and Zn can refine the magnesium alloy and formed Binary phase Mg_2Ca and ternary phase Mg_6Ca_2Zn_3 in the microstructure of the alloys. After artificial aging, the Mg_6Ca_2Zn_3 precipitates inside of the grain. The bending and compression test showed that the bending modulus, bending intensity, rupture flexibility were improved as the Ca content increasing. At the same time, compression modulus, compression intensity and yield point decreased.
     Under the 110 keV energy, the Ti ions and Zr ions were implanted into the pure magnesium, Mg-Ca-Zn and AZ91 alloys surface respectively at the dose of 5×1016 ions/cm~2, 1.0×10~(17) ions/cm~2, 1.5×10~(17) the ions/cm~2 by Metal Vapour Vacuum Arc (MEVVA) ion implantation device. EDS and the XPS analysis results indicated that the alloy surface element content increased with the implantation dose grows after ion implantation. The TiO2 layer has been formed in the alloy surface implanted Ti. The superficial nanometer indentation test result also confirmed that the ion implantation caused the alloy surface hardness and the modulus enhanced at a certain degree.
     Three electrode system tests indicated that the polarization resistance of the Mg-Ca-Zn alloy by ion implantation was far higher than the pure magnesium, but lower than AZ91; the polarization resistance of the alloys implanted Zr was higher than implanted Ti.
     The results that Mg-Ca-Zn alloy and the AZ91 immersed in SBF for 72 h finally indicated that in the same time, among the four alloys unimplantation, the AZ91 corrosion rate was the lowest, next for alloyⅡwith Zn content of 1.0 wt.%. The corrosion rate of alloys was reduced by ion implantation. The corrosion rate of alloyⅡwas the lowest and its corrosion resistance had surpassed AZ91.
     The resulted alloy immersed in SBF indicated that anti-corrosive performance of the alloy was enhanced by ion implantation. Ion implantation can speed up the solution alkalize, thus slowed down the corrosion of the alloys.
     The alloyⅡwith Zn content of 1.0 wt.% behaved stably in SBF after ion implantation. Simultaneously, it had appropriate bending and compression mechanical performance. The max surface area of in vivo implant of this alloy after ion implantation was possible to reach 240 cm2, which can satisfy the request of implants in vivo.
引文
[1]张兴栋.生物医用材料篇.师昌绪,李恒德,周廉.材料科学与工程手册.北京:化学工业出版社, 2004.
    [2]张文莉.生物材料及其应用,医药工程设计杂志2003;24(3):1-2.
    [3] Brown S A. Biomaterials, Corrosion and Wear, In: Encyclopedia of medical devices and instrumentation Vol.2. New York USA: Wiley, 1988:351-361.
    [4]奚廷斐.生物医用材料产业高速增长.新材料产业2006;1:31-33.
    [5] Griffith L G. Polymeric biomaterials. Acta Mater 2000;48:263-277.
    [6]崔福斋,冯庆玲.生物材料学.北京:科学出版社, 1997.
    [7]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社, 2000.
    [8]马春. 2005年世界新材料研究进展.新材料产业, 2006;1:60-61.
    [9]崔福斋,李艳,李恒德.国内外生物医用材料产业分析.新材料产业, 2005;5:49-51.
    [10]材料科学技术百科全书.北京:中国大百科全书出版杜, 1993.
    [11]顾汉卿,徐国风.生物医学材料学.天津:科学技术出版社, 1993.
    [12] W. Bonfield. Biomaterials-A New Generation. Materials World 1997; 5(1):18-20.
    [13] Tipper J L, Hatton A, Nevelos J E, et al. Alumina-alumina artificial hip joints. Part II: Characterisation of the wear debris from in vitro hip joint simulations. Biomaterials 2002;(23)16:3441-3448.
    [14] Toshiki Miyazaki, Hyun-Min Kim, Tadashi Kokubo, et a1. Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid. Biomaterials 2002;(23)3:827-832.
    [15] Yasuo Niki, Hideo Matsumoto, Yasunori Soda, et a1. Metalions induce bone-resorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages. Biomaterials 2003;(24)8:1447-1457.
    [16] Martini D, Fini M, Franchi M, et al. Detachment of titanium and fluoro hydroxyapatite particles in unloaded endosseous implants. Biomaterials 2003;(24)7:1309-1316.
    [17] Hatton A, Nevelos J E, Matthews J B, et al. Effects of clinically relevant alumina ceramic wear particles on TNF-a production by human peripheral blood mononuclear phagocytes. Biomaterials 2003;(24)7:1193-1204.
    [18] Trentani L, Pelillo F, Pavesi F C, et al. Evaluation of theTiMol2Zr6Fe2 alloy for orthopaedic implants: in vitro biocompatibility study by using primary human fibroblasts and osteoblasts. Biomaterials 2002;(23)14:2863-2869.
    [19] MacDonald DE, DeoaN, MarkovicB, et al.Adsorption anddissolution behavior of human plasma. fibronectin on thermally and chemically modified titanium dioxideparticles. Biomaterials 2002;(23)4:1269-1279.
    [20] Feng Zhang. Xianghuai Liu, Yingjun Mao, et al. Artificial heart valves l improved hemocompatibility by titanium oxide coatings prepared by ion beam assisted deposition. Surf. Coat. Technol. 1998;103:146-150.
    [21] Cui F Z, Luo Z S. Biomaterials modification by ion-beam processing. Surf. Coat. Technol 1999;112:278-285.
    [22] Germain M A, Hatton A, Williams S, et al. Comparison of the cytotoxicity of clinically relevant cobalt-chromium and alumina ceramic wear particles in vitro. Biomaterials 2003;(24)3:469-479.
    [23] Darimont D L, Cloots R, Heinen E, et a1. In vivo behaviour of hydroxyapatite coatings on titanium implants: aquantitative study in the rabbit. Biomaterials 2002;(23)12:2569-2575.
    [24] Hench L L. Direct chemical bone of bioactive glass-cerami cmaterial tobone an muscle. Biomed Mater Res 1973;4(1):25-29.
    [25] K De Groot, Geesink R G T, Klein C P A, et a1. Plasma sprayed coating of hydroxy apatite EJ-I. Biomed Mater Res 1987;21(11):1375-1379.
    [26]严玉华,李志刚.钛合金牙根种植体表面烧结复合涂层.硅酸盐学报1997;25(5):598-602.
    [27] Avedesian Michael M, Baker Hugh, Magnesium and Magnesium Alloys. ASM international.1999.
    [28]马图哈K H主编,非铁合金的结构与性能.丁道云等译,北京:科学出版社.1999.
    [29]刘正等著.镁基轻质合金理论基础及其应用.北京:机械工业出版社.
    [30]张文奇,石声泰,肖纪美等.金属腐蚀手册.上海科技出版社, 1987.
    [31]武显亮,镁合金的腐蚀与防护. [博士学位论文].沈阳,中国科学院金属腐蚀与防护研究所:1999.
    [32] Martio John.镁的消费远景及其对新增产能的要求.小国镁业, 1999.
    [33] International magnesium Association. The markets for magnesium.Magnesium the meata today, 1998:4-8.
    [34]刘正,王越,王中光等.镁基轻质材料的研究与应用.材料研究学报2000;14(6):449-456.
    [35] Kojima Yo. Project of platform science and technology for advanced magnesium alloys. Mater. Trans 2000;42(7):1154-1159.
    [36] Mordike B. L, EbeH T. Magnesium properties-application-potential. Mater. Sci. Eng. A 2001;302(1-2):37-45.
    [37] Aghion E. Bronfin B. Magnesium Alloys Development towards the 21st Century. Mater. Sci. Forum 2000;350-351:19-28.
    [38]夏德宏,郭梁,余涛.镁及镁合金广阔的应用前景.金属世界2005;2:47-48.
    [39]李宁,黎德育.镁合金压铸件的性能及表面处理.电镀与涂饰2002;21(4): 39
    [40]上海交通大学.镁科技发展战略研究.内部资料.
    [41]许小忠,刘强,程军.镁合金在工业及国防中的应用.华北工学院学报2002;23(3):190.
    [42] Hosoda Koh.The diference of diecasting magnesium application development between America and Japan. J of the Surface Finishing Society of Japan .1993; 44(11):899.
    [43]刘静安,李建湘.镁及镁合金材料的应用及其加工技术的发展.四川有色金属2007;3(1):2-5.
    [44] http://www.ryutu.ncipi.go.jp/chart/tokumapf/htm
    [45]镁合金的应用.有色金属工业, 2004;7:58.
    [46]史文方,周昆.我国镁合金的开发应用现状及展望.汽车工艺与材料2004;6:34-36.
    [47] http://www.china-m.net/databank/theory/.
    [48] Witte F, Kaese V, I-Iaferkamp H, et a1. In vivo corrosion of four magnesium alloys and the associated bone response . Biomaterials 2005;26(17):3557-3563.
    [49]李龙川,高家诚,王勇.医用镁合金的腐蚀行为与表面改性.材料导报2003;17(10):26-32.
    [50] Kuwahara H, A1-Abdullat Y, Mazaki N, et a1. Precipitation on magnesium apatite on pure magnesium surface during immersing in Hank’s solution. Mater. Trans 2001;42(7):1317-1321.
    [51] Kuwahara H, A1-Alxhllat Y, Ohta M, et a1. Surface action of magnesium in Hank’s solutions. Mater Sci Forum 2000;350-351:349-358.
    [52] Kuwahara H, Mazaki N, Mabuchi M, et a1. Behavior of magnesium in Hank’s solution aimed to trabecular pattern of natural bone. Mater Sci Forum 2003;(419-422):1007-1012.
    [53] Heublein B, Rohde R, Kaese V, et a1. Bio-corrosion of magnesium alloys: a new principle in cardiovascular implant technology Heart 2003;89:651-656.
    [54]任伊宾,黄晶晶,杨柯等. CN Pat, 200510046360+6.
    [55] McBride. Absorbable metal in bone surgery. J Am Med Assoc 1938;111:2464-2467.
    [56] Gao J, Qiao L, Li L, d. Hemolysis efect and calcium-phosphate precipitation of heat-organic-film treated magnesium. Transaction Nonferrous Met Soc, 2006;16(3):539-544.
    [57] Serre CM, Papillard M, Chavassieux, et. al. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human oateoblasts. Biomed Mater Res 1998;42(4):626 -633.
    [58] Wen C, YamadaY, ShimojimaK. et. al. Compressibility of porous magnesium foam: dependency on porosity and pore size. Mater. Lett 2005;58(3):357-360.
    [59]沈剑,凤仪,王松林等.多孔生物镁的制备与力学性能研究.金属功能材料2006;13(3):9-13.
    [60] Kim S G. Inoue A, Masumoto T. Increase of mechanical strength of aMg_(85)Zn_(12)Ce_3 amorphous alloy by dispersion of ultra fine hep-Mg particles. Mater Trans 1991;9:875.
    [61] Mark P Staiger, Alexis M Pietak, Jerawala Huadmai, et a1. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006;27(9):1728-1734.
    [62]戴魁戎.骨折内固定与应力遮挡效应.医用生物力学2001;15(2):69.
    [63] Serre C M, Papillard M, Chavassieux P, et al. Influence of magnesium substitution on a collagen apatite biomaterial on the production of a calcifying matrix by human oxteoblasts. Biomed Mater Res 1998;(42):626.
    [64]胡庆福.镁化合物生产应用.北京:化学工业出版社, 2004.
    [65] Vormann J. Magnesium: nutrition and metabolism. Mol aspects Med, 2003;24(1):27-37.
    [66] Longchuan Li, Jiacheng Gao, Wang Yong. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesiumin simulated body fluid. Surf. Coat. Technol, 2004;185(1):92-98.
    [67] Schroeder H. A. The trace elements and man.(陈荣三,张祖暄),北京:科学出版社. 1979.
    [68] Li Longchuan, Wang Yong. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf Coat Technol 2004;(185): 92-98.与68相同
    [69]高家诚,李龙川.纯镁的细胞毒性和溶血率试验研究.功能材料2004;(35):2265-2267.
    [70]张永君,严川伟.镁及镁合金环保型阳极氧化电解液及其工艺.材料保护2002;(35):39-46.
    [71]王周成,唐毅. AZ91D镁合金微弧阳极氧化及表面处理研究.厦门大学学报2005;(45):292-295.
    [72]张先锋.镁合金表面处理工艺耐蚀性研究.涂装指南2005;(6):5-7.
    [73]蒋百灵,张先锋.镁合金微弧氧化陶瓷层的生长过程及其耐蚀性.中国腐蚀与防护学报2005;25(2):97-101.
    [74]袁兵,袁森.镁合金微弧氧化及后续涂装耐盐雾腐蚀的研究.材料保护2006;39(9):15-17.
    [75]高引慧,李文芳,杜军镁等.合金微弧氧化黄色陶瓷膜的制备和结构研究.材料科学与工程学报2005;23(4):542-545.
    [76]姚美意,周邦,王均安.电压对镁合金微弧氧化膜组织及耐蚀性的影响.材料保护2005;38(6):7-10.
    [77]王宏,孙耀宁.镁合金激光表面熔覆.热加工工艺2006;(35):67-69.
    [78]王秀敏,韩会民,高波等.镁合金AZ91HP电子束表面改性EPMA分析.电子显微学报2005;24(1):46-49.
    [79]高波,郝胜智,姜利民.镁合金AZ91HP强流脉冲电子束表面处理及抗蚀性能研究.材料热处理学报2004;25(4):67-71.
    [80]胡乾午, T.M.Yue.镁基金属复合材料表面激光熔覆铜合金研究.应用激光2001;21(4):247-250.
    [81] Erlin Zhang, Dongsong Yin, Liping Xu. et. al. Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application. Mater. Sci. Eng. C 2009;29(3):987-993.
    [82] Zijian Li, Xunan Gu, et.al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008;29(10):1329-1344.
    [83]周小淞.新型医用镁钙合金的制备及性能研究[硕士学位论文].天津:天津大学;2007.
    [84] Lambotte. L’utilisation du magnesium comme material perdudans I’osteosyn these Bull Mem Soc Nat Chir 1932;28:1325-1334.
    [85] Znamenskii. Metallic osteosynthesis by means of an apparatus made of resorbing metal. Khirurgiia 1945;12:60-63.
    [86] Scholz. Supporting or sustaining part for implant in bonecomposed of porous magnesium filled with calcium phosphate.German patent no. 2004;41:102-572.
    [87] Witte, Crostack, Nellesen, Beckmann. Characterization of degradable magnesium alloys as orthopaedic implant material by synchrotron-radiation-based microtomography. 2001:5447:5461.
    [88] Stroganov, Savitsky, Mikhailovich, et al. Magnesium-base alloys for use in bone surgery. US Patent no. 3, 1972;687:135,.
    [89] Troitskii, Tsitrin. The resorbing metallic alloy Osteosinthezit as material for fastening broken bone. Khirurgiia 1944;(8):41-44.
    [90] B. Denkena, A. Lucas. Biocompatible Magnesium Alloys as Absorbable implant Materials Adjusted Surface and Subsurface Properties by Machining Processes. Annals of the CIRP 2007;56(1):113-116.
    [91] H. Wang, Y. Estrin. et.al. Bio-corrosion of a magnesium alloy with different processing histories. Mater. Lett.2008;62(16):2476-2479.
    [92] M. Bobby Kannan, R. K. Singh Raman. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials 2008;29(15):2306-2314.
    [93] Y.W. Song, D.Y. Shan. E.H. Han. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater. Lett 2008;62()17-18:3276–3279.
    [94] Chenglong Liu, Yunchang Xin. Guoyi Tang. et. al. Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid. Mater. Sci. Eng. A 2007;456(1-2):350-357.
    [95] Steippich E V F, Wolf K, Berg G. Enhanced corrosion protection of magnesium of magnesium oxide coatings on magnesium deposited by ion biomaterial evaporation.Surf Coat Technol, 1998;(103):104-29.
    [96] Bruckner J, Gunzel R. Metal plasma immersion ion implantation and deposition chromium on magnesium. Surf Coat Technol, 1998;103-104:227-230.
    [97] Larisa Kutsenko, David Fuks. Biodegradable magnesium–hydroxyapatite metal matrix composites Mechanism of phase transformations in Mg-based alloys subjected to plasma immersion ion implantation of Ag. Acta Mater 2006;54(10):2637-2643.
    [98] N .Pebere, C. Rriea, E Dabosi, In vestigation of magnesium corrosion in aerated sodium sulfate solution by electrochemical impendences pectroscopy, Electrochimica Acta.1990;35(2):55-58.
    [99] G Song, A. Atrens, L. Ying, et al. Negative Diference Efect of Magnesium, Proceedings of corrosion and provention-97, Australiasian Corrosion Association Inc. 1997:38.
    [100] G. Song, A. Atrens, D. St John, J. Nairn. et al. The electrochemical corrosion of pure magnesium in 1 N NaCl, Corros. Sci 1997;39(5):855-875.
    [101] G. Song, A. Atrens, D. St John. Corrosion behaviour of AZ21, AZ50 and AZ91 in.sodium chloride. Corros. Sci. 1997;39(10-11):1981-2004.
    [102] M.N. Hull, J. Electroanal. Chem. (App.L) 1972.
    [103] J. G reenbaltt, A mechanism for the anodic dissolution of magnesium, J. Electrochem. Soc. 1956;(103):539.
    [104] G Song, A. Atrens. Understanding magnesium corrosion, Adv. Eng. Mater. 2003;5(12):837-858.
    [105]曾荣昌,柯伟,徐永波.Mg合金的最新发展及应用前景.金属学报2001;37(7):673-685.
    [106]蔡启舟,王立世,魏伯康.镁合金防蚀处理的研究现状及动向.特种铸造及有色金属2003;3:33-35.
    [107]姚美意,周邦新镁合金耐蚀表面处理的研究进展.材料保护2001;34(10):19-21.
    [108]余刚,刘跃龙.Mg合金的腐蚀与防护.中国有色金属学报2002;12(6):1087-1098.
    [109] Mitrovic-Scepanovic V, Brigham R J. Localization corrosion initiation on magnesium alloys. Corros. Sci. 1992;48(9):780.
    [110] A. Broli, H. Holtan. Determination of characteristic pitting potentials for aluminium by use of the potentiostatic methods Corros. Sci. 1977;17(1):59-69.
    [111]张汉茹,郝远,徐卫军. NaCl溶液中AZ91D的腐蚀性能-RE与Sb及Si对AZ91D合金在NaCl溶液中腐蚀速率的影响.铸造设备研究2004;1:28-30.
    [112] Beldjoudi T, Fiaud C, Robbiola L. Influence of T4 and T6 heat trezhnents on the cornosion behaviour of Mg-A1 alloys. Corros. Sci. 1993;49(9):738-745.
    [113] A. Eliezer, E.M. Gutman, E. Abramov, et al. Corrosion Fatigue of die-cast and extruded magnesium alloy. J. Light Met 2001;1(3): 179-186.
    [114] Lunder O, Anne T KR, Msancioglu K. Effect of Mn Additions on the Corrosion Behavior of Mould-Cast Magnesium AZ91. Corros. Sci. 1987;43(5):291-295.
    [115] J. E.Hillis, R .W Murray. Presented at SDCE14th Int. Die Casting Congress and Exposition, Toronto, Canada 1987.
    [116]周婉秋,单大勇,曾荣昌等.镁合金的腐蚀行为与表面防护方法.材料保护2002;7(7):1-3.
    [117]朱祖芳,有色金属腐蚀性及其应用,化学工业出版社,1995.
    [118]肖纪美,应力作用下的金属腐蚀,化学工业出版社,1990:82-88.
    [119] Guangling Song, David StJohn. The effect of zirconium grain refinement on the corrosion Behaviour of magnesium-rare earth alloy MEZ, J. Light Met 2002;2(1):1-16.
    [120] M. Sakamoto, S. Akiyama. In processing of the 4th Asian Foundary Congress, Boardbeach, austrillia, 1996:467.
    [121] S. Mathieu, C. Rapin, J. Hazan, et al. Corrosion behavior of high pressure die-cast and semi-solid cast AZ91D alloys, Corros. Sci. 2002;44 (2):737-2756.
    [122] S. Mathieu, C. Rapin, J. Steimetz, et al. A corrosion study of the main constituent phase of AZ91 magnesium aloys, Corros. Sci. 2003;45(12):2741-2755.
    [123] O. Lunder, J.E. Lein, T.K. Anne, et al. The role of Mg17A112 phase in the corrosion of AZ91, Corros. Sci. 1989(45):741-748.
    [124] R. Ambat, N.N. Aung, W. Zhou, Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy, Corros. Sci. 2000;(42):1433-1455.
    [125] Y J. Ko, C.D. Yim, J.D. Lim. et al. Efect of Mg17Al12 precipitate on corrosion behavior of AZ91D magnesium alloy, Mater. Sci. Forum 2003;(419-422):851-856.
    [126] J. H.Nordlin, K .Nisancioglu, S .Ono, et al. Morphology and structure of oxide film formed on Mg-Al alloy exposure to air and water. J. Electrochem Soc 1996;143: 2564.
    [127] G .Song, A .Atreas, X .Wu, et al. The anodic dissolution of Magnesium in Chloride and sulphate solution, Corros. Sci 1998;(40)1769.
    [128] Tao Zhang, Ymg Li, Fuhui Wang, Effect of Al, Zn Content on the Corrosion Behavior of Magnesium Alloy, 16th Intenraitonal Corrosion Conference.34.
    [129] I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison, T.M. Pollock, Microstructural characterization of a die-cast magnesium-rare earth alloy, Scripta Materialia 2001;(45):1423-1439.
    [130] W. Henning, B.L. Mordike, in: H.J. McQeen, J.P. Bailon, J.I. Doxkson, J.J.Joans, M.G. Akben (Eds.), Strength of Metals and Alloys, Pergamon Press, Oxford 1985:803-809.
    [131] L.Y. Wei, G.L. Dunlop, H. Westengen, Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys, Metal. Mater. Trans. A 1995;(26):1705-1706.
    [132] O. Lunder, K. Nisancioglu, in: J.M. Costa, A.D. Mercer (Eds.) Progress in the understanding and prevention of corrosion. The Institute of Materials, London, 1993:1249-1254.
    [133] H.B. Yao, Y. Li, A.T.S. Wee, J.S. Pan, J.W. Chai, Correlation between thecorrosion behavior and corrosion films formed on the surfaces of Mg82-xNi18Ndx(x=0,5,15) amorphous alloys, Appl. Surf. Sci. 2001; (173):54-61.
    [134] H.B. Yao, Y. Li, A.T.S. Wee, Passivity behavior of melt-spun Mg-Y alloys, Electrochimica Acta 2003;(48):4197-4204.
    [135] F. Rosalbino, E. Angelini, S.D. Negri, et al. Effect of erbiumaddition on the corrosion behavior of Mg-Al alloys, Intermetallics 2005;(13):55-60.
    [136] S. Krishnamurthy, M. Khogaib, E. Robertson, Corrosion behavior of rapidly solidified Mg-Nd and Mg-Y alloys. Mater. Sci. Eng 1988;(99):507-511
    [137]王喜峰,齐公台,蔡启舟等.混合稀土对AZ91镁合金在NaCI溶液中的腐蚀行为影响.材料开发与应用2002;(10):34-36.
    [138]宋雨来.稀土改性AZ91镁合金组织及腐蚀性能[博士学位论文],长春:吉林大学;2006.
    [139]钟丽应.稀土元素对AZ91镁合金组织结构和腐蚀行为的影响[硕士学位论文].杭州,浙江大学; 2008.
    [140] David S T. Protection of Magnesium Components in Military Applications. NACE '90 Conference, 1990.
    [141] Zeng R C, Zhang J, Huang W J. Review of studies on corrosion of magnesium alloys. Traps.Nonferrous Met. SOC 2006;(16):763-771.
    [142] Pardo A, Merino M C, Coy A E, ea al. Corrosion behaviour of magnesium/aluminium alloys in 3.5wt.% NaCl. Corrosion Science 2008;(3):823-834.
    [143] G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater. 1999;(1):11-33.
    [144] . Lunder, M. Videm, K. Niasncioglu, Corrosion resistant magnesium alloys . Mater. Manufacturing 1995;(104):352-357.
    [145] O. Lunder, K. Nisancioglu, R. Stem Hansen, Corrosion of die cast magnesium-aluminum alloys. SAE Technical Paper. 1993.
    [146] T. Zhang, Y Li, F. Wang, Roles of p phase in the corrosion process of AZ91D magnesium alloy, Corros. Sci. 2006;(48):1249-1264.
    [147] P. Uzan, N. Frumin, D. Eliezar, E. Aghion, The role of composition and second phases on the Proceedings Science and.corrosion behavior of AZ alloys, in: E. Aghion, D. Eliezer (Eds.), of the Second Israeli International Conference on Magnesium Technology, Magnesium 2000, Dead Sea, Israel, 2000:385-391.
    [148] T. Beldjoudi, C. Fiaud, L. Robbiola. Corrosion, steel in aqueous solutions of HCO3-, CO2. passivity, and pitting of carbon and Cl-, Corros. Sci. 1993:49.
    [149] R. Udhayan, D.P. Bhatt, On the corrosion behaviour of magnesium and its alloys using electrochemical techniques, J. Power Sources. 1996;(63):103-107.
    [150] S.K.Das, L.A.Davix, High performance aerospace alloys via rapid solidification processing, Mater. Sci. Eng 1988;(98):1-12.
    [151] F. Henmann. F. Sommer, and H. Jonets, Corrosion inhibition in magnesium-aluminium-based alloys induced by rapid solidification processing J. Mater. Sci. 1989;(24):2369-2379
    [152] W.S. Loose, L.M. Pidgeon, J.C. Mathes, et al. Corrosion and Protection ofMagnesium, ASM Materials Park 1946:173-260.
    [153] G.L. Song, D. St John, The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ, J Light Met 2002;(2):1-16.
    [154] R. Ambat, N.N. Aung, W. Zhou, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy, Corros. Sci. 2000;(42):1433-1455.
    [155]战广深,肖向辉, Mg-Al-Zn-Mn合金在NaCI溶液中的接触腐蚀行为,上海有色金属1996;(17):8-12.
    [156] R. Tunold, H, Holtan, H.B. Maybritt, The corrosion of magnesium in aqueous solution containing chloride ions. Corros. Sci. 1977;(17):353 -365.
    [157] D.S. Tawil, Magnesium Technology, Institute of Metals, London 1987.
    [158] E.F. Emley, Principles of magnesium Technology, Pergamon Press, New York 1966.
    [159] G. L. Maker, J. Kruger, Corrosion of magnesium, Int. Mater. Rev 1993;(38):138-151.
    [160]张津,张宗和.镁合金及应用,化学工业出版社.2004.
    [161] S.Fumihiro, A.Yoahihiko, N.Takenori,Corrosion behavior of magnesium alloys with different surface treatments, J Light Met 1992;(42):752-758.
    [162] L.R. Amy, B.B. Carmel, Corrosion protection afforded by rare earth conversion coatings applied to magnesium, Corros. Sci 2000;(42):275-288.
    [163] U.Hiroyuki, An investigation of the structure and corrosion resistance of a permanganate conversion coating on AZ91D magnesium alloys, J Light Met 2000;(50):109-115.
    [164]周婉秋,单大勇,韩厚恩.镁合金无铬化学转化膜的耐蚀性研究,材料保护, 2002;(35):12-14.
    [165] T. Iwamoto, K. Morta, J.D. Mackenzie, Liquid state Si NMR study on sol-gel reaction mechanisms of ormosils, J. Non-Cryst. Solids 1993;(159):65-71.
    [166] K. Mori, H. Hirahara, Y. Oishi, Effect of triazine dithiols on the polymer plating of magnesium alloys, Mater. Sci. Forum 2000;(350):223-234.
    [167]文思雄,镁合金零件局部的抗蚀保护,电镀与精饰1999;(21):31-32.
    [168]朱立群,李雪源,发动机镁合金件改性硅溶胶防护涂层的研究,材料保护2002;(35):17-18.
    [169] A.K. Sharma, H. Narayanamurthy, H. Bhojaraj, J.M. Mohideen, Gold plating on magnesium alloys for space applications, Metal Finishing 1993;(91):34-40.
    [170] J.Z Li, Z.C. Shao, X. Zhang, et al. The electroless nickel-plating on magnesium alloy using NiS046H20 as the main salt, Surf. Coat. Technol. 2006;(200):3010-3015.
    [171] R. Ambat, W. Zhou, Electroless nickel-plating on AZ91D magnesium alloy: Effect of substrate microstructure and plating parameters, Surf. Coat. Technol 2004;(179):124-134.
    [172] L.Q. Bai, D. Li, New development of anodizing process of magnesium alloys, Trans. Non. Metal. Soc China 2004;(14):120-125.
    [173] C. Blawert, W. Dietzel, E. Ghali, et al. Anodizing treatments formagnesium alloys and their effect on corrosion resistance in various environments, Adv. Eng. Mater 2006;(8):511- 533.
    [174] Gray J, Luan B. Protective coatings on magnesium and its alloys- a critical review. Alloys Compd, 2002;(336):88-113.
    [175] Zhu X M, Yang H G, Lei M K. Corrosion resistance of Al ion implanted AZ31 magnesium alloy at elevated temperature. Surf Coat Technol 2007;201:6663-6666.
    [176] Kutsenko L, Fuks D, Kiv A, et al. Mechanism of phase transformations in Mg-based alloys subjected to plasma immersion ion implantation of Ag. Acta Mater 2006;(54):2637-2643.
    [177] Zhou H, Chen F, Yao B, et al. Properties of the TiN coatings on previously Ti ion-implanted magnesium alloy substrate. Surf Coat Technol 2007(201):6730-6733.
    [178] H. A. Evangelides, U.S. Pat. 2, 1955(723):952.
    [179] The Dow Chemical Company, GB Pat. 1956(762):195.
    [180]邓姝皓,易丹青,娄嘉等.镁合金脉冲阳极氧化工艺.电镀与涂饰2005;25(2):32-34.
    [181] Sharma A K, Uma Rani R, Bhojaraj H, et a1. Galvanic black anodizing on Mg2Li alloys. J. Appl. Electrochem. 1993;23(5):500-507.
    [182]张永君,严川伟,王福会等.镁及镁合金环保型阳极氧化电解液及其工艺.材料保护2002;35(3):39-40.
    [183]蒋玉思.镁及其合金阳极氧化技术的进展.广东有色金属学报2001;11(2):120-124.
    [184] T.F Barton, C.B. Johnson, The effect of electrolyte on the anodized finish of a Magnesium alloy, Plat. Sur Fin 1995;82:138.
    [185] O. Khaselev, J. Yahalom, Constant voltage anodizing of Mg-A1 alloys in KOH-Al(OH)3 solutions, J. Electrochem. Soc 1998;145(1):190.
    [186] M. Takaya, J. Metal Finishing Soc. Jpn 1998;35:290.
    [187] M.Takaya, Gypsum & Lime, 1989.
    [188] M.A. Timonova, T I. Ershova, A.N. Izosimova, Zasch. Metal 1968;4:287.
    [189] M.A. Timonova, T.I. Ershova, Metal. Nemetal. Pokrytia Legk. Metal. Solavov 1972;81:6.
    [190] achiko Ono, Katsuhiko Asami, Tetsuya Osaka, et al. Structure of anodic films formed on magnesium, J. Electrochem. Soc 1996;143:162.
    [191] S.Ono, M. Saito. M. Horiguchi, et al. Surface Finishing Soc. Jpa 1996;3:268.
    [192] P.L. Hagans, in: Proceedings of Annual Meeting of International Magnesium Association,1984.
    [193] P L. Hagans, Electrochemical study of the passivation and passive film breakdown of Mg70Zn30 metallic glass, Mater. Res. Soc. Symp, Proc 1987;80:113.
    [194] F A. Bonilla, A. Berkani, Y. Liu, et al. Stevens of anodic films on magnesium aoolys in an alkaline phosphate electrolyte, J. Electrochem. Soc 2002;149(1):84.
    [195] M. Abulsain, P. Skeldon, F A. Bonilla, et al. Anodic oxidation of Mg-Cu and Mg-Zn alloys. Electrochim. Acta 2004;49:899.
    [196] V.Birss, S. Xia, R. Yue, et al. Characterization of oxide films formed on Ma-based WFA3 alloy using AC/DC anodization in silicate solutions, J. Electrochem. Soc 2004;151(1):81.
    [197]吴昌胜.AZ31镁合金阳极氧化工艺及其腐蚀行为研究. [硕士学位论文].杭州:浙江大学;2006.
    [198] Yong Han, Seong-Hyeon Hong, Kewei Xu. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surf Coat Technol 2003;(168):249-258.
    [199]刘庆华,焦玉恒.骨科用金属材料的表面改性.生物骨科材料与临床研究2004;3(1):38-42.
    [200]刘振东,范清宇.应力遮挡效应―寻找丢失的钥匙.中华创伤骨科杂2002;4:62
    [201]高家诚,张亚平,文静.激光熔凝一步制备复合生物陶瓷涂层得生物相容性.生物医学工程1999;16.(增):20.
    [202] L.Rudd Amy, B.Breslin Carmel, Florian Mansfeld. The corrosion protection aforded by rare earth conversation coatings applied to magnesium. Corros. Sci. 2000;42:275.
    [203] I. Naktsugawa, S. Kamado, Y.Kojima, R. Ninomiya, K. Kubota. Corrosion of magnesium alloys containing rare earth elements. Corros. Rev. 1998;16:13 9-157.
    [204] Yu Xingwen, Cao Chunan, Yao Zhiming, et al. Study of double layer rare earth metal conversation coating on aluminum alloy LY12. Corros. Sci. 2001;43:1283
    [205] Mansfeld F ,Chen C , Berslin C B , et al. Sealing of anodized aluminum alloys with rare earth metal salt solutions. J. Electrochem. Soc 1998;14(5):2792.
    [206] Yu Xingwen, Yan Chuanwei, Cao Chuan. Study on the rare earth sealing procedure of the porous film of anodized A 1606/SiCp Mater. Chem. Phys 2002;76:228.
    [207] Long, Marc; H.J. Rack, Titanium alloys in total joint replacement-a materials science perspective. Biomaterials 1998;19:1621-1639.
    [208]盛汝勤,庄庆,梁万银.人工钛根嵌塞牙根种植术.北京口腔医学1995;(3):118-121.
    [209] E .Leitao, M .A. Barbosa, K .De Gorot, In vitro testing of surface-modified biomaterials. J. Mater. Sci. - Mater. Med 1998;9:543-548.
    [210] Al-Abdullat Yousef, sadami Tsutsumil, Naoki Nakajima, et al. Surface modification of magnesium applications. by NaHCO3 and corrosion behavior in Hank's solution for new biomaterial. Mater. Trans 2001;(4)2:1777.
    [211] Hideyuki Kuwahara, Al-Abdullat Yousel, Naoko Mazaki, et al. Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank's solution. Mater. Trans 2001;42:1317.
    [212]马幼平,陆旭忠,许可为.镁合金表面处理研究的新进展.轻合金加工技术2002;(9):30-33.
    [213] Kousomichalis A, Saettas L, Badekas H. Laser treatment.of magnesium. J. Mater. Sci. 1994;29(6):543-565.
    [214] Dube D, Fiset M, Couture A, et al. Characterization and performance of laser melted AZ91D and AM60B. Mater. Sci. Eng A 2001;299:38-45.
    [215] Sorin I, Pierre S, Dominique G, et al. Magnesium alloys laser (Nd:Y AG) cladding and alloying with side injection of aluminium powder. Appl. Surf. Sci 2004;225:124- 134.
    [216] Galun R, Weisheit A, Mordike B L. Laser surface alloying of magnesium base alloys . J Laser Appl 1996;6(12):229-305.
    [217]王安安.在纯镁上激光熔覆镁铝合金层提高表面的耐蚀性.应用激光1992;12(6):244-248.
    [218] Tue T M ,Wang A H , Man H C. Corrosion resistant ehancement of magnesium ZK60/SiC composite by Nd: YAG laser cladding. Scripta Mater 1999;40(3):303-311.
    [219]陈长军,王东生,王茂才. Laser surface cladding of ZM5 Mg-base alloy with AI+Y powder. Trans. Nonferrous Met. Soc. China 2004;14(6):1091-1094.
    [220] Yang Y, Hu J D, Wang H Y, et a1. Laser(Nd:YAG)Cladding of AZ91D Magnesium Alloys with AI+Ti+C Nanapowders. Laser in Eng 2006;16(11):9-17.
    [221]刘红宾,王存山,高亚丽等.镁合金表面宽带激光熔覆Cu-Zr-Al合金涂层.应用激光2005;25(5):299-302.
    [222] Milella E, Cosentino F, Licciulli A. Preparation and characterization of titanin/hydroxyapatite composite coatings obtained by sol-gel process. Biomaterials 2001;22(11):1425-1431.
    [223] Montenero A, Gnappi. G., Ferrari. E. Sol-gel derived hydroxyapatite coatings on titanium substrate. J Mater Sci 2000;35(11):2791-2797.
    [224] Kaciulis S, Mattogno G, Pandolfi L. XPS study of apatite-based coatings prepared by solgel technique. Appl Surf Sci 1999;151(1-2):1-5.
    [225]邓迟,李秀芬,邓敏.生物材料表面改性的研究进展.乐山师范学院学报2004;19(5):79-83.
    [226] Shirkhanzadeh M. Bioactive calcium phosphate coatings prepared by electrodeposition. J Mater Sci: Mater Med 1994;(5):219-224.
    [227]付涛,李浩,张玉梅.电流密度对电结晶羟基磷灰石生物涂层性能的影响.稀有金属材料与工程2000;29(4):247-250.
    [228]罗晋生.离子注入物理.上海:上海科学技术出版社, 1984.
    [229]王贻华,胡正琼.离子注入与分析基础.北京:航空工业出版社,1992.
    [230]北京市辐射中心,北京师范大学低能物理研究所加速器研究室.离子注入机基础.北京:北京出版社, 1981.
    [231] Pham MT, Reuther H, Matz W. Surface induced reactivity for titanium by ion implantation. J Mater Sci: Mater Med 2000;11:383-386.
    [232] Maitz MF, PhamMT, Matz W. Promoted calcium-phosphate precipitation fromsolution on titanium for improved biocompatibility by ion implantation. Surf Coat Tech 2002;158-159:151-156.
    [233]王紫琴. Ag、Cu离子注入医用金属材料表面改性研究. [硕士学位论文].天津:天津大学, 2006.
    [234] Liu X M., Wu S L, Chan Y L. Surface characteristics, biocompatibility, and mechanical properties of nickel-titanium plasma-implanted with nitrogen at different implantation voltages. Biome. ater Res. J 2007;(3):24-27.
    [235] Luo J D. Biomedical Engineering Applcations Basis Communications, 1994;6(4): 41-48.
    [236] Willums J M. Mater Sci Eng. 1985;69: 237.
    [237] Buchanan R A, Rigney E D, Williams J M. Ion implantation of surgical Ti-6Al-4V for improved resistance to wear-accelerated corrosion. Biome. Mater Res. J 2004;3(21):355-366.
    [238] Danzfuss B. Influence of ion implantation on the electrochemical behavior of passive titanium. Thin films Sci. Technol. 1983.
    [239] Viviente J L, Garcia A, Loinaz A. Carbon layers formed on steel and Ti alloys after ion implantation of C2+ at very high doses. Vacuum 1999;52(12):141-146.
    [240] Cigada A. Transactions of 5th World Biomaterials Congress, 1996, Toronto, Canada.
    [241] V Ashworth, R. P. M. Proctor, W A. Grant. In ion implantation, Treatise on Mater. Sci. Technol. A cademic press, NewYork, 1980.
    [242] S. Akavipat, E. B .Hale, C. E. Habermann, et al Effects of ion implantationon the aqueous corrosion magnesium. Mater. Sci. Eng 1985;(69):311-316
    [243] I .Nakatsugawa, R .Martin, E .J. Knystautas, Improving corrosion resistance of AZ91D magnesium alloy by nitrogen ion implantaiton. Corros. Sci 1996;(52):921-926.
    [244] M.Vilarigues, L .C .Alves, I.D .Nogueira, et al. Characterisation of corrosion products in Crimplanted Mg surfaces. Surf. Coat. Technol 2002;(158-159):328-333.
    [245] Chen Fei, Zhou Hai, Cai Suo, et al. Corrosion resistance properties of AZ31 magnesium alloy after Ti ion implantation. Rare Metals 2007;26(2):142
    [246]雷明凯,李朋,常海威等.金属离子高温注入原理与工艺研究.中国表面工程2006;19(2):1-5.
    [247] Xuemin Wang, Xiaoqin Zeng, Shoushan Yao, et al. The corrosion behavior of Ce-implanted magnesium alloys. Mater. Charact 2008;(59):618-623.
    [248]王玉才.金属元素与人体健康.中国保健食品2004(4):38-41.
    [249]李友林.矿物营养元素与人体健康.盐业科技2006(3):37-41.
    [250] Schroeder H A. The Trace Elements and Man(陈荣三,张祖暄).北京:科学出版社, 1979.
    [251]樊昱,吴国华,高洪涛. Ca对镁合金组织,力学性能和腐蚀性能的影响.中国有色金属学报2005;2(15):210-217.
    [252]张忠林,刘兆晶,李凤珍.镁合金燃点和耐蚀性及力学性能的研究.轻合金加工技术2003;7(31):31-34.
    [253] Tatiana V, Larionava H, Won-Wook Park, Bong-Sun You. A Ternary Phase Observed in Rapidly Solidified Mg-Ca-Zn Alloys. Scripta Mater 2001;(45): 7-12.
    [254]张诗昌,段汉桥,蔡启舟等.主要合金元素对镁合金组织和性能的影响.铸造2001;6(50):310-316.
    [255]陈振华,严红革.镁合金.北京:化学工业出版社, 2004.
    [256]中华人民共和国国家技术监督局, GB3499-83,中华人民共和国国家标准,北京:中国标准出版社, 1983.
    [257] G. Levi, S. Avraham, A. Zilberov, et al. Solidification, solution treatment and age hardening of a Mg-1.6wt.%Ca-3.2wt.%Zn alloy. Acta Materialia 2006;(54):523-530.
    [258] X. Gao, S.M. Zhu, B.C. Muddle, et al. Precipitation-hardened Mg-Ca-Zn alloys with superior creep resistance. Scripta Mater.2005(53):1321-1326.
    [259] J.C. Oh, T. Ohkubo, T. Mukai, et al. TEM and 3DAP characterization of an age-hardened Mg-Ca-Zn alloy. Scripta Mater. 2005(53):675-679.
    [260]中华人民共和国国家技术监督局, GB/T14452-93,中华人民共和国国家标准.北京:中国标准出版社, 1993.
    [261]中华人民共和国国家技术监督局, GB7314-37,中华人民共和国国家标准.北京:中国标准出版社, 1987.
    [262]刘楚明,朱秀荣,周海涛.镁合金相图集,长沙:中南大学出版社, 2006.
    [263] Jardim P M, Solórzano G, Vander Sande J B. Second phase formation in melt-spun Mg-Ca-Zn alloys. Mater. Sci. Eng. A 2004;(381):196-205.
    [264] M. Bamberger, Levi G, Vander Sande J B. Precipitation Hardening in Mg-Ca-Zn Alloys. Metall. Mater. Trans. A. 2006;(37):481-487.
    [265] Dahle A K, Lee Y C, Nave M D, et al. Mechanisms of eutectic solidification in Al–Si alloys modified with Ba, Ca, Y and Yb. J Light Met 2001;1(4):61:219-228.
    [266]赵宝林,张外,马洪顺.股骨松质骨弯曲实验研究.试验技术与试验机2002;(42):80-82.
    [267] Brown I G, Galvin J E. Metal vapor cacuum ion source. Rev Sci Instrum 1986;57:1069-1075.
    [268]吴先映,李强. 50型MEVVA源离子注入机.北京师范大学学报(自然科学版), 2002;38(4):496-499.
    [269] Chenglong Liu, Yunchang Xin, Xiubo Tian, et al. Corrosion behavior of AZ91 magnesium alloy treated by plasma immersion ion implantation and deposition in artificial physiological fluids. Thin Solid Films 2007;(516):422-427.
    [270]张通和,吴瑜光.离子束材料改性科学和应用.北京:科学出版社, 1999:131-134.
    [271]王位.离子注入金属材料的表面改性及计算机模拟[博士学位论文].上海:上海交通大学; 2002.
    [272]朱红莲,王德武.离子引出收集的沉积与溅射研究.物理学报2002;51(6):1338-1345.
    [273] Matsunami N, Yamamura Y. Energy dependence of the ion-induced sputtering yields of monoatomic solids. At. Data Nucl. Data 1984;31:1-32.
    [274] Yasunori Yamamura, Hiro Tawara. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. At. Data Nucl. Data 1996;62(2):149-168.
    [275]Tadashi Kokubo, Hiroaki Takadama. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 2006, (27):2907-2915.
    [276] Mcintyre N S, Chen C. Role of impurities on Mg surfaces under ambient exposure conditions. Corros. Sci.1998;40(10):1697-1709.
    [277] Geneviève Baril, Nadine Pébère. The corrosion of pure Magnesium in aerated and deaerated sodium sulphate solutions. Corros. Sci. 2001;43(3):471-484.
    [278] Busk R S. Magnesium Products Design. NewYork: Marcel Dekker Inc 1985.
    [279]谢希文,过梅丽.材料工程基础.北京:北京航空航天大学出版社, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700